
E�cient Support for Interactive Scanning Operations in

MPEG-Based Video-On-Demand Systems

�

Marwan Krunz

y

George Apostolopoulos

z

Abstract

In this paper, we present an e�cient approach for supporting fast-scanning (FS) operations

in MPEG-based video-on-demand (VOD) systems. This approach is based on storing multiple,

di�erently encoded versions of the same movie at the server. A normal version is used for normal

playback, while several scan versions are used for FS. Each scan version supports forward and

backward FS at a given speedup. The server responds to a FS request by switching from the

normal version to an appropriate scan version. Scanning versions are produced by encoding a

sample of the raw frames using the same GOP pattern of the normal version. When a scan-

ning version is decoded and played back at the normal frame rate, it gives a perceptual motion

speedup. By being able to control the tra�c envelopes of the scan versions, our approach can be

integrated into a previously proposed framework for distributing archived, MPEG-coded video

streams [21]. FS operations are supported using no or little extra network bandwidth beyond

what is already allocated for normal playback. Mechanisms for controlling the tra�c envelopes

of the scan versions are presented. The actions taken by the server and the client's decoder in

response to various types of interactive requests are described in detail. The latency incurred in

implementing various interactive requests is shown to be within an acceptable range. Striping and

disk scheduling strategies for storing various versions at the server are presented. Issues related

to the implementation of our approach are discussed. Finally, we compare our scheme against

other FS approaches.

keywords: MPEG, video scheduling, interactive video-on-demand, scanning operations.

1 Introduction

The maturing of video compression technologies, magnetic storage subsystems, and broadband net-

working has made video-on-demand (VOD) over computer networks more viable than ever. Major

carriers have tested small-scale VOD systems, and companies that provide related services and prod-

ucts are emerging (cf. [18, 6]). To improve the marketability of VOD services and accelerate their

wide-scale deployment, these services must support user interactivity at a�ordable cost. At mini-

mum, an interactive VOD service must allow users to dynamically request basic VCR operations,

�

Part of this paper was presented at the ACM/SPIE Multimedia Computing and Networking Conference, 1998.

y

Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85718. Tel. (520) 621-

8731. krunz@ece.arizona.edu. This work was partially supported by an NSF CAREER Award ANI-9733143 and

partially by a University of Arizona Faculty-Grant Award.

z

Department of Computer Science, University of Maryland, College Park, MD 20742.

1

such as stop-resume, pause-resume, slow motion, jump (forward or backward), and fast scanning

(i.e., viewing the movie forward or backward at multiple times the normal playback rate).

The di�culty of supporting interactivity in a VOD system varies from one interactive function

to another. A stop, jump, or pause followed by resume are relatively easy to support, as they do not

require more bandwidth than what is required for normal playback. On the other hand, fast-scanning

(FS) involves displaying frames at several times the normal rate. Transporting and decoding frames

at multiple times the normal frame rate is prohibitively expensive and is infeasible with today's

hardware decoders. Backward FS is even more di�cult to support in compression schemes that

involve motion interpolated frames, such as B frames in the MPEG scheme [17]. In the case of

MPEG, all the reference frames in a Group of Pictures (GOP) must be decoded before B frames of

that GOP can be played back in the reverse order.

Several approaches have been proposed to support interactivity in a VOD system. In [26] inter-

active operations, including scanning, are implemented at the client side using prefetched frames.

The attractiveness of this approach lies in its transparency to both the network and the server. How-

ever, if a scanning operation lasts for an extended period of time, a signi�cant portion of the movie

must be prefetched. In addition to the large bu�er requirement, excessive prefetching necessitates

requesting the movie long before its commencement. Scanning operations can also be supported by

transmitting frames at multiple times the normal frame rate over a communications channel that is

di�erent from the one used for normal playback [12, 28]. Since at a given point in time only a small

percentage of users are in the interactive mode, the \interactive channel" can be shared by several

users. However, in this case there is a small probability that a request for a FS operation will be

rejected (i.e., FS operations are guaranteed on a statistical basis). During the scanning operation,

video frames must be decoded at multiple times the normal decoding rate.

Interactivity has also been addressed in the context of batching [2, 1, 3, 11, 15, 24, 25, 34]. As an

example, in [2] the authors assume that the VOD server operates in a multicast environment, whereby

multiple instances of each movie are being simultaneously distributed. However, these instants have

di�erent logical times. VCR operations are implemented by moving the user to a multicast group

with an appropriate logical time. Since the number of the di�erent instances of the same movie is

limited, this scheme can only support \discontinuous" VCR functions. The set-top bu�er needed to

support FS operations can be excessive if the number of multiple instances is small. Furthermore,

the decoder is still required to process frames at multiple times the normal frame rate to achieve a

FS e�ect.

FS functions can also be supported by dropping parts of the original compressed video stream

[9, 31, 7, 27]. Dropping aims at reducing both the transport and the decoding requirements of

FS without causing signi�cant degradation in video quality. In MPEG-2, dropping is facilitated

by various modes of scalability (spatial, temporal, and SNR) [17]. Spatial scalability, for example,

provides the means to drop the less important data (the enhancement layer) and maintain the

2

essential data (the base layer). Typically, dropping is performed after compression, so it must be

done selectively to ensure that the dropped data will not result in signi�cant degradation in video

quality. For example, if whole MPEG frames are to be dropped, then dropping must take into

account the dependency structure of the MPEG sequence. One possibility is to drop all B frames

of an MPEG stream and transmit anchor frames (I and P) [7]. When the transmitted frames are

played back at the normal playback rate, they give the visual perception of a FS. Another alternative

is to drop MPEG frames on a per-GOP basis [9]. Since a GOP interval corresponds to about half

of a second, this approach introduces discontinuities in the movie. A third approach is to skip a

trailing part of each GOP and transmit the �rst few frames of the GOP [27] (the transmitted frames

must be chosen in such a manner that they can be decoded independently of the skipped frames).

The transmitted frames are then played back at the normal frame rate. A good discussion of these

and other MPEG-related techniques is given in [31]. Instead of dropping frames after compression,

some researchers suggested supporting FS operations using separate copies of the movie that are

encoded at lower quality than the quality of the normal playback copy [30]. These \scan" copies

include only I and P frames (i.e., B frames are not used). This makes it easier to provide backward

fast-scan. The motion vectors of the predicted frames are encoded in such a manner so as to reduce

the artifacts when playing frames in the reverse order.

In this work, we introduce an e�cient approach for supporting forward fast-scanning (FFS) and

backward fast-scanning (BFS) in a VOD system. Similar to [30], our approach is based on encoding

separate copies of the movie to be used for FS operations, with each copy being generated by skipping

raw video frames before compression. We refer to these versions as the scan versions, and to the

one used for normal playback as the normal version. Each scan version is used to provide both

BFS and FFS at a given speedup. Scan versions are encoded in a way such that when played back

at the normal frame rate, they give the perception of a faster video in the forward or backward

direction. In contrast to the approach in [30], the scan versions are encoded using the same GOP

of the normal version (B frames are included). The encoding of a scan version is performed in

a manner that enforces a particular time-varying tra�c envelope for that version. This form of

rate-controlled compression results in variable picture quality during FS. By making the envelopes

of the scan versions identical or su�ciently close to the envelope of the normal version, FS can be

integrated into a previously proposed framework for the distribution of archived, MPEG-coded video

streams [21, 22]. By generating scan versions that exhibit similar envelopes to the normal version,

FS operations can be made transparent to the underlying network, and they can be supported with

little or no extra bandwidth and at the same decoding rate of normal playback.

The paper is organized as follows. In Section 2 we brie
y describe our previously proposed frame-

work for video distribution based on time-varying tra�c envelopes. In Section 3 the preprocessing

steps required to support FS operations are presented. Section 4 provides detailed description of

how FS-related interactivity is supported. Signalling between the client and the server is discussed

3

in Section 5. In Section 6 we discuss disk scheduling that is needed for our proposed FS approach.

Implementation issues are brie
y discussed in Section 7. In Section 8 we compare our scheme against

other FS schemes. Finally, Section 9 summarizes the paper and points to open research issues.

2 Envelope-Based Video Scheduling and Multiplexing

In this section, we give an overview of our previously proposed framework for the distribution of

MPEG-coded video streams. Details can be found in [21, 22, 33]. In this framework, a video

distribution network consists of several �xed-capacity dedicated \bandwidth pipes" that extend from

the server to remote head-end (HE) switches over a public network (Figure 1). These bandwidth pipes

can be, for example, ATM virtual paths (VPs) onto which several video connections are multiplexed.

Clients request videos on demand by sending their requests to the server via one of the HE switches.

Video streams are transported at a constant frame rate, but with per-stream bandwidth that is

video streams

video streams
Switch

Video Server

Clients

Clients

Head-End Switch
Public Network

VP1

VP2

MUX

MUX

Figure 1: Video distribution network with two HE switches.

signi�cantly less than the source peak rate. Since the frame transmission rate is the same as the

playback rate, prefetching is not needed at the client set-top box. Bandwidth gain is achieved through

statistical multiplexing of MPEG streams that are described by deterministic, time-dependent tra�c

envelopes. An envelope here constitutes a time-varying upper bound on the bit rate. It is intended

to capture the periodic structure of an MPEG stream (in terms of the repetition of the GOPs). The

simplest form of our tra�c envelope is called the global envelope, and is described as follows: For

the ith MPEG stream, s

i

, the global envelope is a periodic function (in time) that is parameterized

by the 5-tuple

�

I

(i)

max

; P

(i)

max

; B

(i)

max

; N

(i)

; M

(i)

�

, where I

(i)

max

is the largest frame of s

i

(typically, an

I frame), P

(i)

max

is the largest P or B frame of s

i

(typically, a P frame), and B

(i)

max

is the largest B

frame of s

i

. By construction, I

(i)

max

� P

(i)

max

� B

(i)

max

. The remaining two parameters characterize the

GOP pattern of the ith stream: N

(i)

is the length of a GOP (I-to-I frame distance) and M

(i)

is the

P-to-P frame distance. An example of the global envelope is shown in Figure 2.

Based on the global-envelope model, MPEG streams can be appropriately scheduled for multi-

4

I

(i)

max

P

(i)

max

B

(i)

max

Time (in frame periods)

N

(i)

2N

(i)

3N

(i)

4N

(i)

Bit Rate

global tra�c envelope

window-based envelope

Figure 2: Example of global and window-based tra�c envelopes (N

(i)

= 6, M

(i)

= 3).

plexing at the server. Consider n MPEG video streams, s

1

; : : : ; s

n

, that are destined to the same HE

switch. Let b

i

(t) be the tra�c envelope of s

i

, whose starting time is given by t

i

. Let

e

N be the least

common multiple of fN

(1)

; N

(2)

; : : : ; N

(n)

g. We de�ne the phase of s

i

by u

i

= t

i

mod

e

N , with u

1

4

= 0.

In the special case when N

(i)

= N for all i, u

i

describes the frame lag of a GOP of s

i

relative to the

closest GOP of s

1

. The temporal relationships between the GOPs of the n streams are completely

speci�ed by u = (u

1

; u

2

; u

3

; : : : ; u

n

), which is referred to as the arrangement. Let b

tot

(t) be the tra�c

envelope resulting from the superposition of the n streams; b

tot

(t) =

P

i

b

i

(t� u

i

). Note that b

tot

(t)

is periodic with period

e

N . The peak rate of b

tot

(t) is given by

max

t�0

b

tot

(t) = max

t�0

n

X

i=1

b

i

(t� u

i

)

!

4

= nC(u; n) (1)

By allocating nC(u; n) of bandwidth to the aggregate tra�c, each stream is guaranteed a constant-

frame-rate delivery on an end-to-end basis. For most values of u, C(u; n) (which is referred to as the

per-stream allocated bandwidth (PSAB)) is smaller than the source peak rate. The allocated band-

width nC(u; n) is updated dynamically upon the addition of a new video stream or the termination

of an ongoing one. Stream scheduling is performed only for new video requests, and is done at the

expense of delaying the service of a new request by no more than

e

N frame periods.

An optimal scheduling policy is one that produces the best arrangement, u

�

, where

C(u

�

; n)

4

= min

u2U

C(u; n) (2)

and U is the set of all possible arrangements of n streams. In [21] optimal and suboptimal scheduling

policies were proposed for homogeneous and heterogeneous multiplexed streams that are charac-

terized by global envelopes. These policies resulted in PSAB of about 40-60% of the source peak

rate (the actual value depends on the envelope). Bandwidth gain can be further improved using

5

window-based tra�c envelopes [33]. In this case, a pre-recorded MPEG sequence is divided into

several segments that have the same number of frames. The time it takes to transmit one segment

is called a window. As in the global-envelope model, �ve parameters are used to characterize the

window-based envelope. However, in this case the values of the �rst three parameters (i.e., the

maximum frame sizes) are computed for each segment of the movie (see Figure 2). Several e�cient

scheduling schemes were devised under window-based envelopes. Clearly, the smaller the window

size the smaller the amount of allocated bandwidth, but the higher the computational complexity

of updating the allocated bandwidth. For reasonable window sizes, the PSAB is about 15-30% of

the source peak rate (depending on the envelope parameters and the window size). This bandwidth

gain is comparable to the one achieved through video smoothing (e.g., [29, 26, 23, 13, 16]), with the

advantages of (1) not requiring any bu�er in the set-top box, (2) not depending on network delay

variation, and (3) having a very small startup delay.

The framework in [21, 22] was originally designed for playback-only VOD, so it did not support

client interactivity. Interactive operations other than FS can be easily integrated into that framework,

and therefore will not be addressed further. In this paper, we focus on FS interactive operations and

their integration into our VOD framework.

3 Preprocessing of Video Movies

3.1 Scan Versions

To support FS operations, the server maintains multiple, di�erently encoded versions of each movie.

One version, which is referred to as the normal version, is used for normal-speed playback. The other

versions, which are referred to as the scan versions, are used for fast-scanning. Each scan version

is used to support both FFS and BFS at a given speedup. The server switches between the various

versions depending on the requested interactive operation (only one version is transmitted at a given

instant of time). For a given speedup factor s (s � 2), the corresponding scan version is obtained by

encoding a subset of the raw (i.e., uncompressed) frames of the original movie at a sampling rate of

1-to-s. We refer to this sampling rate as the skip factor. Scan versions are encoded using the same

GOP pattern of the normal version, and are transported at the normal frame rate. As a result, it is

easy to show that every raw frame that is encoded as an I frame in a scan version is also encoded as

an I frame in the normal version (i.e., I frames of the scan versions constitute a subset of I frames

of the normal version).

Accordingly, I

max

in the global envelope of a scan version is less than or equal to I

max

in the

global envelope of the normal version. This is not the case for P

max

and B

max

. Both P and B

frame types involve motion compensation (prediction or interpolation), which exploits the similarities

between consecutive frames to reduce the frame size. Frame skipping increases the di�erences between

6

successive images, resulting in larger P and B frames. The impact of frame skipping on the maximum

and average frame sizes is illustrated in Figure 3 for the Race clip. Before skipping, this clip consists of

1000 frames with frame dimensions of 320�240 pixels. For each skip factor, encoding was performed

using an MPEG-2 software encoder with N = 6 and M = 3. The quantization values were set to 8,

10, and 25, for I, P, and B frames, respectively. Part (b) of the �gure shows that the average size of

I frames is almost una�ected by frame skipping. In contrast, the average sizes of P and B frames

tend to increase with the skip factor.

I frames

P frames

B frames

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

Skip Factor

N
o

rm
a

liz
e

d
 F

ra
m

e
 S

iz
e

Race Trace

(a) Maximum frame sizes.

I frames

P frames

B frames

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Skip Factor

N
o
rm

a
liz

e
d
 F

ra
m

e
 S

iz
e

Race Trace

(b) Average frame sizes.

Figure 3: Frame sizes of a scan version versus the skip factor (values are normalized with respect to

their counterparts in the normal version).

3.2 Controlling the Envelopes of the Scan Versions

As indicated in Figure 3(a), encoding a sample of the raw frames may result in higher values of

P

max

and B

max

. To generate scan versions with comparable envelopes to that of the normal version,

the encoding of P and B frames of a scan version must be rate controlled. A common approach to

control the size of an MPEG frame is to vary the quantization factor on a per-frame basis. This

results in variable video quality during FS operations (however, the quality is still constant during

normal playback).

Without loss of generality, we consider the case when the envelopes are global. Extension to

window-based envelopes is straightforward. To bound the sizes of P and B frames of a scan version,

the encoder uses two prede�ned upper thresholds T

(u)

P

and T

(u)

B

:

T

(u)

P

4

= P

max

(1 + S

(u)

P

) (3)

T

(u)

B

4

= B

max

(1 + S

(u)

B

) (4)

7

where P

max

and B

max

are for the normal version, and S

(u)

P

and S

(u)

B

are nonnegative constants. A P

(B) frame in a scan version is encoded such that its size is no greater than T

(u)

P

(T

(u)

B

). When S

(u)

P

or S

(u)

B

is positive, the envelope of a scan version is allowed to exceed the envelope of the normal

version by no more than a �xed amount. In the case of window-based envelopes, T

(u)

P

(T

(u)

B

) varies

from one window to another, depending on the variations in P

max

(B

max

).

After a raw frame of a scan version has been encoded as a P or a B frame, the encoding algorithm

checks whether the size of the compressed frame is below the associated upper threshold. If it is not,

then the quantization factor for the corresponding frame type is increased by one and the raw frame

is re-encoded. This procedure is repeated until the size of the compressed frame is smaller than the

corresponding upper threshold.

Two di�erent approaches can be used to initialize the quantization value when a new P or B

frame is to be encoded. In the �rst approach (or algorithm), when a frame is to be encoded for the

�rst time, the encoder starts with the last quantization value that was used in the encoding of the

previous frame of the same type. The main problem with this approach is that the quantization

value might be kept unnecessarily high following the encoding of a very large frame, resulting in an

unnecessarily low quality during FS. While it is important to produce scan versions with comparable

envelopes to that of the normal version, there is little incentive in reducing these envelopes below

the envelope of the normal version.

In the second approach, the encoding algorithm tries to track the nominal quantization value,

which was used in encoding the same type of frame in the normal version. Consider the encoding

of a P frame (similar discussion applies to B frames). In the �rst encoding attempt, the encoder

checks the �nal quantization value that was used to encode the previous P frame. If that value is

equal to the nominal quantization value for P frames, then it is taken as the initial quantization

value for the current frame. If on the other hand, the last quantization value of the previous P frame

is larger than the nominal value, then the quantization value for the current frame is initialized to

the last quantization value minus one. After the �rst encoding attempt, if the resulting frame size is

within the upper bound, the encoder proceeds to the next frame. Otherwise, the quantization value

is incremented and the same raw frame is re-encoded, as in the �rst approach. The advantage of

the second approach is that it tries to produce a FS e�ect with the same constant quality of normal

playback, but when this is not possible it minimizes the
uctuation in video quality during FS.

Figure 4 depicts the variations in the quantization values for P and B frames when S

(u)

P

= S

(u)

B

=

0:05 and s = 5. In these experiments, the nominal quantization values for P and B frames are 10

and 25, respectively. Note that the quantization factors for type-P and type-B frames are plotted

versus the index of every frame in the scan version (including the indices of I frames).

In the second encoding approach, video quality during FS varies smoothly around the nominal

quality at the expense of an increase in the number of encoding attempts. Since encoding in VOD

is done o�-line, the encoding time may be less of an issue than video quality.

8

1st Algorithm

2nd Algorithm

20 40 60 80 100 120 140 160 180 200
0

5

10

15

Frame Index

Q
u

a
n

ti
z
a

ti
o

n
 F

a
c
to

r

Race Trace

nominal value

(a) P frames.

1st Algorithm

2nd Algorithm

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Frame Index

Q
u

a
n

ti
z
a

ti
o

n
 F

a
c
to

r

Race Trace

nominal value

(b) B frames.

Figure 4: Variations in the quantization values during the encoding of a scan version (s = 5).

The two approaches can be contrasted with respect to video quality using the peak signal-to-noise

ratio (PSNR). We use the PSNR of the Y-component of a decoded frame. The PSNR is obtained

by comparing the original raw frame with its decoded version with encoding being done using one

of the two algorithms. Figure 5 depicts the resulting PSNR values for Race movie with s = 5 and

S

(u)

P

= S

(u)

B

= 0:05. Both approaches achieve acceptable quality (PSNR is su�ciently large). The

average PSNR value for the 200 frames is 36.9 dB for the �rst algorithm and 37.5 dB for the second,

i.e., the average quality is slightly better under the second algorithm. The absolute values of the

PSNR do not convey the advantage of the second encoding approach. For this purpose, we compute

the PSNR values for the 200 frames when encoding is done without any constraints (i.e., no upper

bounds are imposed), and use these values as a reference. For each frame, we compute the di�erence

between its reference PSNR value and the PSNR value resulting from each of the two rate-control

encoding algorithms. These di�erences are plotted in Figure 6 for a segment of the scan version. In

this �gure, a large value indicates a large deviation from the reference PSNR, and thus lower quality.

Clearly, the second algorithm achieves better quality than the �rst approach, but at the expense of

more encoding attempts.

3.3 Storage Overhead

Generating separate copies for FS operations comes at the expense of extra storage at the server. To

evaluate the storage overhead, we take into account the following considerations: (1) BFS and FFS

with the same speedup can be supported using one scan version, (2) I frames of the scan versions need

not be stored, since they are part of I frames of the normal version, and (3) the number of encoded

frames in a scan version is inversely proportional to the skip factor. Given these considerations, the

storage overhead of the scan versions can be computed as follows. Without loss of generality, we

9

1st Algorithm

2nd Algorithm

90 100 110 120 130 140 150 160 170 180 190
0

5

10

15

20

25

30

35

40

45

50

Frame Index

P
S

N
R

 (
d
B

)

Race Trace

Figure 5: PSNR for encoded frames in a scan

version.

1st Algorithm

2nd Algorithm

90 100 110 120 130 140 150 160 170 180 190
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Frame Index

P
S

N
R

 D
if
fe

re
n
c
e
 (

d
B

)

Race Trace

Figure 6: Di�erence in PSNR between con-

strained and unconstrained encoding.

consider the case of global tra�c envelopes. Let f be the number of frames in the normal version.

Of these frames, f=N are I frames, f(1=M � 1=N) are P frames, and f(1� 1=M) are B frames. The

storage requirement of the normal version is given by

W

norm

= fI

avg

=N + fP

avg

(1=M � 1=N) + fB

avg

(1� 1=M) (5)

where I

avg

; P

avg

and B

avg

are the average frame sizes of I, P, and B frames in the normal version.

Let P

avg

(s) and B

avg

(s) be the average sizes of P and B frames in a scan version with skip factor s.

Then, the storage requirement of this scan version is given by

W

scan

(s) = f(1=M � 1=N)P

avg

(s)=s+ f(1� 1=M)B

avg

(s)=s (6)

For n scan versions with skip factors s

1

; : : : ; s

n

, the relative increase in the storage requirement is

given by

P

i

W

scan

(s

i

)=W

norm

.

Numerical examples that show the relative increase in the storage requirement are given in

Figures 7 and 8. for the Race clip. Figure 7 depicts the relative storage overhead of a scan version

as a function of s under di�erent upper thresholds (N = 15, M = 3). The upper threshold has a

negligible impact on the storage overhead. For s � 4, the storage overhead of a scan version is no

more than 25% of the storage requirement of the normal version. Figure 8 shows the increase in

storage as a function of the GOP length (N) withM = 3 and S

(u)

P

= S

(u)

B

= 0. The storage overhead

increases slowly with N .

10

0 2 4 6 8 10 12 14 16 18 20
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Skip Factor

%
 S

to
ra

g
e
 I
n
c
re

a
s
e

SP = SB = 0

SP = SB = 0.1

SP = SB = 0.2

Figure 7: Relative increase in storage as a func-

tion of s.

0 5 10 15 20 25 30
 0%

 5%

10%

15%

20%

GOP Length

%
 S

to
ra

g
e
 I
n
c
re

a
s
e

s = 5

s = 10

Figure 8: Relative increase in storage as a func-

tion of N .

4 Switching Between Normal and Scan Versions

In this section, we describe how switching between versions is used to support various FS-related

operations. The notation that we use to specify a frame consists of a letter for the frame type and

a number that indicates the logical time of that frame (i.e., the time relative to the events in the

movie). This convention applies to all versions. Thus, B16 in a scan version is a B frame that is

obtained by encoding the 16th raw frame of the original movie. This B frame is not necessarily the

16th frame in the temporal order of that scan version (for example, if s = 2 then B16 is the 8th

frame in the temporal order of the scan version).

4.1 Operation During Normal Playback

Because of the interpolative nature of B compression, the decoding of a B frame depends on two

reference frames (I or P), both of which must be transmitted and decoded before the B frame is

decoded. One of these reference frames comes after the B frame in the temporal order. To enable

continuous playback at the receiver, MPEG frames are transmitted over the network according to

their decoding order. Thus, the transmission (and decoding) order of an MPEG sequence is di�erent

from its temporal (playback) order. An example of the temporal and transmission orders of a normal

version is shown in Figure 9. In order to decode frames B2 and B3, both I1 and P4 must be �rst

transmitted and decoded. The process of transmitting, decoding, and displaying frames proceeds as

follows. Starting at time t = 0 (the time unit is taken as one frame period), the server transmits

frames according to their transmission order. Ignoring network delays for the time being, the decoder

receives and decodes frame I1 during the time interval [0; 1). It maintains an uncompressed copy of

this frame to be used in decoding subsequent frames. During the interval [1; 2), frame P4 is received,

decoded, and stored in the frame bu�er (note that P4 is decoded with reference to the uncompressed

11

version of I1). Playback starts with I1, which is displayed in the interval [2; 3), two time units after

it was received. During the same interval, B2 is received and decoded. During the interval [3; 4), B2

is displayed, and B3 is received and decoded. During the interval [4; 5), B3 is displayed, and I7 is

received, decoded, and stored in one of the two frame bu�ers (at this point the decoder discards I1).

In the subsequent interval, P4 (which has already been received and decoded) is displayed, and B5

is received and decoded using the uncompressed P4 and I7 frames that are in the frame bu�er. And

so on. In the above discussion, we have assumed that a frame is received and decoded in one time

unit.

I1 B2 B3 P4 B5 B6 I7 B8 B9 P10 B11 B12 I13 � � �

(a) Temporal order

I1 P4 B2 B3 I7 B5 B6 P10 B8 B9 I13 B11 B12 � � �

(b) Transmission order

Figure 9: Temporal and transmission orders of a normal version (N = 6, M = 3).

The decoder maintains a two-frame bu�er, which contains the two most recently decoded reference

frames. An incoming P frame is decoded with reference to the most recent of these two, while an

incoming B frame is decoded with reference to both of them.

4.2 Switching From Normal Playback to FFS

Interactive FS operations are implemented at the server by switching between the normal version and

one or more scan versions. Switching from one version to another is performed on-line, in response

to a client request. In this section, we describe how switching is used to implement FFS.

Similar to the situation during normal playback, the frames of the scan version have a di�erent

transmission order than their temporal order (in the case of FFS, the temporal order of a scan version

is the same as its playback order). Figure 10 depicts the temporal and transmission orders of a scan

version with s = 2. Two successive I frames in a scan version di�er in their logical times by sN

frame periods (the logical time is the time relative to the events in the movie).

I1 B3 B5 P7 B9 B11 I13 B15 B17 P19 B21 B23 I25 � � �

(a) Temporal order

I1 P7 B3 B5 I13 B9 B11 P19 B15 B17 I25 B21 B23 � � �

(b) Transmission order

Figure 10: Temporal and transmission orders of a scan version (N = 6, M = 3, s = 2).

12

To maintain the GOP periodicity, switching from a normal to a scan version must take place

at an I frame. Furthermore, to enable correct decoding of all P and B frames of both normal and

scan versions, this I frame must be common to both versions. When the FFS request arrives at the

server, the server continues to send frames from the normal version up to (and excluding) the �rst

P frame that follows a common I frame. From that point and on, the server switches to the scan

version. The example in Figure 11 illustrates the idea. In this example, we use the normal and scan

versions of Figures 9 and 10, respectively. A FFS request arrives at the server after P16 of the normal

version has just been transmitted. In this case, the server continues to send frames from the normal

version up to (and including) B24. This essentially corresponds to continuing to play back frames

from the normal version until the next common I frame (I25). After that, the server switches to the

scan version, starting with P31, B27, B29, etc. Frame P31 is decoded using I25, which is common

to both versions. This example gives the worst-case latency, in which the receiver continues normal

playback sN frame periods from the time the FFS request is issued. Assuming that each GOP of the

normal version corresponds to half of a second, the worst-case latency is s=2 seconds (the average

latency is s=4 seconds). In requesting FFS, the client is trying to advance fast in the movie. Thus,

extending normal playback by few seconds prior to initiating FFS is acceptable. Note that there is

no disruption in the playback during the transition from normal to FFS. The switching operation is

transparent to the decoder.

` normal version a ` scan version a

Received & Decoded I13 B11 B12 P16 B14 B15 � � � I25 B23 B24 P31 B27 B29

Displayed B9 P10 B11 B12 I13 B14 � � � B21 P22 B23 B24 I25 B27

Time 9 10 11 12 13 14 � � � 21 22 23 24 25 26

" (normal playback) 7�!

FFS request start FFS

Figure 11: Switching from normal playback to FFS.

4.3 Switching From FFS to Normal Playback

We present two di�erent approaches for switching from FFS to normal playback. The �rst approach

is very similar to the one used to switch from normal playback to FFS. Upon receiving a request for

normal playback, the server continues to send frames from the scan version until the next common

I frame (it also sends the B frames of the scan version that precedes this I frame in the temporal

order, but comes after it in the transmission order). After that, the server switches to the normal

version. This approach is illustrated in the example in Figure 12 (N = 6; M = 3; s = 2). Here,

the movie is in a FFS mode when the client requests normal playback during the display of frame

B23. At that point, the server has just transmitted P31. Ideally, the receiver should proceed by

playing back frames with indices 24, 25, 26, etc. To decode B24 the decoder needs P22 of the normal

version. However, if the server transmits P22, this frame will eventually be played back, causing

13

undesirable artifacts. Neither can the server start from P28 of the normal version, since the decoder

will incorrectly decode this frame with reference to P31 of the scan version. To ensure that switching

to normal playback is done with all received frames being decoded properly, with no artifacts, and

without any modi�cations to the normal operation of the decoder, the server must continue to send

frames from the scan version until the next common I frame (I37). After that, it switches to the

normal version, starting with P40, which can be decoded properly using I37. This means that FFS

will be extended beyond the point at which normal playback was requested. In the worst case, normal

playback is resumed at a logical time that is s=2 seconds from the logical time of the normal-to-FFS

request (since N frames of the scan version correspond to sN=2N = s=2 seconds worth of video).

However, it takes a maximum of only 1/2 second of real time to reach the appropriate switching

point.

` scan version a ` normal version a

Received & Decoded I25 B21 B23 P31 B27 B29 I37 B33 B35 P40 B38 B39 I43

Displayed B17 P19 B21 B23 I25 B27 B29 P31 B33 B35 I37 B38 B39

(FFS) " (continue FFS) 7�!

normal playback request start normal playback

Figure 12: First approach for switching from FFS to normal playback.

The above approach has the advantage of being transparent to the decoder (i.e., the decoder need

not know that a switch from a scan version to the normal version has occurred). However, it has

the disadvantage that normal playback resumes at a later point than requested, with a worst-case

di�erence of s=2 seconds of movie time. To reduce this extra FFS, we introduce a second switching

approach, in which normal playback resumes from the subsequent I frame of the normal version.

This I frame is not necessarily common to both scan and normal versions. We will describe this

approach with reference to the example in Figure 13 (N = 6; M = 3; s = 2). As shown in the

�gure, the client requests resume-playback while B27 of the scan version is being displayed. Normal

playback is resumed starting from the subsequent I frame of the normal version whose logical time is

closest to the logical time of the resume-playback request. In our example, this frame is I31. During

the switching process, the client continues to display frames from the scan version (i.e., extended

FFS) until the frame with the closest logical time to I31. In our example, this frame is P31. Frame

P31 is never displayed, but is only used to decode B27 and B29 of the scan version. After receiving

and displaying I31 of the normal version, the movie pauses at that frame until P34 of the normal

version has been received and decoded (since two reference frames are needed to stream the playback

process). During the pause period, the decoder ignores any frames sent by the server (in Figure 13

such frames are represented by `X' for `don't care'). Of course, a mechanism is needed to inform the

decoder when to start accepting and decoding incoming frames. Such a mechanism will be described

in a later section. Note that this switching approach is not transparent to the decoder.

It can be shown that the logical time of the last displayed frame from the scan version is no farther

14

than s frame periods from the logical time of the subsequent I frame of the normal version. Thus,

in the transition from the scan version to the normal version, the speedup of the motion picture is

somewhere between normal playback and FFS (in our example, B29 of the scan version was followed

by I31 of the normal version, and the transition appears as a continuation of FFS).

In the second FFS-to-normal switching approach, normal playback resumes at a logical time that

is no farther than 1=2 second (N frame periods) from the logical time of the FFS-to-normal request.

This is compared to s=2 seconds in the �rst approach. The maximum time that a client has to wait

for before normal playback is resumed is N=s +M frame periods; N=s frame periods of extended

FFS and M frame periods of pause. This amounts to 1=2s+M=2N seconds, which is less than one

second.

` scan version a ` normal version a

Received & Decoded P31 B27 B29 I31 X X P34 B32 B33 I37 B35

Displayed B23 I25 B27 B29 I31 I31 I31 I31 B32 B33 P34

(FFS) " (pause) 7�!

normal playback start normal playback

request

Figure 13: Second approach for switching from FFS to normal playback.

4.4 Switching From Normal Playback to BFS

Instead of generating a distinct scan version for BFS, we use one scan version for both FFS and BFS

that have the same speedup. In this case, the dependency structure of an MPEG sequence must be

taken into account when transmitting frames during BFS and when decoding and displaying these

frames at the client side. We �rst consider switching from normal playback to backward playback,

which is a special case of BFS with s = 1.

4.4.1 Normal Playback to Backward Playback

To implement backward playback (BPB), the server uses a di�erent transmission order than the one

used during (forward) normal playback. After receiving a BPB request, the server initiates the BPB

operation starting from the subsequent reference frame (I or P) of the current GOP. Before initiating

BPB, the decoder must receive and decode the reference frames of the current and previous GOPs.

Consider the situation in Figure 14. The temporal order of the underlying MPEG sequence is shown

in Part (a) of the �gure. Suppose that a BPB is issued during the playback of B36. The subsequent

reference frame that follows B36 in the temporal order is I37. Thus, the client continues normal

playback until the display of I37. Meanwhile, the server continues sending the frames of the normal

version that are needed to maintain normal playback until (and including) I37. After that, the server

starts sending the reference frames of the current and previous GOPs. A maximum of 2N=M reference

frames need to be decoded and stored in the frame bu�er before BPB is initiated. In our example,

15

the client had already decoded and stored I37 when the BPB was issued. Hence, before initiating

BPB the decoder must receive and decode I28, P31, and P34 of the current GOP as well as I19 and

P22 of the previous GOP. While these frames are being transmitted and decoded, the movie pauses

for a maximum duration of two GOPs (one second). To minimize the pause duration, the following

guidelines are followed whenever possible: (1) reference frames of the present GOP are sent before

reference frames of the previous GOP, and (2) reference frames of a given GOP are sent according

to their decoding order. However, ensuring the GOP periodicity of the transmitted sequence is more

important that satisfying these two guidelines. Thus, these guidelines can be violated if necessary.

For example, in Figure 14(b) frames I28, P31, and P34 must be sent in this order according to the

�rst guideline. But the �rst available slot to send an I frame while maintaining the GOP periodicity

is time slot # 42, whereas the server can send a P frame during slot # 39. Thus, the server sends

P39 during slot # 39 and I28 during slot # 42, violating the �rst guideline.

In the process of building up the reference frames at the decoder, the server need not send any

B frames in between (otherwise, these B frames are ignored at the decoder). The resulting \empty"

slots in the transmission sequence are indicated by `X's (for `don't care') in Figure 14(b). Once

the required reference frames are received and decoded, BPB can be initiated. Note that some P

frames are decoded M periods after they are received, so they must be temporarily stored in their

compressed format. After all the reference frames of the previous GOP have been received and

decoded, B frames can be received, decoded, and displayed in the backward direction.

Clearly, the management of the frame bu�er at the decoder must be modi�ed to support BPB.

Instead of storing two reference frames, the decoder must store a maximum of 2N=M uncompressed

frames. A mechanism is needed to signal to the decoder that the transmitted reference frames are

for BPB. Such a mechanism will be described in Section 5. Once the decoder receives an indication

that BPB has been requested, it modi�es its management of the frame bu�er to accommodate up to

2N=M uncompressed frames. Figure 15 depicts the change in the content of the frame bu�er in our

example. Note that the BPB request was issued during the decoding of P40, which under normal

playback replaces P34. Thus, by the time the decoder starts modifying its bu�er management, the

uncompressed P34 (or parts of it) has already been discarded, and P34 must be retransmitted.

4.4.2 Normal Playback to BFS

In addition to reversing the playback direction, a BFS request also involves switching from the normal

to the scan version. In this section, we present two di�erent approaches to supporting BFS.

First Approach

In this approach, BFS is initiated at a common I frame. Following a BFS request, normal playback

continues until the display of a common I frame. Thus, the server continues sending frames from

16

I1 B2 B3 P4 B5 B6 P7 B8 B9

I10 B11 B12 P13 B14 B15 P16 B17 B18

I19 B20 B21 P22 B23 B24 P25 B26 B27

I28 B29 B30 P31 B32 B33 P34 B35 B36

I37 B38 B39 P40 � � �

(a) Temporal order of normal version (N = 9, M = 3).

Received I37 B35 B36 P40 X X P31 X X I28 X X

Decoded I37 B35 B36 P40 { { { { { I28 { {

Displayed B33 P34 B35 B36 I37 I37 I37 I37 I37 I37 I37 I37

Time 33 34 35 36 37 38 39 40 41 42 43 44

(normal playback) " (pause)

BPB request

Received P34 X X P22 X X I19 B36 B35 P25 B33 B32

Decoded P31 { { P34 { { I19 B36 B35 P22 B33 B32

Displayed I37 I37 I37 I37 I37 I37 I37 I37 B36 B35 P34 B33

Time 45 46 47 48 49 50 51 52 53 54 55 56

(pause) 7�!

start BPB

Received P13 B30 B29 I10 B27 B26 P16 B24 B23 P4 B21 � � �

Decoded P25 B30 B29 I10 B27 B26 P13 B24 B23 P16 B21 � � �

Displayed B32 P31 B30 B29 I28 B27 B26 P25 B24 B23 P22 � � �

Time 57 58 59 60 61 62 63 64 65 66 67 � � �

(continue BPB)

(b) Received, decoded, and displayed frames.

Figure 14: Switching from normal playback to backward playback.

Time Uncompressed frames in bu�er

35 I37, P34

36 P40, I37

37 I37 (P40 is discarded)

42 I28, I37

45 P31, I28, I37

48 P34, P31, I28, I37

51 I19, P34, P31, I28, I37

54 P22, I19, P34, P31, I28, I37

57 P25, P22, I19, P34, P31, I28

60 I10, P25, P22, I19, P31, I28

63 P13, I10, P25, P22, I19, I28

66 P16, P13, I10, P25, P22, I19

69 I1, P16, P13, I10, P22, I19

Figure 15: Content of the frame bu�er during the transition from normal playback to BPB.

17

the normal version for a short period following the receipt of a BFS request. After that, the server

switches to the scan version. As in the case of normal-to-BPB, the server must �rst send all or

most of the reference frames of the current and previous GOPs of the scan version (for a maximum

of 2N=M reference frames). Consider the example in Figure 16, in which the scan version has the

following parameters: N = 9, M = 3, and s = 2. A BFS request is issued during the playback

of frame B72 of the normal version. Normal playback continues until the display of I73; the �rst

common I frame. The server receives the BFS request during the transmission of P76. Thus, all

the frames that precede I73 in the playback order have already been sent. The server switches to

the scan version and starts sending the reference frames of the current and previous GOPs. In this

example, frames I37, I55, P61, and P67 must be received and decoded before BFS is initiated (in

general, BFS cannot be initiated before all frames of the current GOP and one or more frames of

the previous GOP are decoded). These frames are transmitted following the same guidelines that

are used to support BPB. Thus, the transmission order is P61, I55, P67, and I37, while the decoding

order is I55, P61, P67, and I37. As in the case of BPB, no B frames need to be transmitted during

the buildup of the reference frames. Also, some P frames are decoded few frame periods after they

are received, so they must be temporarily stored in their compressed format. During the buildup

of the reference frames, the movie pauses at frame 73. Once frame I37 is received and decoded,

the transmission, decoding, and reverse playback of the scan version can be streamed, and BFS is

initiated. Part (c) of Figure 16 depicts the change in the content of the frame bu�er.

In the previous example, the BFS request was issued just before the display of a common I

frame, which is a rather best-case scenario. The worst-case scenario occurs when BFS is requested

just after the display of a common I frame. In this case, normal playback continues for an additional

sN frame periods (s=2 seconds) until the next common I frame is encountered. This extra normal

playback is followed by a pause period that lasts for no more that two GOPs (one second), during

which reference frames are being accumulated in the decoder.

Second Approach

An alternative approach is to initiate BFS from the \closest" reference frame (I or P) of the scan

version. When a BFS request is issued, the movie pauses immediately at the currently displayed

frame (which could be of any type). The client identi�es the reference frame of the scan version

that has the closest logical time to (but no larger than) the logical time of the currently displayed

frame. BFS is initiated from this reference frame. When the server receives the BFS request, it starts

sending the reference frames of the last two GOPs up to (and including) the designated reference

frame. Thereafter, the process is similar to the one used in the �rst BFS approach.

As an example, consider the situation in Figure 17. Since the BFS request is issued during the

playback of B80, the movie pauses at that frame. The reference frame of the scan version that is

18

I1 B3 B5 P7 B9 B11 P13 B15 B17

I19 B21 B23 P25 B27 B29 P31 B33 B35

I37 B39 B41 P43 B45 B47 P49 B51 B53

I55 B57 B59 P61 B63 B65 P67 B69 B71

I73 B75 B77 P79 B81 B83 P85 B87 B89

(a) Temporal order of the scan version (N = 9, M = 3, s = 2).

Received � � � I73 B71 B72 P76 X X P61 X X I55 X X

Decoded � � � I73 B71 B72 P76 { { { { { I55 { {

Displayed � � � B69 P70 B71 B72 I73 I73 I73 I73 I73 I73 I73 I73

Time � � � 69 70 71 72 73 74 75 76 77 78 79 80

(normal playback) " (pause)

BFS request

Received P67 X X P43 X X I37 B71 B69 P49 B65 B63 P25

Decoded P61 { { P67 { { I37 B71 B69 P43 B65 B63 P49

Displayed I73 I73 I73 I73 I73 I73 I73 I73 B71 B69 P67 B65 B63

Time 81 82 83 84 85 86 87 88 89 90 91 92 93

(pause) 7�!

start BFS

Received B59 B57 I19 B53 B51 P31 B47 B43 � � �

Decoded B59 B57 I19 B53 B51 P25 B47 B43 � � �

Displayed P61 B59 B57 I55 B53 B51 P49 B47 � � �

Time 94 95 96 97 98 99 100 101 � � �

(continue BFS)

(b) Received, decoded, and played frames.

Time Uncompressed frames in bu�er

71 I73, P70

72 P76, I73

73 I73 (P76 is discarded)

78 I55, I73

81 P61, I55, I73

84 P67, P61, I55, I73

87 I37, P67, P61, I55, I73

90 P43, I37, P67, P61, I55 (I73 is discarded)

93 P49, P43, I37, P61, I55 (P67 is discarded)

96 I19, P49, P43, I37, I55 (P61 is discarded)

(c) Content of the frame bu�er at the decoder.

Figure 16: First approach for switching from normal playback to BFS.

19

closest (in logical time) to the current logical time is P79. Thus, BFS will be initiated from P79. But

before that, the decoder must receive P79, P61, I73, P67, P43, I55, and P49 (in this order); and must

decode I73, P79, I55, P61 (in this order). Once this is done, the process of transmitting, decoding,

and displaying frames for the purpose of BFS can be streamed, similar to the �rst approach. The

maximum duration of the pause period is given by 2N +M frame periods (one second and M=2N

of a second), which is independent of s. This is slightly higher than the worst-case pause period in

the �rst approach, but there is no extra normal playback as in the �rst approach.

Received B78 I82 B80 B81 P79 X X P61 X X I73 X X

Decoded B78 I82 B80 B81 { { { { { { I73 { {

Displayed B77 B78 P79 B80 B80 B80 B80 B80 B80 B80 B80 B80 B80

(normal playback) " (pause)

BFS request

Received P67 X X P43 X X I55 X X P49 B77 B75 P25

Decoded P79 { { { { { I55 { { P61 B77 B75 P67

Displayed B80 B80 B80 B80 B80 B80 B80 B80 B80 B80 P79 B77 B75

(pause) 7�!

start BFS

Received B71 B69 I37 B65 B63 P31 B59 B57 P7 � � �

Decoded B71 B69 I37 B65 B63 P43 B59 B57 P49 � � �

Displayed I73 B71 B69 P67 B65 B63 P61 B59 B57 � � �

(continue BFS)

Figure 17: Second approach for switching from normal playback to BFS.

4.5 Switching From BFS to Normal Playback

The easiest way to resume normal playback following BFS is to initiate the normal playback from

an I frame that is common to both the normal and the scan versions (this is analogous to the

�rst approach for switching from normal playback to BFS). Thus, when the client requests normal

playback, the movie remains in the BFS mode until a common I frame is encountered. At worst,

normal playback is resumed at a logical point that is s=2 seconds (in movie time) from the logical

time at which the resume was requested, but it takes only a maximum of 1=2 second to reach this

common I frame (each GOP of the scan version corresponds to a sampled video segment of duration

sN=2N = s=2 seconds. However, it takes only 1=2 second to play back this GOP). Upon receiving

the resume-playback request, the server switches to the normal version, starting from the common I

frame. Since two reference frames are needed in the frame bu�er to stream the decoding process, the

movie pauses at the common I frame for no more that M periods (M=2N of a second). This pause

is needed to decode the P frame of the normal version that follows the common I frame. After that,

normal playback can be resumed. The switching process is illustrated in the example in Figure 18.

Other forms of interactivity include switching between FFS and BFS without going through

20

Received I37 B65 B63 P31 B59 B57 P7 B53 B51 I19 B47 B45 X

Decoded I37 B65 B63 P43 B59 B57 P49 B53 B51 I19 B47 B45 {

Displayed B69 P67 B65 B63 P61 B59 B57 I55 B53 B51 P49 B47 B45

(BFS) " (continue BFS)

normal playback request

Received B41 B39 P40 X X X B38 B39 P43 B41 B42 I46 � � �

Decoded B41 B39 P40 { { { B38 B39 P43 B41 B42 I46

Displayed P43 B41 B39 I37 I37 I37 I37 B38 B39 P40 B41 B42 � � �

(continue BFS) (pause) 7�!

start normal playback

Figure 18: Switching from BFS to normal playback.

Requested Operation Switching Delay

(in seconds)

Normal-to-FFS s=2

Normal-to-BPB 1 +M=2N

Normal-to-BFS (1st approach) 1 + s=2

Normal-to-BFS (2nd approach) 1 +M=2N

FFS-to-normal (1st approach) 1=2

FFS-to-normal (2nd approach) 1=2s+M=2N

BPB-to-normal 1=2 +M=2N

BFS-to-normal 1=2 +M=2N

Table 1: Worst-case switching delay associated with various interactive operations.

normal playback. Also, if the VOD system supports multiple FS speedups, switching can take place

between two scan versions that have di�erent speedups. These and other scenarios can be dealt with

using similar approaches to the ones we described (with slight modi�cations to �t the speci�cs of

each scenario). Due to space limitations, we do not elaborate further on these scenarios.

We de�ne the latency of an interactive operation as the di�erence between its time of request

at the client side and its initiation time on the client's display device. This latency measures the

actual waiting time of the client. It consists of: (1) roundtrip propagation time (RTT) between

the client and the server, (2) processing delay at the server, and (3) \switching delay", which is

the delay caused by switching from one version to another (it includes the time needed to reach an

appropriate switching point and the time needed to build up the frame bu�er in BFS operations).

The second component of the latency is relatively small, and can be ignored. The RTT depends

on the underlying network topology. In [28] the authors report one-way propagation delays from

30 to 50 milliseconds for a wide-area ATM network, and less than 10 milliseconds for ATM LAN

connections. Table 1 summarizes the worst-case switching delay for various types of requests. This

delay is measured in real time (not the logical time of the movie).

For typical values of N , M , and s (say, N = 15; M = 3 and s = 4), the worst-case switching

21

delay associated with common interactive operations ranges from a fraction of a second to three

seconds. This delay can be further reduced by using a smaller GOP length (N) or by reducing s.

However, reducing the skip factor will increase the storage requirement of the scan version (since

more frames are generated), while reducing the GOP length will increase the storage needed for the

normal and the scan versions and will potentially reduce the e�ciency of the underlying envelope-

based scheduling mechanism. Tuning the above parameters requires careful consideration of the

involved tradeo�s.

5 Signalling

Signalling between the client and the server must be extended to allow the decoder to distinguish

between various versions. For this purpose, we use an in-band signalling mechanism based on the

user-data �eld in the header of an MPEG frame. Each frame carries in its header the value of the

skip factor and the playback direction (forward or backward). This information can be conveyed

using one byte in the user-data �eld. The most signi�cant bit of this byte encodes the playback

direction while the other seven bits encode the skip factor (in fact, four bits are enough to represent

skip factors from s = 1 to s = 16; the remaining three bits can be used to convey other types of

information). For P and B frames of a given version, the skip factor is inserted in the frame header

during the encoding of that version. In contrast, for I frames the skip factor is inserted during

transmission since some of these frames are common between two or more versions. For all frames,

the playback direction is added on the
y during the transmission of the MPEG stream. This can be

done e�ciently since user data in the frame header are byte aligned and are located at a �xed o�set

from the beginning of the MPEG frame. The server can insert user-data bytes with minimal parsing

of the MPEG stream. Information about the GOP structure of a version is included in the sequence

header and in the header of the �rst GOP. This information can be used to allocate memory for the

frame bu�er during the initial signalling phase.

6 Disk Scheduling

Compressed videos are typically stored on disk in units of retrieval blocks, where each block consists

of one or more consecutive GOPs. Our stream switching scheme requires storing multiple versions

of the same MPEG movie. A straightforward approach is to store each version separately as a

self-contained MPEG stream. The main disadvantage of this approach is that it wastes some disk

space by separately maintaining the I frames of each scan version (although these frames are already

included in the normal version). If the cost of disk space is not a major issue, then this storage

approach is preferred for its simplicity. Otherwise, the duplicate I frames can be eliminated, and

a method for \intermixing" the versions of the same movie is needed. This can be accomplished if

22

the structure of the retrieval block is extended so that it can accommodate all the scan versions of a

movie. Let s

1

; s

2

; : : : ; s

k

be the k skip factors supported by the system, with 1 < s

1

< s

2

< � � � < s

k

.

Let s

lcm

be the least common multiple of these skip factors. Each block consists of s

lcm

GOPs from

the normal version plus s

lcm

=s

i

GOPs from the ith scan version, for all i = 1; : : : ; k. This way, each

block contains portions of the normal and scan versions that correspond to the same segment of the

movie. The resulting block consists of (s

lcm

+

P

i

s

lcm

=s

i

)N video frames. Excessively large block

sizes can be avoided by appropriate choice of the skip factors so that their least common multiple

is small. Frames within a block are organized as follows. First, the I frames of the s

lcm

GOPs of

the normal version are put at the beginning of the block (no separate I frames are generated for the

scan versions). They are followed by P and B frames of the same version, then P and B frames of

the �rst scan version (preferably the one with the smaller skip factor), then P and B frames of the

next scan version, and so on until the frames of all scan versions are included. This structure allows

for e�cient disk access since related data are stored consecutively on disk and no extra disk-head

movements are needed to access \out-of-stream" I frames.

In the above scheme, the frames in a block are not ordered according to their transmission

order. So they have to be rearranged before being sent over the network. Such a rearrangement can

be e�ciently achieved by allowing the envelope-scheduling module (which is responsible for sending

frames to the network) to have random access to bu�ered frames. In this way, any transmission order

can be achieved without data movement in memory. In order to be able to manipulate individual

frames, knowledge of the location of each frame within the retrieval block is necessary. This is

accomplished by associating a small directory of indices with each retrieval block. The directory can

be computed when the movie is initially stored on disk and can be maintained in a main memory

database since its size will be small.

During playback of the normal version, only the �rst part of the retrieval block (which includes

I , P and B frames of the normal version) is retrieved from disk, with no waste of I/O bandwidth.

When a scan version is to be retrieved, two alternatives exist. The �rst alternative is to read the

whole block and discard frames that do not belong to the target scan version. The other alternative is

to read only the frames of the target scan version in two reads: one for the I frames at the beginning

of the block and one for the P and B frames of the target scan version. The directory associated

with the block is used to locate the appropriate frames inside the retrieval block. The �rst approach

is simpler but wastes I/O bandwidth during FS periods. The second alternative requires two reads

per block but eliminates the waste in I/O bandwidth, especially when there are several scan versions

per movie.

Another issue is the placement of blocks within the disk subsystem. In a multi-disk system,

blocks are typically striped among di�erent disks in order to maximize the disk throughput and

balance its I/O load. Examples of striping schemes can be found in [32, 5, 10]. A conventional block

placement approach such as the ones in [19] can be easily adapted to our framework. In particular, if

23

the retrieval block is composed of frames from all versions of the movie, then the resulting composite

stream is striped similar to a typical MPEG stream. On the other hand, if di�erent versions of

the movie are stored independently, then each version can be placed on disk independently using,

for example, one of the algorithms in [19]. Finally, block retrieval during playback is performed

using algorithms that attempt to minimize disk head movements. We handle block retrieval with

the SCAN algorithm [14], which sorts the blocks to be retrieved by cylinder location. Blocks that

are at the outermost cylinders are serviced �rst as the head moves towards the innermost cylinders.

7 Implementation Issues

The feasibility of our stream scheduling and multiplexing approach was demonstrated in [20] using

a speci�c hardware setup. We now brie
y discuss general implementation issues related to this

approach. Since our approach relies on time-varying envelopes, timing considerations are crucial to

its operation. For this purpose, two important modules must be implemented at the video server:

stream manager and envelope scheduler. Both modules coordinate their operation with the disk

scheduler that is used for prefetching video blocks.

7.1 Stream Manager

The main purpose of this module is to handle client requests for new movies as well as requests for

interactive operations. In its simplest form, the stream manager consists of a user-level process. This

process establishes a bandwidth pipe to the destination switch, and then waits inde�nitely for client

requests. (e.g., `listens' at a given port). When a request for a new video arrives at the server, the

stream manager inquires the envelope scheduling module about the admissibility of the new stream.

It then provides information to the disk I/O subsystem on how to retrieve the movie data and place

them in the bu�ers of the envelope scheduling module. In the case of a FS request, the stream

manager is responsible for adding the stream switching information that are needed by the client

decoder (e.g., speedup and direction of playback).

7.2 Envelope Scheduler

This module is responsible for envelope-based stream scheduling, multiplexing, and admission control.

Upon receiving a request for a new stream, the envelope scheduler computes the best phase for

scheduling this stream. For this purpose, it maintains a a \bandwidth table" of dimension n �

e

N ,

where n is the number of ongoing streams. Each row describes the tra�c envelope of one active

stream, taking its relative phase into account. An additional row is needed to give the aggregate

bandwidth in each of the

e

N successive time slots. From the bandwidth table and the envelope of the

prospective stream, the envelope scheduler can easily determine the best phase for the new stream

24

and the associated bandwidth. Similarly, it can check for the admissibility of the new stream. If the

stream if found admissible, the envelope scheduler updates the bandwidth table by incorporating

the envelope of the new stream. An analogous procedure is used when an ongoing stream is to be

terminated.

Once a request is accepted, data can be retrieved from the disk subsystem in units of blocks. The

block size depends on the underlying striping mechanism, but typically consists of several GOPs.

Ideally, we would like to retrieve data on a frame-by-frame basis, but this level of �ne granularity is

not feasible in current disk systems. The envelope scheduler maintains a per-stream bu�er space that

is used to temporarily store the retrieved data. Statistical multiplexing is implemented in software

using a high-priority process that executes periodically every 1=f seconds, where f is the frame rate

(e.g., f = 30 for NTSC formatted video). At the start of each period, this process reads one frame

from every per-stream bu�er, and sends these frames over the network. Clearly, the timeliness of

this process impacts the e�ectiveness of our multiplexing approach. This timeliness can be easily

ensured in a real-time operating system (OS). For other OS's that do not support near-deterministic

execution of processing tasks, various approaches can be used to increase the priority of the process

performing the multiplexing task. For example, in some
avors of Unix it is possible to assign

a negative priority to this process, giving it higher priority in execution over all other user-level

processes. Another possibility is to implement this process as part of the OS kernel, which gives

the process a high priority and ensures its timeliness. Such an approach was used in the design of

the Stony Brook server [31], which was based on the FreeBSD 2.4 Unix OS. Yet, another approach

to performing the multiplexing process is to implement this process in the network device driver

[20]. In [20] the multiplexing process was implemented in the device driver of the ATM network

adaptor card (NIC). Communications between the stream manager (a user-level process) and the

device driver were provided by an extended set of system calls that are derived from the UNIX

ioctl() system call.

8 Comparison with Other Schemes

In this section, we compare our FS approach to the following approaches: (1) multicast-based stream

switching [2], (2) contingency-channel-based [12], (3) the Stony Brook server [31], (4) prefetching

[26], (5) GOP-skipping [8], (6) partial-GOP-skipping [27], and (7) skipping B/P frames [7]. A brief

discussion of these approaches was given in Section 1. The comparison is performed with respect

to the factors in the �rst column of Table 2. Because of the di�culty to quantify certain factors

and the lack of detailed information about certain FS approaches, we contend with a qualitative

comparison in which a scheme is given one of three grades for each examined factor: (G)ood, (F)air,

or (P)oor. The comparison is only meant to convey the tradeo�s provided by di�erent schemes. We

now comment on the examined factors.

25

Video data are retrieved from disk in units of blocks, which are temporarily stored in the server's

main memory before being sent over the network. Therefore, the memory requirement at the server

depends on the block size. This, in turn, depends on the underlying disk scheduling approach. In our

scheme, there are di�erent ways for storing scan versions on disk. When scan versions are intermixed

with the normal version so that each block is composed of GOPs from both, the block size will be

relatively large, resulting in large server-memory requirement. Other schemes will generally have

smaller block sizes than ours.

Client resources refer to the memory and CPU requirements that are needed to process and decode

a received frame. To provide backward FS operations, our scheme requires bu�ering a maximum of

2N=M reference frames. This is larger than post-encoding frame skipping schemes (which require

the bu�ering of two reference frames only), but lower than the prefetching approach in which a large

amount of video data must be prefetched into the client's set-top box. Also, the client processing

requirement in our scheme is lower than that of the contingency-channel scheme, in which the client

has to decode and display data at multiple times the normal playback rate.

Bit-rate control refers to the
exibility in trading o� the visual quality during FS for a lower

bit rate. With regard to this factor, partial-dropping schemes perform poorly since only a limited

reduction in the bit-rate is achievable during FS. In contrast, stream-switching schemes (ours and

Stony Brook's) achieve good degree of bandwidth control since they both use pre-encoded scan

versions. Between the two, our scheme provides tighter control on the resulting bit rate. The bit

rate injected into the network can also be controlled, to some extent, in the prefetching approach.

Visual quality includes the quality of the displayed video during FS operations, the continuity

of this video (i.e., amount of disruption due to video gaps), and any artifacts caused by the delay

in the initiation of an interactive operation. These factors are hard to measure quantitatively. In

general, we expect stream-switching schemes to give better performance than single-stream schemes.

Compared to the Stony Brook's approach [31], our scheme is expected to result in better visual

quality during backward FS periods (the latter scheme requires modifying the motion vectors of

the backward scan versions). Other frame-skipping schemes result in progressively worse quality,

as larger parts of the MPEG stream are skipped. Prefetching and contingency-channel approaches

result in very good visual quality at the expense of extra client memory and network bandwidth.

Performance guarantees refer to mathematically proven bounds on the response time of an inter-

active operation. The response time is the duration from the instant the client issues a FS request

until FS is initiated at the client display. It includes both transport and processing delays. Only our

scheme is capable of providing such bounds.

Functionality refers to the
exibility in supporting FS requests (e.g., number of speedups, duration

of a FS period, allowable sequence of interactive operations, etc.). Our scheme and the Stony Brook

scheme achieve high functionality since they do not impose any limitation on the time and durations

of the FS operations. In the prefetching approach, the duration of a FS operation is limited by the

26

size of the memory of the set-top box (which typically holds a small portion of the video movie).

Post-encoding frame-skipping schemes provide a limited number of FS speedups. In the contingency-

channel approach, the interactive operation may be denied if many users are in the interactive mode

(i.e., interactivity is supported only on a statistical basis). In the multicast approach, short FS

periods are supported using the locally stored data. Extended FS requires switching to a di�erent

multicast group (with a di�erent logical playback time). In general, interactivity is more di�cult to

support in the multicast approach.

In terms of the required network bandwidth for FS operations, our approach uses almost the same

amount of bandwidth that is needed for normal playback. The per-stream bandwidth during FS

operations is also small in the multicast and the contingency-channel approaches (its value depends

on the number of active sources). In the prefetching approach, if FS is supported locally, then no

extra network bandwidth is needed for FS operations. Similarly, no extra bandwidth is required in

the GOP-dropping approach. Partial dropping schemes are less e�cient in terms of FS bandwidth

requirement (e.g., dropping B frames causes the average bit rate of an MPEG sequence to increase

drastically).

The storage requirement is relatively high for schemes that use multiple copies per movie (ours

and Stony Brook's). If no duplication of I frames is done, then the storage overhead in our scheme

is less than that of Stony Brook's. All single-copy schemes have lower storage requirements.

In terms of the complexity of disk scheduling, schemes that involve skipping parts of a GOP

require a relatively complicated disk scheduling subsystem that carefully places data on disk, so

that the disk load is balanced during both normal and scan periods. Stream switching schemes also

require slightly more sophisticated disk scheduling to support switching between di�erent copies. In

the contingency-channel scheme, the need to retrieve frames at multiple times the normal playback

rate further complicates the disk scheduling subsystem. In general, disk scheduling for interactive

VOD is inherently sophisticated because of the unpredicted pattern of client's interactivity.

Factor Scheme

Ours 1 2 3 4 5 6 7

Server Memory F G G G G G G G

Client Resources F G P G P G G G

Bit-Rate Control G P P F F P P P

Visual Quality G P G G G P P P

Performance Guarantees G P P P P P P P

Functionality G P P G F P F F

Network Bandwidth G G G F G G F P

Storage Requirement P G G P G G G G

Disk Scheduling Complexity F G P F G G G G

Table 2: Comparison of di�erent approaches to support FS operations.

27

9 Summary and Future Work

In this paper, we presented an approach for supporting interactive fast-scanning (FS) operations in

a VOD system. This approach is integrated into a previously proposed framework for distributing

archived, MPEG-coded video streams over a wide-area network. Scanning operations are supported

by generating multiple, di�erently encoded versions of each movie. In addition to a normal version

that is used for normal playback, several scan versions are maintained at the server. Each scan

version is obtained by encoding a sample of the raw frames, and is used to support both forward

and backward fast scanning at a given speedup. The server responds to a FS-related request by

switching from the currently transmitted version to another version. By proper encoding of the

scan versions, interactive scan operations can be supported with little or no extra bandwidth and

with the same decoding requirement of normal playback. This gain comes at the expense of small

storage overhead at the server and some variability in the quality of the motion picture during

the fast-scanning periods. Our scheme does not impose any restriction on the number, spacing, or

sequencing of interactive operations.

VOD clients should be given the
exibility to choose from a set of available VOD services that

o�er di�erent levels of interactivity. Billing would then be done based on the quality and
exibility

associated with the selected service. Our future work includes developing a multi-level QoS framework

for interactive VOD. Each level corresponds to a certain degree of interactivity, which could include

some limitations on the interactive functions (e.g., number of supported speedups, visual quality

during scanning, maximum duration of a scanning operation, etc.).

References

[1] C. Aggarwal, J. Wolf, and P. Yu. On optimal batching policies for video-on-demand servers. In IEEE

Multimedia Computing and Systems Conference, pages 253{258, 1996.

[2] K. C. Almeroth and M. H. Ammar. The use of multicast delivery to provide a scalable and interactive

video-on-demand service. IEEE Journal on Selected Areas in Communications, 14(6):1110{1122, Aug.

1996.

[3] D. Anderson. Metascheduling for continuous media. ACM Transactions on Computer Systems, 11(3):226{

252, 1993.

[4] ATM Forum. Audiovisual multimedia services: Video on demand speci�cation 1.1, Mar. 1997.

[5] S. Berson, S. Ghandeharizadeh, R. Muntz, , and X. Ju. Stagged striping in multimedia information

systems. In Proceedings of the Fifth International Conference on Management of Data, May 1994.

[6] Y. H. Chang et al. An open-systems approach to video on demand with VCR like functions. IEEE

Communications Magazine, 32(5):68{80, May 1994.

28

[7] H. J. Chen, A. Krishnamurthy, T. Little, and D. Venkatesh. A scalable video-on-demand service for the

provision of VCR-like functions. In Proceedings of the IEEE Multimedia Conference, 1995.

[8] M.-S. Chen, D. D. Kandlur, and P. S. Yu. Support for fully interactive playout in a disk-array-based

video server. In Proceedings of the Second International Conference on Multimedia, pages 391{398, Oct.

1994.

[9] M.-S. Chen, D. D. Kandlur, and P. S. Yu. Storage and retrieval methods to support fully interactive

playout in a disk-array based video server. Multimedia Systems Journal, 3:126{135, 1995.

[10] A. Cohen, W. Burkhard, , and P. Rangan. Pipelined disk arrays for digital movie retrieval. In Proceedings

of the ACM Multimedia Conference, pages 25{xx, 1994.

[11] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling policies for an on-demand video server with

batching. In ACM Multimedia Conference, pages 15{24, 1994.

[12] J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and D. Towsley. Providing VCR capabilities in large-scale

video servers. In Proc. ACM Multimedia '94, pages 25{32, 1994.

[13] W.-C. Feng and J. Rexford. A comparison of bandwidth smoothing techniques for the transmission of

prerecorded compressed video. In Proceedings of INFOCOM '97, Apr. 1997.

[14] D. J. Gemmell, H. M. Vin, and P. V. Rangan. Multimedia storage servers: A tutorial. Computer

Magazine, pages 40{49, May 1995.

[15] L. Golubchik, J. Lui, and R. Muntz. Adaptive piggybacking: A novel technique for data sharing in

video-on-demand storage servers. Multimedia Systems Journal, 4(3):140{155, 1996.

[16] M. Graf. VBR video over ATM: Reducing network resource requirements through endsystem tra�c

shaping. In Proc. of IEEE INFOCOM '97, pages 48{57, 1997.

[17] ISO/MPEG II. ISO CD11172-2: Coding of moving pictures and associated audio, Dec. 1992.

[18] J. R. Jones. Baseband and passband transport systems for interactive video services. IEEE Communi-

cations Magazine, pages 90{101, May 1994.

[19] K. Keeton and R. H. Katz. Evaluation of video layout strategies for a high-performance storage server.

ACM Multimedia Systems Journal, 3:43{52, May 1995.

[20] M. Krunz, G. Apostolpoulos, and S. Tripathi. Bandwidth allocation and admission control schemes for

the distribution of MPEG streams in VOD systems. Submitted for publication (available as a technical

report at http://www.ece.arizona.edu/�krunz).

[21] M. Krunz and S. K. Tripathi. Exploiting the temporal structure of MPEG video for the reduction of

bandwidth requirements. In Proceedings of the IEEE INFOCOM '97 Conference, pages 67{74, Kobe,

Japan, Apr. 1997.

[22] M. Krunz and S. K. Tripathi. Impact of video scheduling on bandwidth allocation for multiplexed MPEG

streams. ACM Multimedia Systems Journal, 5(6):347{357, Dec. 1997.

29

[23] S. S. Lam, S. Chow, and D. K. Y. Yau. An algorithm for lossless smoothing for MPEG video. In

Proceedings of the ACM SIGCOMM '94 Conference, pages 281{293, Aug. 1994.

[24] V. Li, W. Liao, X. Qiu, and E. Wong. Performance model of interactive video-on-demand systems. IEEE

Journal on Selected Areas in Communications, 14(6):1099{1109, Aug. 1996.

[25] W. Liao and V. Li. The split and merge (SAM) protocol for interactive video-on-demand systems. In

Proceedings of INFOCOM'97, Apr. 1997.

[26] J. M. McManus and K. W. Ross. Video-on-demand over ATM: Constant-rate transmission and transport.

IEEE Journal on Selected Areas in Communications, 14(6):1087{1098, Aug. 1996.

[27] B. Ozden, A. Biliris, and R. R. A. Silberschatz. A low-cost storage server for movie on demand databases.

In Proc. of the 20th VLDB Conference, 1994.

[28] D. J. Reininger, D. Raychaudhuri, and J. Y. Hui. Bandwidth renegotiation for VBR video over ATM

networks. IEEE Journal on Selected Areas in Communications, 14(6):1076{1086, Aug. 1996.

[29] J. D. Salehi, Z.-L. Zhang, J. F. Kurose, and D. Towsley. Supporting stored video: Reducing rate variability

and end-to-end resource requirements through optimal smoothing. In Proc. of the ACM SIGMETRICS

'96 Conference, pages 222{231, May 1996.

[30] P. J. Shenoy and H. M. Vin. E�cient support for scan operations in video servers. In Electronic

Proceedings of ACM Multimedia '95, Nov. 1995.

[31] M. Vernick, C. Venkatramani, and T. cker Chiueh. Adventures in building the Stony Brook video server.

In Proceedings of ACM Multimedia, Nov. 1996.

[32] H. Vin, S. Rao, , and P. Goyal. Optimizing the placement of multimedia objects on disk arrays. In

Proceedings of the IEEE Multimedia Conference, pages 158{164, Washington D.C., 1995.

[33] Z. Wei, M. Krunz, and S. Tripathi. E�cient transport of stored video using stream scheduling and

window-based tra�c envelopes. In Proceedings of the IEEE ICC '97, 1997.

[34] P. S. Yu, J. L. Wolf, and H. Shachanai. Design and analysis of a look-ahead scheduling scheme to support

pause-resume for video-on-demand application. Multimedia Systems Journal, 3(4):137{150, 1995.

30

