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Abstract

Nonlinear chaos-based modeling offers an alternative approach to stochastic (typically, linear)
approaches, with the advantages of lower dimensionality and more determinism. In this paper, we
investigate the presence of chaos in variable-bit-rate (VBR) video traffic and explore its application
in traffic synthesis and forecasting. We provide statistical evidence that points to the potential
chaoticity of VBR video time series. Our evidence is based on the sensitivity of the trajectories to
initial conditions, the correlation coefficient between the transformed video sequence (after filtering
out any apparent autocorrelations) and a predicted version of it, and the estimated value of the
maximum Lyapunov exponent. Accurate forecasting of the future values of a presumably chaotic
time series requires good estimation of the embedding dimension. We present a novel approach for
estimating the embedding dimension of a suspectedly chaotic time that is modeled according to
the nonlinear functional relationship of Farmer and Sidorowich [10]. This approach indicates that
the minimum embedding dimension in video sequences is seven. Using this estimate along with a
modified forecasting approach of the one in [10], we generate synthetic video sequences and show
that they exhibit chaotic behavior.

1 Introduction

Emerging network services are being designed to support a wide range of applications with diverse
traffic characteristics and quality-of-service (QoS) requirements. Accurate modeling of the transported
traffic is essential to achieving efficient resource allocation subject to QoS constraints and to designing

online admission control strategies. In this paper, our focus is on modeling variable-bite-rate (VBR)
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video traffic at the source, just before entering the network. Video traffic, in general, is expected
to constitute a significant fraction of the traffic volume in future high-speed networks. To display
constant-quality video, the encoder generates compressed frames whose sizes (in bits) vary depending
on the innovation in the scene activity. Typically, frames are generated at a constant frame rate
(e.g., 30 frames/second). Thus, characterizing the variability of the bit rate amounts to modeling the
frame-size sequence. This VBR sequence is known to exhibit a sophisticated structure with multiple-
time-scale variations and persistence correlations.

Classical approaches to traffic modeling (see, for example, the surveys in [1, 11]) often assume that
the observed time series have been generated by a linear system with possibly random perturbations
(i.e., noise). ARMA and ARIMA processes are examples of such approaches. On the one hand, linear
models enjoy attractive simplicity and several systematic techniques for constructing and validating
them are already available [5]. On the other hand, such models fail to capture the rich dynamics
and apparent nonlinearity exhibited by several observed sequences. This deficiency has been a major
motivation behind the inception of nonlinear chaos modeling.

The main goal of this paper is to explore the viability of applying chaos theory in modeling,
characterizing, and forecasting time series produced by VBR video encoders. Chaos is an inherent
property of some nonlinear dynamic systems. It manifests itself in the sensitivity of solutions (or
trajectories) to initial conditions; a property that is advantageous in generating versatile synthetic
sequences. Chaotic models provide a deterministic alternative to the probabilistic (mostly, linear)
models, where in the former case the rich dynamics of the modeled data are captured by slightly
perturbing the initial conditions every time a new trace is to be synthesized. In essence, a chaotic
system contains an infinite number of unstable periodic orbits, which if modeled linearly would require
an infinite-dimensional model to cover the broadband (infinite) frequency spectrum present in chaotic
sequences. Consider, for example, the logistic map, which is one of the simplest chaotic systems. The

logistic map is defined on the interval [0, 1] according to the following relation:

Ty =4ATp_1(l —zp—1), n=12... (1)

where A € [0,1] is a fixed parameter. Depending on the value of A, this nonlinear map can exhibit
different behaviors [27]. For A < 0.75 the iterates of this system converge onto a limit point (an
attractor) provided that the initial point zy is in the interval (0,1). As A exceeds 0.75, the single-
point attractor bifurcates into two fixed points; a phenomenon known as period doubling (as n — oo,
z, will alternate between the two fixed points). As we continue to increase A, the period doubling
bifurcates, giving solutions of periods 4, 8, 16, ..., until A is about 0.892. For A > 0.892, both chaotic
orbits and odd-period limit cycles (period 3) start to appear. In the chaotic state, the resulting time
series contains an infinite number of unstable periodic orbits [23], which is considered an advantage
in characterization, especially during the reconstruction of the attractor in the phase space.

Chaos theory and its applications have been the subjects of many books and research articles.



Introductory material to the subject can be found, for example, in [16]. More theoretical treatment
can be found in [22] and [26]. Practical methods for applying chaos theory in nonlinear time series
modeling are discussed in [15]. These methods were later implemented in the public-domain TISEAN
package [13], which is also used in our work. Survey articles on chaos-based nonlinear time series
modeling are found in [18, 20]. From the standpoint of time series analysis, the interest in chaotic
models is largely related to their low dimensionality (note, however, high-dimensional chaotic systems
exist as well). So it is not surprising that estimating the dimension of chaotic time series has been the
focus of many research papers (see, for example, [17, 19, 3, 2, 7, 6], and the references therein). As
discussed in Section 3, several measures of dimensionality have been studied in the literature. However,
such measures are often difficult to estimate from empirical data with an unknown underlying structure.
Instead, the empirical data are typically embedded in some state space that preserves the invariant
characteristics of the unknown structure (e.g., fractality, shape of the attractor, etc.). This so-called
delay coordinates (or time-delay) embedding approach was first introduced by Packard et al. [24] and
later studied more rigorously by Takens [28]. A critical aspect of this approach is the estimation of the
embedding dimension, which for practical modeling and forecasting problems reflects the parsimony
(and hence, complexity) of the model.

Recently, there has been growing interest in investigating the chaotic nature of network traffic and
applying it in network-related queueing analysis [8, 4, 29]. Inspired by the observed self-similarity
of network traffic and its relation to the fractal trajectories of chaotic systems, the authors in [8]
investigated the feasibility of modeling the packet generation process by deterministic chaotic maps.
Simple nonlinear maps with few parameters were used, which capture the fractal properties of the
traffic. Furthermore, the authors outlined a purely deterministic approach for analyzing the queueing
performance of a FIFO server with a chaotic input. The feasibility of queueing analysis under chaotic
inputs was also discussed in [4], where large deviation methods were suggested as a possible means
of pursuing such analysis. In [29] the authors investigated the chaotic behavior of TCP congestion
control. Several tests were conducted to verify that for certain parameter values, TCP congestion
control indeed exhibits the essential characteristics of a chaotic system (e.g., sensitivity to initial
conditions, complex orbit periods, non-integer dimensionality, strange attractors, positive rates of
expansion). The authors went further to suggest that the observed self-similarity in TCP traffic may
be attributed to the chaoticity of the congestion control mechanism, rather than the heavy tailedness
of the distributions of the burst periods.

The rest of the paper is structured as follows. In Section 2 we explore the presence of chaos in
video traffic. Section 3 presents our approach for estimating the embedding dimension and the results
of applying this approach to video traffic. Reconstructing the attractor of the chaos-based video model

is discussed in Section 4. Finally, the paper is concluded in Section 5.



2 Exploring Chaos in Video Traffic

In this section, we explore the chaotic behavior of VBR video traffic. Testing for the chaoticity of time
series has been in the center of many previous studies (see [21] and the references therein). These
studies all point out to the difficulty of establishing the boundaries between deterministic chaos and
stochasticity, especially when the time series is “contaminated” by noise. Therefore, our main interest
in chaos stems from its potential advantage over linear approaches in modeling and forecasting video
traffic. We are less interested in verifying whether a given time series is truly chaotic or not, which
may not be an appropriate question in the first place. Nonetheless, the applicability of chaos-based
techniques is clearly dependent on the chaotic tendency of the underlying time series. For this purpose,
it would be useful to first investigate how much chaos (if any) is present in a video time series, which
would motivate subsequent application of chaos-based techniques.

Our data consist of a sequence of 171,000 points, each representing the size (in bytes) of a com-
pressed video frame. This sequence was generated by compressing the Star Wars movie using a
motion-JPEG encoder [12] (see the reference for details of the encoding procedure). We use three
techniques to search for chaos in the underlying time series. The first technique is subjective while

the last two are more objective.

2.1 Sensitivity to Initial Conditions

One reason to suspect the chaoticity of a time series is if small perturbations in the initial conditions
lead to divergent trajectories. Consider a time series {z, : n = 1,2,..., N}. If this series was gener-
ated by a purely deterministic dynamical system, then its evolution can be described by a nonlinear

difference equation of the following form [10]:
Tni1 = F(Xn) (2)

where F is a nonlinear mapping from R onto R, X,, = [, Ty_1 Tn_g---Zp_q41] is a d-dimensional
vector of previous values known as the state vector, and d is the embedding dimension of the system.
As we show in Section 3, the Star Wars time series can be sufficiently embedded in a 7D state space,
i.e., there are no two identical 7D state vectors that also have the same image in the range of F. So
we can get a preliminary indication of a chaotic behavior if we can show that small perturbations in
the 7D state vectors of this time series cause the rest of the trajectory to diverge from its original
path. Such perturbations can be emulated by embedding the trace in a 6D state space and looking
for pairs of 6D state vectors for which the two vectors constituting the pair are identical in value but
have different images in the range of F. Table 1 depicts six such pairs taken from different locations
within the trace. When the vectors in each pair are concatenated with their images (third column in
the table), they appear as if they are slightly perturbed versions of one another in the 7D space. The

last column indicates the amount of perturbation.



Pair Index Value Next Data Point | Perturbation
1 (464,460,456,459,462,457) 454/449 6
2 (511,512,514,512,511,510) 510/517 7
3 (540,536,535,535,538,535) 536/537 1
4 (555,552,552,556,553,552) 556/555 1
5 (562,553,555,548,561,564) 563/558 5
6 (639,638,638,636,637,633) 635/640 5

Table 1: Pairs of identical 6D state vectors in the Star Wars sequence with different images.

Each 7-dimensional state vector in Table 1 can be thought of as a set of initial conditions for a
dynamic system whose trajectory is provided by the embedded points that follow the “initial” state
vector. Figure 1 depicts the subsequent 600 data points in the video trace that follow each pair of
initial state vectors. It is clear that when the system is initiated by state vectors that are very close in
value but are not identical, the resulting trajectories diverge from each other, suggesting the presence
of chaos in the video trace (i.e., the underlying dynamics is sensitive to initial conditions). Note that

since d = 7, the trajectory that follows any 7D state vector must be unique.
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Figure 1: Preliminary evidence of chaos in video traffic (sensitivity to initial conditions).

2.2 Short-Term Forecasting Capability

Several statistical tools have been previously proposed for discriminating between deterministic chaos
and stochasticity (see [21] and the references therein). Naturally, these tools are most efficient in

discriminating between pure chaoticity (i.e., in the absence of measurement noise) and white noise. In



[21] Marzocchi et al. presented a technique for detecting low-dimensional chaos in noise-contaminated
time series. The intuition behind this technique is that, due to their determinism, purely chaotic
systems have better shori-term prediction capability than purely random processes. This superior
capability, however, deteriorates quickly as the forecasting window becomes larger. To put their
intuition into work, Marzocchi et al. suggested transforming the original time series into one that has
almost the same spectrum as white noise. This is achieved by subtracting from the original series an
appropriately fitted autoregressive of order k£ component, where k > 1. Then, the correlation coefficient
(p) between the transformed time series and a “predicted” version of it (see below) is plotted as a
function of the embedding dimension (d). For chaotic series, p increases with d up to some point,
say d*, beyond which the trend is reversed and the correlation coefficient starts decreasing due to
the increase in the number of degrees of freedom. In contrast, for pure white noise, the correlation
coeflicient is almost independent of the value of d. Figure 2 depicts the correlation coefficient as a
function of d for a sample trajectory of the logistic map (with A = 1 and zy = 0.7) and for a sample
path of Gaussian white noise. The sudden drop in p for d > 10 is a clear indication of the chaoticity of
the logistic map. In practice, the time series of interest are neither purely chaotic nor purely stochastic,

and therefore the trends in the correlation coefficient are more difficult to interpret.
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Figure 2: Correlation coefficient between actual and predicted time series versus embedding dimension.

In order to compute p, one needs to obtain a predicted version of the time series under study.
This is often done using the nearest-neighbor approach (also known as the analogue method), which is
briefly described as follows. First, the examined time series is embedded using the time-delay method

in a d-dimensional state space, for some d. Let X; = [z; x;—1 Zij—2--- Ti_4+1] be the most recent state



vector. To predict z;4,, p > 1, we first look within previous state vectors for the nearest neighbor to
X;, say X; where j < i. Then, we take x;, as a prediction of z;,. It is also possible to employ more
sophisticated nearest-neighbor approaches (e.g., finding the k-nearest neighbors and using the average
of their mappings as the predictor [20]), at the expense of added computational cost.

We now apply the above approach to the Star Wars sequence. A plot of the normalized autocorre-
lation function (ACF) of this sequence (not shown) indicates the presence of strong autocorrelations.
To filter out most of these autocorrelations, we first fit an AR(k) model to the Star Wars sequence.
The value of k can be determined by computing the partial autocorrelation function (PACF) of the time
series [5, Chapter 3]. Figure 3(a) depicts the PACF for the Star Wars sequence. It indicates nonneg-
ligible one through four autoregressive modes. Hence, we use an AR(4) model. Let {z, :n =1,2,...}

be the original sequence. Then, the transformed sequence (after subtracting the AR(4) component) is

given by:
fp = Zp—01Tp_1— A2Tp_o9 — A3Ty_3 — A4Ty_4, T =D5,06,... (3)
= x,—0.7727z,_1 — 0.0478%,_9 — 0.0854x,,_3 — 0.07z,,_4 (4)
where the coefficients a1, . .., as are determined using standard autoregression analysis [5]. Figure 3(b)

depicts the ACF of the process {#, : n =1,2,...}. Clear, the transformed process is almost uncorre-

lated, reflecting the goodness of the AR(4) fit.
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Figure 3: Fitting the Star Wars sequence using an AR(4) model.

Now that most of the correlations in the video time series are filtered out, we can apply Marzocchi’s
test to the transformed sequence {#, : n = 5,6,...}. Figure 4(a) depicts the correlation coefficient
between this sequence and its predicted version as a function of d. As d increases, p increases as well,
clearly deviating from the behavior of white noise. Unfortunately, due to the excessive time associated

with the computation of p for large values of d, we were able to perform such computation only for



d < 20 (it took about four days to obtain p for d = 20 on an Ultra-Sparc workstation). To compute p
for d > 20, we apply the test to 10,000-long segments of the Star Wars trace (the computational time
is linearly proportional to both the size of the time series and the embedding dimension). Figure 4(b)
depicts the results for two such segments (indicated by Series 1 and 2) for d from 1 to 60. Series 1
consists of data points 50,001 through 60,000, while Series 2 consists of data points 80,001 through
90,000 in the Star Wars trace. Despite the fluctuations in p, some chaotic trends can be observed.
Consider Series 1, for example. As d goes from 1 to 8, p tends to increase. The trend is subtle when
d goes from 8 to 18. However, for d > 18, there is a clear decline in the value of p as d increases.
Similar remarks can be made about the behavior of p in Series 2. As mentioned earlier, one should
not expect a pure chaotic behavior in real time series. Trends that are more indicative of chaoticity

than of white noise should be sufficient.
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Figure 4: Correlation coefficient between the transformed Star Wars sequence and a predicted version
of it (using the nearest-neighbor approach), as a function of the embedding dimension.

2.3 Maximum Lyapunov Exponent

Lyapunov exponents are invariant measures of bounded dynamical systems (chaotic or non-chaotic).
A dynamical system can have as many Lyapunov exponents as the true physical dimension of its
attractor in the state space. Each exponent reflects the rate of expansion (positive exponent) or
contraction (negative exponent) of the attractor in one of the dimensions. A rate of expansion is an
indication of how fast on average two trajectories with slightly different initial conditions diverge from
one another in a given direction (and vice versa for a rate of contraction). A dynamical system is
chaotic if at least one of its Lyapunov exponents is positive.

In practice, the true dimension of the system is not known, and the spectrum of Lyapunov expo-
nents can only be obtained in some embedding space. The number of obtained exponents in this case

is given by the embedding dimension. If the embedding dimension is larger than the true (unknown)



dimension of the system, then some of the obtained Lyapunov exponents are spurious. Whether to
identify these spurious exponents or not is still an issue of debate [15]. In any case, since a single pos-
itive Lyapunov exponent is sufficient to render a time series chaotic, one can focus on estimating the
value of the largest Lyapunov exponent; if this value is positive, the time series is likely to be chaotic.
A robust method for estimating the maximum Lyapunov exponent of a time series was proposed by
Rosenstein et al. [25] and independently by Kantz [14], and was later implemented in the TISEAN
package [13]. The idea behind this method is to directly test for any exponential divergence of nearby
trajectories. More specifically, consider a time series {y; : k =1,2,...}. Let {Y (k) : k =d,d+1,...}
be a d-dimensional embedding of this series; Yy = [yx yx—1 - - Yr—q+1] for all k. Let Y, and Y- be two
embedded state vectors with ||Y;, — Yp«|| = A < 1, where || - || is some distance metric defined on IR,
One can view Y, and Y+ as the initial points of two trajectories, and inspect the evolution of these
trajectories in time. In particular, if A, = ||[Ynim — Ynrim|| = Ae*™ for a reasonable range of m
values, then A is the maximum Lyapunov exponent. In theory, A is an invariant measure, so its value
should not vary with d, m, and n. However, due to the boundedness of the attractor, an exponential
growth, if any, can be sustained only for a finite time period, after which a saturation effect takes place.
Moreover, A is a global quantity, so it represents the average behavior of the system. The attractor
may locally expand (and even contract) at different rates. So some averaging over the data points is
needed to ensure that X is robustly estimated. In [25] and [14], the estimation of A proceeds as follows.
First, the time series is embedded in a state space with some dimension d. An embedded point Y,
is selected, and all the embedded points that are within e distance from Y;,, are found. These points,
along with Y},,, represent a neighborhood of Y,,, of radius ¢, and are indicated by the set N(ng). For
a given time ng + m, m > 0, one computes the average distance between y,,+,, and the set of data
points resulting from advancing each embedded point in N¢(ng) by m time units along the trajectory.
This average distance, which is known as the stretching factor, gives an indication about the expansion
in the size of the neighborhood N, (ng) after m time units. By taking its logarithm and averaging over

several initial points Y,,,, one can obtain an unbiased estimator of A. Formally, one computes

Al Y 1
5(€,manoad)zﬁzln m Z \yn0+m—yj+m| (5)

where N is the number of initial points. Then, S(e, m,ng,d) is plotted as a function of m for several
values of € and d. The slopes of these plots, which are expected to be relatively close in value, constitute
the estimated maximum Lyapunov exponent.

The above estimation procedure was implemented in the routine 1yap k of the TISEAN package,
which we applied to Series 1 and 2 of the Star Wars time series. Representative plots of S(e, m, ng, d)
for various values of d, ¢, and N are shown in Figure 5 (Parts (a) and (b) are for Series 1, while
Parts (c) and (d) are for Series 2). Note that ¢ needs to be as small as possible to accurately capture

the exponential divergence, if any; yet it has to be large enough to include a sufficient number of



neighbors. The larger the embedding dimension, the smaller is the number of points that can be

found in a neighborhood, which impacts the goodness of the estimation (notice how the plots become

less smooth as d increases).
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Figure 5: Logarithm of S(e,m,ng,d) versus m for Series 1 and 2 of the Star Wars trace.

All plots in Figure 5 have positive slopes, indicating a positive value for A, i.e., presence of chaoticity.

We use simple linear fitting of In S(e,m,ng,d) over the values of m (the iterates) from 15 to 45 to

obtain estimates of A\. For Series 2 these estimates are given in Table 2 for four different values of e. For

e = 115 and € = 204, some embedding dimensions were ignored (these are indicated by dashes), as they
produced neighborhoods with too few points. All the estimates of A fall in the interval [0.01,0.023].
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Embedding Dimension | Estimated Maximum Lyapunov Exponent
(d) e=115 | e =204 | ¢ = 363 € = 646
2 0.0153 | 0.0136 | 0.0131 0.0126
3 0.0197 | 0.0165 | 0.0140 0.0130
4 0.0229 | 0.0190 | 0.0157 0.0131
5 0.0224 | 0.0200 | 0.0172 0.0139
6 — 0.0214 | 0.0188 0.0148
7 — 0.0188 | 0.0199 0.0155
8 — — 0.0195 0.0167
9 — — 0.0202 0.0181
10 — — 0.0198 0.0197

Table 2: Estimated values of the maximum Lyapunov exponent in Series 2 (obtained through mean-
square fitting over iterates from 15 to 45).

3 Estimating the Embedding Dimension

The dimension of a dynamic system is an indication of the number of degrees of freedom of that
system. In other words, it is the number of initial conditions that are required to specify a solution.
Several measures of dimensionality have been used in the literature (see [18] and the references therein),
including the topological dimension, the fractal dimension, the information dimension, the correlation
dimension, and the phase-space dimension. Unfortunately, it is difficult to robustly estimate these
measures if the underlying structure of the time series is unknown, which is typically the case. From
a practical standpoint, one is more interested in the embedding dimension (i.e., the dimension of the
embedding space), since it is the one that mostly impacts the computational complexity of forecasting
and controlling chaotic time series. Farmer [9] defines an embedding as a smooth diffeomorphism map
f:X =Y, whereY is a smooth submanifold of the smooth manifold X. The embedding dimension of
an attractor is then defined to be the minimum dimension of a smooth manifold in which an attractor
can be embedded. In this section, we first present an approach for estimating the embedding dimension

of any time series, and then apply this approach to video traffic.

3.1 Basic Approach

To estimate the embedding dimension (d), we consider time series that are generated by nonlinear
dynamic systems of the form in (2), which may or may not be chaotic. We then proceed in two
steps. The first step focuses on finding the minimum number of consecutive delays D, (i.e., length
of the embedded vectors) that will ensure a functional relationship between the domain and range of
the function F' in (2). The resulting D,, is a conservative estimate of d since certain delays between
the first and last delays may not be needed (e.g., z, may be a function of only z,_1, z,—2, and
Zn—g). In contrast to linear regression analysis where the insignificant delays are easily recognized
by the negligible values of their coefficients (obtained directly from fitting), this is not the case in

nonlinear systems. Therefore, to check if all the D,, delays are needed, we have to test the validity
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of the functional relationship for all combinations of k (not necessarily successive) delays, starting
with ¥ = D, — 1 and going down. Accordingly, the second step deals with searching for the optimal
delay coordinates within a prescribed window, potentially reducing the estimate of d. In fact, using a
smaller value of d than the estimated one would result in violating the functional relationship.

Step one of the above estimation procedure is executed as follows. First, the time series under
examination is embedded into a 1-dimensional state space with points in the domain and corresponding
points in the range. The relation between z, and V = [z,_;] is then tested. If this relationship
is functional, ie., z, = f(z,_1) for some function f, then the time series can be embedded in a
dimension-one state space. Otherwise, the embedding dimension is set to two, and the relationship
between the embedded vectors in the 2D domain and the corresponding points in the range are tested.
If the functional relationship assumption is satisfied, then the system generating the time series is of
dimension two. Otherwise, the process is repeated with higher-order embeddings. Once the minimum
number of consecutive delays (D,,) that satisfy a functional relationship is found, we start by testing
all combinations of k = D,, — 1 delays within a predefined window.

To illustrate the first step, consider the sequence 1,2,3,1,3,2,3,1. In this case, the relationship
between z,,_1 and z, is not functional since, for example, the value 1 in the domain corresponds to

two different values in the range (2 and 3), as shown in Table 3(a). On the other hand, a functional

Domain | Range
1 2% Domain | Range
2 3 (1,2) 3
3 1 (2,3) 1
1 3* (3,1) 3
3 2 (1,3) 2
2 3 (3,2) 3
3 1 (2,3) 1

(a) (b)

Table 3: Time Series (1,2,3,1,3,2,3,1) embedded in: (a) 1-dimensional state space, and (b) 2-
dimensional state space.

relationship between z,, and V = [z,,_1,Z,_2] can be found, as shown in Table 3(b).

After estimating D,, in step 1, we try in step 2 to refine this estimate by searching for the optimal
delay coordinates of size D; within a window of D,, delays, where D; < D,, D,, = aD,, and «
depends on the size and information content of the empirical data. For example, if D, = 3 then
step 2 proceeds by searching for a 2-dimensional embedded vector V' = [z,,—;, z,_] that satisfies the
functional relationship, where j and &k are in the range 1,2...,D, with j # k and with the case
( = 1,k = 2) bypassed.

To quantify how far a mapping is from satisfying a functional relationship, we use the following

12



measure:

Piomain(d) — P, d
R = P @) = Por ) 6
where N(d) is the number of d-dimensional data points in the domain, Pjy4in(d) is the number of
repetitions of points in the domain (number of times the attractor passes through the same state in
dimension d), and P,4p4e(d) is the number of repetitions in the range in dimension d that correspond
to repetitions in the domain. For example, every repetition of the pattern (i,7, k) in the empirical
series (beyond the first occurrence) will increment the value of Pyypqin(3) by one. If any of these
repetitions has the same image of a previous occurrence of (7, j, k), then the value of P,4y,4¢(3) will be
incremented by one. Every violation of the functional relationship will increase the difference between
Piomain(d) and Prgpge(d) by one. When R(d) = 0, d is the estimated embedding dimension (d = D,,).

So far, we have been requiring that the estimated d results in a strictly functional relationship
between the inputs and the output of the model. This works fine in the absence of noisy data. To
incorporate the effect of noise, we can relax the strict equality that is used to test the functional
relationship in the empirical data. More specifically, let V; = V5 be two identical state vectors in the
domain with corresponding images p; and po. Then, we consider the functional relationship to be
satisfied if |p; —po| < € for some predefined € > 0. The larger the value of ¢, the larger is the noise con-
tribution in the model. To illustrate, consider the sequence 1.20,1.90, 3.40, 1.20, 1.90, 3.39, 1.20, 1.50,
embedded in a two-dimensional state space. As seen in Table 4, for ¢ < 0.01 this sequence cannot be
represented as a function of two variables, since the functional relationship is violated for the embedded
point V' = [1.20 1.90]. If we take ¢ > 0.01, this relationship will be satisfied.

Domain | Range
(1.20,1.90) | 3.40*
(1.90,3.40) | 1.20
(3.40,1.20) | 1.90
(1.20,1.90) | 3.39*
(1.90,3.39) 2.1
(3.39,2.1) | 1.5

Table 4: Embedding the time series (1.20, 1.90, 3.40, 1.20, 1.90, 3.39, 1.20, 1.50) in a 2-D state space.

We can go one step further and relax the strict equality on the embedded points in the domain
(along with relaxing the inequality in the range), as follows. Let V; and V5 be two embedded points
in the domain, and let p; and ps be their corresponding images in the range. If ||V} — V3| < €1 and
|p1 — p2| < €2 for some €; and ez, then we consider the functional relationship to be satisfied. The

parameters €; and ea depend on the amount of noise in the data.
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3.2 Application to Video Traffic

We now apply the previously presented estimation approach to video data. The results are summarized
in Table 5. As these results indicate, a functional relationship cannot be found for d < 6. For d = 7,
R(d) = 0. Thus, d = 7 is our starting estimate of the embedding dimension. In addition, the
procedure of eliminating delays was applied, but we still found that seven consecutive delays are
needed to produce a functional relationship. We verify the adequacy of our estimate by contrasting it
with the estimates provided by the false nearest neighbors (FNN) method [17]. Figure 6 depicts the
fraction of false nearest neighbors as a function of d for Series 1 and 2 of the Star Wars trace (we
used the routine false nearest of the TISEAN package). It is clear that as d increases from 1 to 7,
the fraction of FNN is reduced significantly, indicating an unfolding of the attractor. For d > 7 this

fraction barely changes, suggesting that d = 7 is the minimum acceptable embedding dimension.

d | Paomain (d) Pmng (d) R(d)

1 166941 6311 .96

2 132102 5020 75644
3 29430 1311 17

4 1762 84 .01

5 89 6 .000494
6 6 0 .0000357
7 0 0 0.0

Table 5: Estimating the embedding dimension in the Star Wars trace.

— — Series 1
Series 2

Fraction of False Neighbors

e
1 2 3 4 5 6 7 8 9 10
Embedding Dimension

Figure 6: Fraction of false nearest neighbors versus the embedding dimension for the Star Wars trace.
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4 Reconstructing the Attractor

Now that we established the presence of chaos in video traffic and estimated the embedding dimension,
the next step is to reconstruct the attractor of the chaotic model and use it to generate synthetic video
traces. Reconstructing the attractor amounts to finding the approximate form of F' in (2), which can
be done using local or global techniques [20]. We choose to work with local techniques since they
require fewer data points at a time and are more adaptive to nonstationarities in the traffic. For a
given d, we approximate F' by the best composite fit F, which consists of multiple “local” functions
of simple forms (e.g., linear, quadratic). As suggested in [10], these local functions can be obtained
by embedding the empirical time series in a d-dimensional state space, dividing this space into local
regions, and then finding a good fit over each local region. The local regions in the domain of F' are
found by searching the embedded time series for the closest g neighbors to the current state vector
(i.e., the one composed of the most recently predicted d values). The prediction accuracy and the
final form of the attractor depend on the choice of ¢g. If ¢ is small, then the domain of the local region
is too small to accurately describe the behavior of the function (i.e., the fitted hyperplane would not
be stable). On the other hand, if ¢ is large, then the domain of the local region is too large to get
the benefit of localization. Subsequently, F would fail to capture discontinuities in /. One way to
estimate ¢ would be to search for the optimal ¢ that minimizes the short-term prediction error within
a given window, or to introduce a criteria that would force F' to be continuous. We propose to vary
the value of ¢ in each prediction step. We speculate that this process would smooth edges in F and fill
gaps in local regions with scarce data. In short, the method to predict the next value of the time series
begins with finding a local region in the domain close to the current state vector using the variable
parameter q. Then, a linear local approximate function for each region in the domain is constructed
and used to predict the next point. Consequently, the next state is known and the process is iterated.
Finally, we box the attractor to prevent it from escaping the predefined limits.

Next, we apply the above scheme to the Star Wars trace. In our initial attempts to reconstruct
the attractor (figures not shown for brevity), we fixed the value of ¢ for all local regions. But we found
that in this case the reconstruction technique is extremely sensitive to the value of ¢q. This is attributed
to the fact that F' contains edges and regions of discontinuities. So we tried a different approach in
which the value of g varies deterministically in a periodic manner according to g(n) = §+ a(n)mod(b).
A fixed ¢ is sufficient for the success of the model for any continuous map F. Varying q is effective
when F' contains gaps, jumps and discontinuities. In our case, this resulted in a better model than
the one produced under a fixed q. The final model consists of a piece-wise linear segments, which
(combined) dynamically approximate the function F'. Since each of these segments is a hyperplane in
the 7-D dimension, it is not possible to display them pictorially. To verify that the model is chaotic,
we show in Figure 7 ten synthetic traces generated using slightly different initial conditions (which are

given in Table 6). The sets of initial conditions that were used to generate these traces are identical
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in six of the seven coordinates. The perturbation of these sets from the first one (Trace A) is given

in the last column of the table. Clearly, the resulting trajectories differ significantly, indicating the

presence of chaos in the synthetic data.
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Figure 7: Ten synthetic traces with perturbed initial conditions.

Trace Initial Condition Perturb.
A (496,496,498,499,505,497,499) 0
B (496,496,498,499,505,497,495) -4
C (496,496,498,499,505,497,496) -3
D (496,496,498,499,505,497,497) -2
E (496,496,498,499,505,497,498) -1
F (496,496,498,499,505,497,500) 1
G (496,496,498,499,505,497,501) 2
H (496,496,498,499,505,497,502) 3
I (496,496,498,499,505,497,503) 4
J (496,496,498,499,505,497,504) 5

Table 6: Initial conditions for the synthetic traces in Figure 7.

5 Conclusions

In this paper, we provided statistical evidence that points to the presence of chaos in VBR video traffic.
Our evidence was based on the sensitivity of the trajectories to initial conditions, the correlation

coefficient between the transformed video sequence (after filtering out any apparent autocorrelations)
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and a predicted version of it, and the estimated value of the maximum Lyapunov exponent. We
presented a method for estimating the embedding dimension of a time series that is modeled according
to the nonlinear representation of Farmer and Sidorowich [10]. When applied to the Star Wars
sequence, this method yielded an embedding dimension of seven. By embedding the original Star
Wars sequence in a 7D state space and using a nearest-neighbors-based technique (modified from

[10]), we were able to produce synthetic video sequences that exhibit chaotic dynamics.
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