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Abstract

Since the publication of the Bellcore measurements in the early nineties, long-range dependence
(LRD) has been in the center of a continuous debate within the teletraffic community. While researchers
largely acknowledge the significance of the LRD phenomenon, they still disagree on two issues: (1) the
utility of LRD models in buffer dimensioning and bandwidth allocation, and (2) the ability of commonly
used statistical tools to differentiate between true LRD and other potential interpretations of it (e.g.,
non-stationarity). This paper is related to the second issue. More specifically, our objective is to
analytically demonstrate the limitations of variance-type indicators of LRD. Our work is not meant to
advocate a particular modeling philosophy (be it LRD or SRD), but rather to emphasize the potential
misidentification caused by the inherent bias in variance-type estimators. Such misidentification could
lead one to wrongly conclude the presence of an LRD structure in a sequence that is known to be
SRD. Our approach is based on deriving simple analytical expressions for the slope of the aggregated
variance in three autocorrelated traffic models: a class of SRD (but non-Markovian) M /G /oo processes,
the discrete autoregressive of order one model (SRD Markovian), and the fractional ARIMA process
(LRD). Our main result is that a variance-type estimator often indicates, falsely, the existence of an
LRD structure (i.e., H > 0.5) in synthetically generated traces from the two SRD models. The bias
in this estimator, however, diminishes monotonically with the length of the trace. We provide some
guidelines on selecting the minimum trace length so that the bias is negligible. We also contrast the VT
estimator with three other estimation techniques.

*An abridged version of this paper appeared in the Proceedings of the IEEE INFOCOM 2001 Conference, Anchorage,
Alaska, April 2001. This work was supported by the National Science Foundation under grants ANI 9733143 and CCR
9979310.



1 Introduction

During the last decade, several studies supported by extensive measurements concluded the likely presence
of long-range dependence (LRD)! in various types of network traffic, including LAN [9, 18], WAN [25],
variable-bite-rate (VBR) video traffic [4, 11, 14], and WWW traffic [6]. Yet, several aspects of the LRD
phenomenon are still being debated within the research community. One of these aspects is related to
the relevance of traffic correlations to the dimensioning of network resources (buffer and bandwidth).
While researchers, in general, agree on the importance of correlations, they still disagree on how much of
these correlations should be captured in a practical traffic model [12, 13, 29]. Earlier traffic models are
Markovian in nature, with an autocorrelation function (ACF) that drops off exponentially. Examples of
these models are the autoregressive moving-average (ARMA) models, Markov Arrival processes (MAP),
Markov modulated processes, etc. (see [10, 2, 19] for surveys of traffic models). Markovian models exhibit
an exponentially decaying autocorrelation structure, which makes them short-range dependent (SRD). An
SRD model is one for which the ACF is summable, i.e., >, px < co. Note, however, that an SRD model is
not necessarily Markovian. In fact, several types of non-Markovian SRD models have been recently studied
in the literature, including the M /G /oo process [23, 16] and a class of (subexponential) path-based Markov
renewal processes [15, 17]. The interest in such models has to do with their ability to produce a wide range
of correlation structures, including, as extreme cases, both Markovian and LRD structures. LRD models
on the other hand exhibit a slowly decaying ACF (typically as a power function) to the extent that the
correlations now have an infinite sum, i.e., >, px = 0o.

Foremost, the statistical evidence supporting LRD was based on the estimated value of the Hurst
(H) parameter. This parameter, in fact, gauges the self-similarity, rather than the LRD, of a process.
However, it is common practice to talk about H as a measure of LRD, since the “derivative” of a second-
order self-similar process (i.e., the “rate” process) exhibits an LRD structure when the H value of the
“parent” process is between 0.5 and 1. Several statistical techniques have been used to estimate the H
parameter, including [3]: the variance-time (VT) test, the R/S statistic, periodogram-based analysis, and
more recently wavelet-based techniques [32, 1, 28]. In this paper, we focus on the VT test, which is one
of the main tests used to discover the LRD phenomenon in network traffic. We show that such a test
can give misleading indication about the true SRD/LRD nature of a time series, despite the availability
of many data points. Although the bias in this test has been previously examined (albeit, empirically)
and words of caution on its use have been reiterated [7, 30], it is still being applied in traffic analysis and
modeling. One reason for that is that previous investigations of the VT test primarily focused on its bias
in the presence of nonstationarities or trends (e.g., [31, 21, 20, 27]), giving the impression that the VT test
does not necessarily suffer from any problems if the traffic is stationary. Our goal in this paper is to take
the bias issue one step further and prove its presence even under stationary models.

In [21] the authors investigated the inherent difficulty associated with estimating the Hurst parameter.
They found that the estimated H value depends on several factors, including the sample size, the time scale,
and the level shifts (jumps in the mean). The effects of certain types of nonstationarity on the estimation

of the H parameter was studied in [31] for variance-type estimators. It was suggested that using the first

!Throughout the paper, we use ‘LRD’ both as a noun and as an adjective.



difference of the variance, rather than the variance itself, in the VT test can help distinguish between LRD
and nonstationarities due to slow deterministic trends or level shifts. Other types of nonstationarity (e.g.,
polynomial trends) were investigated in [20] for several LRD tests. For the VT test, the authors in [20] found
that while the VT test is accurate when applied to a pure LRD process, namely the fractional Gaussian
noise (FGN), it gives misleading results when FGN is contaminated by certain types of nonstationarity.
In [27] the authors investigated the robustness of the wavelet-based Abry-Veitch estimator [32] against
nonstationarities in the mean and/or variance of an LRD process. Our work is distinct from previous works
in two key aspects. First, we are particularly interested in distinguishing between LRD and SRD behaviors
under the assumption of stationarity. Second, we use analytical arguments to investigate the inherent
bias in variance-type estimators. All of the processes considered in this paper are stationarity, and they
do not exhibit any deterministic trends. We provide analytical expressions for the bias in three popular
processes with different correlation structures: M/G/oo process (SRD but non-Markovian), fractional
ARIMA (LRD), and the discrete autoregressive of order one model (SRD Markovian). Focusing on three
specific models with contrasting autocorrelation behaviors does not diminish the impact of our results since,
in fact, the analysis uses only the autocorrelation structures of these models (i.e., does not depend on the
marginal distributions). So one can generalize the treatment to other models with known autocorrelation
structures. It should be emphasized that our work is not meant to advocate one model over another, but
to illustrate the caveats in using the VT test for inference of LRD and to provide guidelines on the required
number of data points for which the test is credible.

The rest of the paper is structured as follows. In Section 2 we briefly describe the three processes that
are used in our study. The aggregated variance for each of these processes is derived in Section 3. In the
same section, we discuss the limitations of the VT test. In Section 4 we contrast the VT test with three
other estimators, namely the Abry-Veitch wavelet estimator, the R/S statistic, and the absolute-value

method. The paper is concluded in Section 5.

2 Autocorrelated Processes

2.1 M/G/oo Input Process

The M/G /oo process is the busy-server process of a discrete-time M/G /oo queue. It can be constructed
as follows (see [16, 23] for details). Start with a discrete-time M/G /oo queue. During time slot [n,n + 1)
(n =0,1,...), £,+1 new customers arrive into the system. Customer j, j = 1,...,&,41, is presented to
its own server, which begins its service by the start of slot [n + 1,n + 2), with a service time o, 41 (in
number of slots). Let b, denote the number of busy servers, or equivalently, the number of customers
present in the system at the beginning of time slot [n,n + 1), with by being the initial number of customers
present in the system. It is assumed that the IN-valued random variables (rvs) by, {{n+1, » = 0,1,...},
{onj, n=1,2,...5 5 =1,2,...} and {og,, 7 = 1,2,...} satisfy the following assumptions: (i) they
are mutually independent; (ii) {&,+1, n = 0,1,...} are i.i.d. Poisson rvs with parameter A > 0; (iii)
{onj, n=1,...; j =1,2,...} are i.i.d. rvs with common pmf G on {1,2,...}. Let o be a generic IN-
valued rv distributed according to the pmf G; assume that E [0] < co. Then, the M/G /oo input process

is simply the busy-server process {b,, n=0,1,...}.



Although {b,, n =0,1,...} is in general not a (strictly) stationary process, it does admit a stationary
and ergodic version, {b5, n =0,1,...}, that can be constructed by taking: (i) by to be Poisson distributed
with parameter AE [o]; (ii) {00, 7 = 1,2,...} to be d.i.d. rvs distributed according to the forward

recurrence time & associated with . The pmf of 6 is given by
P[&zr]zi_], r=1,2,... (1)

Based on the above construction, several useful properties of the stationary version {b}, n =0,1,...} are
readily obtained [22]:

(i) For each n =0,1,..., the rv b} is a Poisson rv with parameter AE [o];

(ii) The ACF of {b}, n=0,1,...} is given by

pr=Pl6 >k, k=0,1,... (2)

By varying G, the process {b}, n = 0,1,...} can display various forms of positive autocorrelations, the
extent of which is controlled by the tail behavior of G.

To close this section, we point out that the process {b%, n =0,1,...} can induce both SRD and LRD
behaviors: From (2), it follows readily [24] that

> =Bl = ) 3)

Consequently, the process {b};, n = 0,1,...} is LRD (resp. SRD) if and only if E [0?] is infinite (resp.
finite). In particular, the M /G /oo input traffic will be LRD when G is Pareto, with a shape parameter in
the interval (1,2) [5].

2.2 Discrete Autoregressive of Order One Process

The DAR(1) process is a popular Markovian (hence, SRD) model that has been used to characterize video
teleconferencing traffic [8]. This process can exhibit any arbitrary marginal distribution. Its autocorrelation
structure is similar to that of the common AR(1) process. To generate a DAR(1) process, we start with
two mutually independent random sequences {V,, : n =1,2,...} and {Y,, : n =1,2,...}. The sample space

for {V,:n=1,2,...} is {0,1}, and its marginal distribution is given by:

PrlV, ] r, ifi=1
T =1l =
" 1—r, ifi=0
for n =1,2,.... The process {Y,, : n =1,2,...} is renewal with an arbitrary but countable sample space

Sy. Its marginal distribution is defined by:

Pr[Y, =i & m;, for alli € Sy



Then, the DAR(1) process {X,, : n =1,2,...} is defined as follows:
Xn =V Xp1+ (1 - Vn)Yn, n=12,... (4_)

It is easy to show that {X, : n =1,2,...} constitutes a Markov chain with an autocorrelation structure of

the form p, = r* for k =0,1,.. ..

2.3 Fractional ARIMA Process

The last process that we will examine is the popular fractional ARIMA(0, d, 0) process. This LRD Gaussian
process was proposed as a basis for modeling VBR video traffic [11]. Its ACF is given by
dl+d)---(k—1+4d)

pk:(l—d)(2—d)(k—d)’ k:1,2, (5)

where 0 < d < 0.5 is the fractional differencing parameter given by d = H — 1/2. As k — oo, pi behaves
as k=%, where o = 2 — 2H. See [11] for details on how to generate synthetic F-ARIMA traces.

3 Analysis of Aggregated Variance

Consider a second-order stationary process {X, : n = 1,2,...} with mean X and variance v. Let Cj )

cov(Xp, Xpnik) = E [(Xn — X) (Xt —7)] The ACF is defined as py & Cy/v, for k = 0,1,.... For
m=1,2,..., let

nm .
xgm 4t Tzt Xy g (6)
n m ? )
so that {X,gm)} is an averaged version of {X,}, with the averaging taken over non-overlapping blocks of

length m. The variance of the new time series is given by:

def v 2 2

v & var(X(™) = E "3 ; ;Cq (7)
We will refer to vy, as the aggregated variance at level m. If {X,} is an LRD process, then it must satisfy
muy, — 00 as m — 00. More specifically, for an LRD process v, ~ m~% when m is large, where 0 < a < 1
is the same parameter defined above. For an SRD process, @ > 1. To test whether a given time series
is LRD or not, the empirical VT test proceeds by plotting log(v,, /v) versus logm for various aggregation
levels m. The asymptotic slope of the plot is then taken as an estimate of —a. If a < 1, the empirical
sequence is believed to exhibit LRD. As an example, the VT plot for the Star Wars trace is shown in
Figure 1. Its asymptotic slope, ignoring aggregation levels smaller than 100, is estimated by least-square
method to be 0.43, roughly in agreement with the numbers in [4] and [11].

Next, we obtain analytical expressions for the slope of the VT plot in the three examined processes.



3.1 Aggregated Variance in the M/G/oo Model

Let {X,(N) : n = 1,2,...} be a subclass of M/G /oo processes that is parameterized by N and that
possesses the following ACF form:

op=ePVE  L—01,2,... 8)

where > 0 and N = 1,2,3,.... For fixed § and N, it is easy to see that {X,(N) : n =1,2,...} is an

SRD process, since

Zpkzl-l-Zkal-l-/ e P Vit — 14 = < oo (9)
k=0 k=1 0 p

Our interest in this subclass of M/G /oo processes stems from the fact that it offers a rich spectrum
of autocorrelation forms, which on the two extremes give rise to Markovian (N = 1) and LRD (N = )
forms. Naturally, the regime in the middle (2 < N < o0) is of particular interest to us. The ACF in (8)
results in a Weibull-like service-time distribution (G).

Now consider the aggregated process {Xém)(N) :n = 1,2,...} for m = 1,2,.... The normalized

aggregated variance of this process can be written as [5]:
2 m
+ 2 Z(m — k) px (10)
k=1

Since m is discrete, the instantaneous slope of the curve that describes logv,, as a function of logm is
defined by the first difference:

ot logu —logw
sm = loggémmill) — ;O:)g?n (1)
Without loss of generality, we assume that all logarithms are to the base ten. Note that in the empirical
VT test, s, is replaced by its average value that is obtained using least square fitting. We now derive
almost exact expressions for v, and s,,. To do that, we allow m to take any nonnegative real value. To
distinguish it from its discrete-time counterpart, we indicate the variance of the aggregated series in the

continuous case by v*, which is given by [5]:

2 m 2 [m
U = —2/ (m — h)ppdh = —2/ (m — h)e=? VR (12)
m~“ Jo m= Jo

Equation (12) can be written as follows:

— 2 m m
Vo = — {m / e B Vigt — / te %dt] (13)
m 0 0

Consider the two indefinite integrals [ e~# Vit and [te P Vidt. Their solutions are given by:

N (N—k)/N
BNt _ BV ¢
e PVig — _esVigy BT (14)
/ 2 (N — k).
[t Vi = N (6eN) 7 TN, 6 Y) (15)



where I'(z,y) is the incomplete Gamma function, defined as:
def ©
[(z,y) = / e du (16)
y
Accordingly,

o
(2N, pt/N) = / uwN e du
ﬂtl/N

e_ﬁtl/N ((ﬁtl/N)QN_l + (2N — 1)(ﬁt1/N)2N_2 +---+ (2N — 1)!) (17)

Substituting the last expression for I'(2N, Btt/N ) in (15), and after some manipulations, we end up with

(2N—k)/N
8 Nigy — _ eV T
/ te ¥ Vidt = —N(2N —1)le Z . FaN ) (18)
From (14) and (18), we obtain the solution for the two definite integrals in (13):
m mN—k)/N NI
R _ Nle—BVm : 1
/Oe dt ( e ZﬁkN k)>+ﬁN (19)
m N m@EN-k)/N N(2N —1)!
-BNtg N(2N — 1)le—8 Vm 2
[ e Vi ( (2N 1t Z ) T (20)
Using the above two equations, v*,, in (13) can be written as:
~ m—k/N m~—k/N 2(N!)  (2N)!
¥ o BN/m —
Uim =€ <2N Z ﬂk 2N —k)! Z ng N —k)! ) + mpBN m2[32N (21)

Note that as m — 00, v*, ~ 2(N!)/(mBN) ~ O(1/m), as expected (since the process is SRD). Figure 2
depicts v*,,, obtained using (21), versus m when p; = e=BVE (N = 2). This special case of the M/G /oo
process has been shown to accurately characterize the behavior of variable-bit-rate video [16]. The plot
depicts clear convexity, which is the source of the bias in the VT test. Figure 3 depicts v*,, for various
values of N with g = 0.06. We found these plots almost indistinguishable from their discrete counterparts
(not shown) obtained directly from (10). It is interesting to note that v*,, depends on 8 and m only
through the term m < 3 ¥/m. More specifically, (21) can be rewritten as:

——— 1 1 2(N1)  (2N)!

Now that we have obtained an expression for v*,,, we proceed to derive the instantaneous slope of v*,,,

which is defined as follows: ~ __
« det d(logv*n)  m dv*p

= = — 2
™ d(logm) v, dm (23)



With some basic algebraic manipulations, it can be shown that:

~ (NN stk N om+k 2(N)  202N)!] —~
= F—m( v ,cz:;mk(m:rr_k)!+2(N_1)!,§mk(zv+_k)!>_ P+ T e

As m — o0, s;, = —1, as expected. From the concavity of V*m, it readily follows that
| smn <[ sm |<| spppa | (25)

In the special case of N = 2, (24) reduces to:

* _ m2_ md  mi m m2 | mA
Sm|N:2 = (26)

Figure 4 depicts —s}, versus the aggregation level m for four values of N (8 = 0.06). For N > 1, s},
converges very slowly to —1. In fact, even at an aggregation level of m = 8000 and N = 2, | s, | is still
smaller than 0.8. The speed of convergence decreases rapidly as IV increases. For example, when N = 4,
even at an aggregation level as high as 8000, | s}, | does not exceed 0.1, far from indicating any SRD
structure. Had we not known in advance that the underlying process is SRD, we would have mistakenly
decided (based on the VT test) that the data exhibit LRD behavior. Figure 5 depicts the impact of various
values of (3. Clearly, the larger the value of 3, the faster is the convergence of s;, to —1.

The plot of —s;;, versus m is shown in Figure 6 for N = 2. From this figure, it can been seen that
the absolute value of the slope of the analytically obtained VT plot is always less than one for a finite m.
This critical observation implies that when applied to traces of an SRD M /G /oo process with py = e N\/E,
the VT test will always indicate, wrongly, the presence of an LRD structure irrespective of the length of
these traces. Only when such traces are of infinite length, the slope of the VT plot will be —1. If for the
sake of empirical approximation, one is to take | s}, |> 0.95 as an indication of SRD, then in the case of
N = 2 we must have m > 11.2. If 8 = 0.05 (which is a typical value for video sequences fitted using an
M /G /oo model with pg, = e BVE [16]), then we need at least 50176 data points to correctly infer that the
data exhibit SRD.

3.2 Aggregated Variance in the DAR(1) Model

Next, we consider the DAR(1) process. Substituting the expression for the ACF, p, = r*, in (10), and

after some straightforward manipulations, we obtain:

_ 1 2 (r(rm—mr—}—m—l)) 27)

P, [rg— JR—
" m m? (r—1)2

As m — 00, Uy ~ (14 2r/(1 —r))/m, which is, as expected, O(1/m). By substituting the values for
U and Vp,41 in (11), we can plot the first-order difference s,, versus m, as shown in Figure 7. Note that
when r is close to one, the convergence of s, to —1 becomes very slow. We will come back to this issue
later in this section.

Next, we provide a closed-form expression for s;,, the continuous version of s,,, which was defined in



23). By substituting pp, = r* in (12) and after some manipulations, we arrive at the following expression
y gp g

for v*,,:
" —~ 2 [r™ —mlnr—1

vm = 2 (Inr)?

(28)

where In(.) is the natural logarithm. As m — oo (with r < 1), v*,, ~ —2/(mIn7), which is O(1/m). As
in the case of the M/G /oo model, the VT plots for the DAR(1) model in the continuous case are almost
indistinguishable from their discrete-parameter counterparts. For brevity, we only show the plots in the
continuous case (Figure 8).
Differentiating v*,, in (28) with respect to m, we obtain
vy 2 (mlnr—2)r™ +mlnr +2

dm (Inr)? m3

Hence, from (23) s, for the DAR(1) model is given by

o (mlnr —2)r™ + mlnr 4 2 (29)

m rm —mlnr —1

As m — o0, sy, = —1, as expected. The speed of convergence of sy, is this case is rather fast due to the
fast decay of the geometric terms in (29). To get an idea about how many data points are sufficient to
infer SRD/LRD, we first rewrite (29) in terms of the variable z & 7™ as follows:

y (nz—-2)z+Inz+2

m = z—Inz—1 (30)

Figure 9 depicts the plot of s}, as a function of z. As z — 0, s}, converges to —1. However, as z — 1, s7,
approaches zero! So the utility of the VT test as an indicator of the SRD structure of the DAR(1) model,
or any Markovian model to that extent, depends on the value of x = r™. For a fixed r < 1, the number of
points in a Markov-based trace must be large enough to ensure a sufficiently large m, so that ™ is close to
zero. For example, to ensure that |s},| > 0.95, we must have m > —20.95/Inr. In this case, if r = 0.999,
then we need an aggregation level m > 20936 (i.e., about 21,000 points per block). The size of the data

trace should be at least ten times this number to give a meaningful sample estimation of the variance v*y,.

3.3 Aggregated Variance in the F-ARIMA Model

Finally, consider the F-ARIMA process described before. We first provide a simple recursive approach for
computing ¥y, for this process. First, we define the sums X,, & Yheipk and Y, & Yore kpg, for m > 1.

Equation 10 can now be written as follows:

~ 1 2

Since X, = Xim—1 + Pmy Y = Yi—1 + mppm, and p, = (m — 1+ d)/(m — d)pm—1, (31) can be computed
recursively starting from X; =Y, = p; = d/(1 — d). Figure 10 depicts the VT plots for various values of
d. Tt is interesting to note the linearity of the plots, with slopes that barely change with the aggregation
level. (Contrast these plots with their nonlinear counterparts in Figure 2 and 8 for the M/G /oo and the



DAR(1) models, respectively). Moreover, these plots seem to be distinctly different from the empirical
VT plot for the original Star Wars trace (Figure 1). This says that from an aggregated variance stand-
point, the M/G /oo model (non-Markovian SRD) is more appropriate than the F-ARIMA model (LRD) in
characterizing the JPEG-coded Star Wars sequence. The slope of the VT plot for the F-ARIMA model is
shown in Figure 11 as a function of m (obtained using (11)).

So far, we have examined the behavior of the aggregated variance analytically, without involving any
statistical estimation. One may question whether the trends observed in the previous figures still hold
when the empirical VT test is used. To verify this point, we applied the empirical VT test to synthetic
traces from the M/G /oo and F-ARIMA models. Figures 12 and 13 depict the results for two representative
traces. For the M/G /oo trace, we set § = 0.076 and N = 2, which give a good fit for the empirical ACF of
the Star Wars JPEG-coded sequence [16]. For the F-ARIMA trace, we took d = 0.3. The M/G/oc trace
cousists of 1,000,000 data points, while the F-ARIMA has 500,000 points (the computational complexity
involved in generating M /G /oo traces grows linearly with the trace length, while this complexity grows
quadratically in the case of F-ARIMA traces). Figure 12 indicates asymptotic slopes of —0.79 and —0.75
for aggregation levels in the ranges [103®,10%5] and [10%,10°], respectively. This would suggest that the
underlying data exhibit LRD. However, we know that the data were generated from an SRD M/G /oo
model! Despite the length of the M/G /oo trace, the VT test may wrongly suggest the presence of LRD
in this trace (if one is not careful in interpretting its outcome). Note that the concavity of the VT plot
(which is predicted from the analysis) is not so apparent at large values of m, mainly because of the
statistical inaccuracy in estimating v,,. Hence, it would be difficult to simply rely on visual inspection to
determine the inappropriateness of the VT test by monitoring the concavity in the empirical VT plot. For
the F-ARIMA trace (Figure 13), the slope of the VT plot is estimated at —0.58. Although v,, (also, the
ACF) of a F-ARIMA is expected to behave as k=04 when k — oo, it takes extremely long time to reach
this asymptotic behavior. Figure 14 depicts the ACFs for the two tested traces along with the ACF for

the real Star Wars trace.

4 Comparison with Other LRD Tests

We now contrast the VT test with three other methods: the wavelet-based Abry-Veitch (AV) test [32], the
R/S method, and the absolute-value method (see [30] for descriptions of the latter two). The AV method is
a semi-parametric estimator that is based on the discrete wavelet transform. It estimates both parameters «
and cy that appear in the spectral representation of an LRD process at the origin; namely, f(v) ~ cflv|™®
as v — 0 (H is related to « through H = (1 + «)/2). The method enjoys significant computational
advantages along with an amenability for real-time implementation [28]. It is known to provide less biased
estimates than traditional tests, although the bias has been studied mainly within the LRD regime (and for
real traces). We used the Matlab code written by D. Veitch (see http://www.emulab.ee.mu.oz.au/~darryl)
to apply the AV test to a 1,000,000-point-long SRD trace generated from an M/G /oo process with py =
e 0076V (the same trace that was used in Figure 12). Figure 15 depicts the Logscale Diagram (LD),
plotted over the complete range of available scales (the 95% confidence intervals are indicated by the short
bars). The LD is essentially a log-log plot of the estimated variances of the wavelet details. For each

scale j, the variance of the details (u;) is estimated as the average of the squared details at that scale.

10



So the LD is a plot of y; & logy i1 versus j. An estimate of « is given by the slope of a weighted linear
regression of the y,’s over an “appropriate” range of scales (j1,j2). To choose the optimal ji, call it j{, the
Matlab code produces a graph of the goodness-of-fit function, Q(j1), versus j; with j, fixed at its maximum
possible value. An example of such a graph is shown in Figure 16. For small scales, Q(j1) increases with
J1, indicating a better fit. This trend continues up to the scale j}, after which Q(j1) barely changes with
j1- Regression is performed over the scales from ji up to the maximum available scale. Based on this
regression, H =~ 0.645 with a 95% confidence interval [0.566,0.725]. This says that the test indicates,
wrongly, the presence of LRD in the M/G /oo trace. In other words, the AV method is also biased when
the underlying traffic is SRD.

Since the estimated « (and consequently, H) in the AV test depends on several parameters, most
notably the regression region (j1,j2) and the vanishing moment (Myq,), we repeated the AV test using
several values of (ji,j2) and Mya,. Estimates for H along with their confidence intervals are shown in
Table 1. Changing the values of j; and jo does not seem to help; in fact, the estimates deviate further from
SRD. However, using M,,, = 4 is found to yield a highly accurate estimate of H (for (j1,72) = (13,16)
and Mg, =4, H = 0.491). This could indicate that with appropriate selection of My, the AV test may
be able to produce unbiased estimates of H even when the underlying traffic is slowly converging SRD.
The appropriate selection of M, is currently under investigation.

The next test that we examined is the absolute-value method. According to this method, one plots the
sample mean of the sum of the absolute values of {Xém) :n = 1,2,...} for various values of the aggregation
level m. The plot is fitted by a line, and the slope of that line is taken as an estimate of H — 1. Figure 17
depicts the resulting plot for the M/G /oo trace being examined. The H parameter is estimated at about
0.4932, in line with the true SRD identity of the trace.

Finally, we consider the R/S statistic, which is one of the earliest tests used for estimating the H
parameter. The pox plot used in this test is shown in Figure 18 for the same SRD M/G/oo trace. Using

linear regression, H is estimated at about 0.76, indicating a significant estimation bias.

5 Conclusions

Evidence supporting the existence of LRD in network traffic has been based on statistical techniques for
estimating the Hurst parameter. In this paper, we examined the reliability of the VT test. We analyzed the
aggregated variance in three, differently correlated random processes. Our main result is that this technique
in inherently biased, and can often lead to incorrect conclusions about the true correlation structure of the
examined data. This is true even in the absence of shifts in the mean of the process. Our finding can have
significant implications on capacity planning and buffer engineering practices in QoS-based networks. The
bias in the VT test gradually diminishes with the size of the data. For the examined models, we provided
some guidelines on the required number of data points that are needed to render the bias insignificant. The
VT test is not the only one that suffers from a bias; in fact, when the wavelet-based AV test and the R/S
statistic were applied to a very long SRD M/G /oo trace, they also gave biased estimates of H. However,
with proper selection of the vanishing moment, the AV test was able to produce an unbiased estimate. The
absolute-value test gave an unbiased estimate for the same examined trace. Our future work will focus on

producing more reliable variance-type tests for inference of LRD. One such attempt is found in [26].
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Figure 1: Empirical VT plot for the Star Wars
trace.
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Figure 3: Analytically obtained VT plot for
the M/G /oo model (N =1,2,3).
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Figure 2: Analytically obtained VT plot for
the M/G /oo model (N = 2).
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Figure 5: —s}, versus m for the M /G /oo pro-
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model.
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Figure 15: Logscale diagram in the AV test for
a one-million-point M/G /oo trace with p; =
o 0.076Vk_

Figure 16: Goodness-of-fit statistic Q(j1) ver-
sus the lower limit of the scaling range (j1)-

Vanishing Moment | Range (j1,72) | Estimated H CI for H
1 (12,18)* 0.645 [0.566, 0.725]
1 (12,17) 0.641 [0.560, 0.722]
1 (12,16) 0.629 [0.542, 0.717]
1 (10,18) 0.801 [0.766, 0.836]
1 (10,17) 0.801 [0.766, 0.837]
2 (12,17)* 0.643 [0.557, 0.729]
2 (12,16) 0.647 [0.556, 0.738]
2 (12,15) 0.619 [0.515, 0.724]
2 (10,17) 0.805 [0.768, 0.841]
2 (10,16) 0.809 [0.772, 0.847]
3 (12,17)* 0.661 [0.569, 0.753]
3 (12,16) 0.661 [0.567, 0.755]
3 (12,15) 0.638 [0.532, 0.745]
3 (10,17) 0.812 [0.775, 0.850]
3 (10,16) 0.814 [0.776, 0.852]
4 (13,16)* 0.491 [0.319, 0.663]
4 (13,15) 0.473 [0.267, 0.680]
4 (11,16) 0.701 [0.641, 0.762]
4 (11,15) 0.714 [0.650, 0.778]

Table 1: Estimated value of H and its confidence interval (CI) based on the AV test. Estimation is done
by means of weighted LSE fitting over the range of scales (ji, j2). For a given vanishing moment, the range
for which j7; is “optimal” and js is maximal is indicated by a “*’.
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Figure 17: Estimation of H based on the
absolute-value method for a 1,000,000-point-
long SRD M /G /oo trace (H =~ 0.4932).
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