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Abstract

Recent research in wireless CDMA systems has shown that adaptive rate/power control can considerably increase

network throughput relative to systems that use only power or rate control. In this paper, we consider joint power/rate

optimization in the context of orthogonal modulation (OM) and investigate the additional performance gains achieved

through adaptation of theOM order. We show that such adaptation can significantly increase network throughput while

simultaneously reducing the per-bit energy consumption relative to fixed-order modulation systems. The optimizationis

carried out under two different objective functions: minimizing the maximum service time and maximizing the sum of

user rates. For the first objective function, we prove that the optimization problem can be formulated as a generalized

geometric program (GGP). We then show how this GGP can be transformed into a nonlinear convex program, which

can be solved optimally and efficiently. For the second objective function, we obtain a lower bound on the performance

gain of adaptive OM (AOM) over fixed-modulation systems. Numerical results indicate that relative to an optimal joint

rate/power control fixed-order modulation scheme, the proposed AOM scheme achieves significant throughput and energy

gains.

I. INTRODUCTION

Efficient utilization of the limited wireless spectrum while satisfying applications’ quality of service (QoS) require-

ments is an essential design goal of fourth-generation (4G)wireless networks and a key to their successful deploy-

ment [46]. Despite their appealing simplicity, resource allocation policies in currently deployed wireless networks, such

as the IEEE 802.11, are inefficient, perform poorly under moderate loads [10], and are unable to match the growing

demand for high data rates.

The need for spectrally efficient systems has motivated the development of adaptive transmission techniques, several of

which are in the process of being standardized. These techniques adapt users’ parameters according to the time-varying

channel conditions, interference levels, rate requirements, bit error rate (BER) needs, and energy constraints [29].
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for Low Power Electronics (CLPE) at the University of Arizona. CLPE is supported by NSF (grant # EEC-9523338), the State of Arizona, and a
consortium of industrial partners.
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In narrow-band (i.e., non-spread spectrum) systems, adaptation includesvarying the transmission power [16], mod-

ulation order [14], symbol rate [9], coding rate [41], or anycombination of these parameters [3], [13], [15], [28]. In

particular, it is well known that adaptive modulation is a promising technique for increasing the user data rate in narrow-

band systems. This was demonstrated in [14] for the single-user case, where it was shown that adaptive modulation can

provide up to10 dB gain over a fixed-rate system that uses only power control.In [33], the authors studied the mul-

tiuser case and showed that even without power control, adaptive modulation has a significant throughput advantage over

fixed-rate power control schemes. Much of the work on adaptive modulation in narrow-band systems (e.g., [4], [14],

[23], [24], [43]) has been motivated by recent advances in designing low-complexity adaptive modulation circuitry and

channel estimation techniques [14].

In the context of (wide-band) direct-sequence code division multiple access (CDMA) networks, power control has

traditionally been the single most important adaptation parameter [12], and has been thoroughly studied (see [37] and the

references therein). Recent efforts on adaptation in CDMA networks have also focused on adapting the transmission rate

using multiple codes [18], [36], parallel combinatory spread spectrum [48], multiple chip-rate [44], adaptive modulation

and coding (AMC) [1], [6], [17], and “classical” variable processing gain (VPG) techniques [10], [11], [19], [22], [25],

[27], [30], [35], [42], [45] in which both the transmission power and data rate are adapted, but the modulation and coding

are kept fixed.

For CDMA systems that require coherent reception, a pilot signal must usually be transmitted for each user. This

is the case, for example, in WCDMA systems [1], where a high-rate coherent two-dimensional modulation1 such as

16QAM [1], [17] is used. Alternatively, to reduce the implementation complexity associated with coherent reception

(e.g., recovering the pilot signals from users) and to potentially improve energy efficiency (a pilot signal consumes a

considerable amount of the mobile user’s energy), noncoherent reception can be used [21].M -ary orthogonal modulation

(OM) is a spectrally-efficient modulation technique that iswell suited for this application [12]. Although differential

phase shift keying (DPSK) can also be used for noncoherent reception, it has been shown that OM outperforms DPSK for

M > 8 in additive white Gaussian noise (AWGN) and in Rayleigh fading channels [32]. OM has been used successfully

in the uplink of IS-95 and is also part of the radio configurations of the cdma2000 standard [18].

This paper focuses on CDMA systems for which coherent reception is not possible and where OM is used (e.g., uplink

IS-95). For such systems, classical (i.e., fixed OM order) VPG has been the focus of research because of its performance

benefits, flexibility, and practicality (e.g., low peak-to-mean envelope power, fixed chip rate, etc. [19]). The extensive

work on VPG has clearly quantified the performance2 advantages of combined rate/power control over power control

alone (e.g., see [35], [19]). However, to the best of our knowledge, adapting the modulation order for variable-rate

OM-based systems remains an unexplored area of research, and one for which joint rate/power control has not yet been

investigated. Our first contribution (Section II) is to showthat when OM is used, the performance of variable-rate CDMA

1By two-dimensional modulation, we mean modulation schemesfor which the modulation symbol can be represented by a 2-dimensional vector,
i.e., by a point in the 2-dimensional signal space (or constellation).

2Throughout the paper, the term “performance” is used to refer to network throughput and/or per-bit energy consumption.
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networks can be improved by using higher OM orders at lower data rates. We then use these results to show that, in

the single link case, variable-rate systems with adaptive orthogonal modulation (AOM) significantly outperforms VPG

systems with a fixed OM order3. Thus, similar to adaptive modulation in narrow-band systems, AOM in CDMA systems

is shown to be a promising technique for increasing the user data rate. Note that the processing gain and transmission

power are varied in both AOM and VPG. However, in AOM the OM order is also varied depending on the data rate,

whereas VPG uses thesame OM order for all data rates.

The main goal of our study is to investigate the theoretical performance limits ofjoint rate/power control for AOM-

based CDMA networks and to gain insights into the technique itself. We consider both point-to-point (PTP) as well as

multipoint-to-point (MultiPTP) networks (see Figure 1). PTP networks is the more general communication paradigm. It

can represent a completely distributed mobile ad hoc network, or a microcellular network in which mobile-base station

pairs compete for the same frequency spectrum. In MultiPTP networks, multiple nodes transmit to one node, as in the

case of a cluster-based ad hoc or sensor network [31] or in thecase of the uplink of a single cell in a CDMA-based cellular

network (e.g., IS-95 [32]). With very few exceptions, previous work has mainly considered MultiPTP networks.

(a) PTP Networks. (b) MultiPTP Networks.

Fig. 1. Network topologies considered in the paper.

To jointly optimize the powers and rates, we consider twothroughput-related objective functions: (1) minimizing the

maximum service time, and (2) maximizing the sum of users’ transmission rates. Both functions are optimized subject

to constraints on the maximum transmission power, on the minimum and maximum transmission rates, and on the BER.

The first function is novel in our context and has not receivedmuch attention; previous research has primarily focused on

the second objective function. However, as we argue in Section III, there are importantpractical advantages of the first

objective function.

We obtain the optimum solution to the problem of minimizing the maximum service time in both PTP and MultiPTP

networks by formulating the problem as a generalized geometric program (GGP) [8]. We then transform this GGP into

a geometric program (GP), which itself can be transformed into a nonlinear convex program. The advantage of these

transformations is that a convex program has a global optimum that can be found very efficiently [8]. Furthermore, in the

case of MultiPTP networks, we derive a simple expression forcomputing the optimal powers and rates that minimize the

maximum service time. Our solutions are computationally efficient. They can also be used to determine the feasibility of

3For brevity, we use the acronym AOM to refer to a variable-rate system with adaptive OM, while the acronym VPG refers to a variable-rate
system with a fixed OM order.
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a set of rate and BER requirements under certain constraints, thus, allowing for the use of admission control policies.

Although the second objective function (i.e., maximizing the sum of rates) has the advantage of being in the exact

form of throughput, it has the limitation of having several local maxima. As a result, there are no computationally

efficient algorithms to solve this problem4. Hence, for PTP networks, although we do not know the optimalrate/power

solution for VPG and AOM, we provide some numerical results that demonstrate the performance advantages of AOM

over VPG. For MultiPTP networks, we start from theorems proved in [19], and we analytically derive a simple procedure

for maximizing the sum of rates for VPG systems. Then, we showhow this solution, which is optimal in VPG systems,

can be usedheuristically in AOM MultiPTP networks. Using these results, we derive a lower bound on the achievable

gain of AOM over VPG schemes. As shown in Section IV, this gainis substantial.

Note that our goal in this paper isnot to promote OM as a modulation scheme, but rather to advocateadapting the

order of OM for CDMA systems that already use OM (e.g., the uplink of IS-95). The rest of the paper is organized as

follows. In the next section, we take a system-level approach to the analysis of AOM in CDMA multimedia networks and

show its performance advantages over VPG. In section III, wepresent the objective functions, formulate the optimization

problems, and present their solutions. The performance of AOM is presented and contrasted with VPG in Section IV.

Finally, our main conclusions and several open issues are drawn in Section V.

II. ORTHOGONAL MODULATION IN CDMA NETWORKS

A. Motivation for Higher Orthogonal Modulation Orders

The main goal of this section is to show that for any data rate,increasing the OM order improves the performance of a

CDMA system. The maximum OM order that can be used, however, is constrained by the chip rate. We first start with

a system-level analysis of CDMA systems. The benefits of a higher OM order is then established using this analysis and

through an analogy between OM and FEC. The message we will tryto convey is that, in CDMA systems, it is always

advantageous to use an FEC or an OM order that reduces the bit-energy-to-noise spectral density ratio(Eb/N0) required

for a given BER.

R (bps) W (Hz)c mR  (bps)R  (bps)

Digital Processor

TransmitterSpreaderModulatorFEC

Fig. 2. Simplified block diagram of the transmitter circuit.

The transmitter circuit of the system under study is shown inFigure 2. It consists of (digital) FEC encoder, modulator,

direct-sequence spreader, and (analog) amplifier and transmitter [12]. Consider packet reception for linki. Let I be

the set of active links in the network,P
(i)
t be the transmission power of linki, andhji be the channel gain between the

4This may be one reason why previous studies that pursued an algorithmic approach to this problem considered other objectives, such as mini-
mizing the power or evenminimizing the sum of rates [25].
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receiver of linki and the transmitter of linkj. Then the signal-to-noise (and interference) ratio ati is:

SNR(i) =
hiiP

(i)
t

∑

j∈I−{i}

hjiP
(j)
t + Pthermal

(1)

wherePthermal is the thermal noise, which is modeled as a white Gaussian noise process. The interference from other

users is also assumed to be Gaussian. This assumption has been shown to produce throughput results that are reasonably

accurate [34]. For reliable communication, a more relevantmetric than SNR(i) is the effective bit energy-to-noise spectral

density ratio at the detector, denoted byµ(i) and given by [12]:

µ(i) def
=

Eb

N0
=

W

R(i)

hiiP
(i)
t

∑

j∈I−{i}

hjiP
(j)
t + Pthermal

(2)

whereW is the Fourier bandwidth occupied by the signal (i.e., chip rate) andR(i) is the data rate ofi’s intended signal.

Let µreq be the requiredµ(i) for a certain BER. Then, the maximum achievable data rate ati is:

R(i) = W
SNR(i)

µreq
. (3)

Both (2) and (3), which hold for any CDMA system, do not explicitly indicate the effects of FEC and modulation on

the achievable data rate. However, these effect appear indirectly through the value ofµreq. For example, the stronger the

FEC code (i.e., the lower the code rate), the lesser isµreq and the higher is the achievable data rate. This analysis is inline

with the findings of Viterbi [40], in which he showed that thejamming margin is actually increased by coding; the idea is

that with coding,µreq is lower, and so more interference is allowed for the same rate (i.e., SNR(i) in (3) can be decreased).

In other words, for CDMA systems it is always preferable to use schemes that enable operation at a lowerµreq.

In the case ofM -ary OM, the modulator takesk = log2M FEC-coded bits and maps them into one of theM Walsh

(or Hadamard) orthogonal sequences [32] of lengthM bits. So the resultingmodulated bit rate Rm is equal toRc M/k,

whereRc is the coded bit rate (see Figure 2). At the receiver, the signal is first despread and then noncoherently detected,

generatingk soft output bits for each transmitted Walsh symbol, which are fed to the Viterbi decoder (see [39] for further

details). A tight upper bound on the probability of bit errorin OM is given by [32]:

Pb <
1

2
e−k(µ(i)−2ln2)/2. (4)

It is clear from (4) that the higher the value ofk, the lower is the BER.Therefore, the higher the OM order M , the

better is the BER performance for the same Eb/N0 value. OM in this sense works as an FEC code; the higher the value

of M , the lower is the modulation ratek/M , but the better is the BER performance. Note that the higher the OM order,

the higher isRm; however, this has no impact on the system bandwidth as long as Rm ≤ W , since the signal is spread
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by a high-rate CDMA code.

B. Performance Advantages of Adaptive Orthogonal Modulation

In the previous section, we showed that increasing the OM order is beneficial for the performance of a CDMA network.

However, the higher the user data rateR, the lower must be the maximum allowableM to ensure thatRm ≤ W . Thus,

in AOM, M must be adapted according toR. Our goal in this section is to quantify the performance gains of adaptingM

according toR. To do this, we derive the relationship between the user’s SNR and the achievable data rate for AOM and

for non-adaptive OM (i.e., VPG).

First, we claim that it is sufficiently accurate to use (2) andthe upper bound in (4) to analyze OM in CDMA systems. To

substantiate our claim, we compare the performance obtained from these two simple equations with the results reported

in [26], which were obtained using rigorous analysis. We simulate the same setup of [26]: a MultiPTP network that uses

64-ary OM with equal received powers at the common receiver.The number of transmitters is varied to obtain different

Eb/N0. Part (a) of Figure 3 shows the probability of bit error versus Eb/N0. The “exact” plot is the same one that was

obtained in [26], while the upper-bound curve is the one obtained using (2) and (4). This figure demonstrates that the

bound is sufficiently tight for all practical purposes. To verify the tightness of the bound for other values ofM , we show

in Part (b) of Figure 3 the probability of bit error versusM for Eb/N0 = 8 dB andEb/N0 = 10 dB. As can be seen, the

bound is tight, and hence will be used in our subsequent analysis.
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Fig. 3. Probability of bit error in an OM-based CDMA system.

Next, we use (2) and (4) to derive the relationship between the user’s SNR and the achievable rate with and without

adaptingM . From this relationship, we demonstrate the performance advantages of AOM over VPG for the single-link

case. Without loss of generality, we assume that the system under study does not use any FEC (i.e.,Rc = R). VPG uses

the same modulation orderM for all data rates. ThisM is chosen such that for a givenR, Rm ≤ Z ≤ W , whereZ is

a threshold that is often determined by regulatory laws. Forexample, the Federal Commission Commission (FCC) calls

for at least a ratio of 10 (i.e., 10 dB) of spreading rate to modulation bit rate in the 2.4 GHz ISM band [5], so in this case
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Z = W/10. Accordingly, the modulation order for VPG is decided basedon W , Z, and the maximum desired data rate

(Rmax). If Z = W andRmax = W/2, then the (fixed) modulation orderM = 2. If the required BER is10−6, then for

this VPG system,µreq is about 14.8, and so using (3), the required SNR atRmax is 7.4. Note that whereasµreq is fixed,

the required SNR is a function ofR.

AOM, on the other hand, uses a variableM that depends onR. The higher the value ofM , the smaller is the value of

µreq, but also the higher isRm. ForZ = W andRmax = W/2, the value ofM at Rmax cannot exceed2 (to ensure that

Rm ≤ Z), implying that there is no performance advantage of AOM over VPG atRmax. However, forR < Rmax, AOM

uses a higher value forM , enabling operation at a lowerµreq, or equivalently, resulting in a higher data rate (see (3)).For

each data rateR, the corresponding value ofM is the largest value such thatRm, which in the absence of FEC is equal

to R M/k, does not exceedZ. AssumingM is continuous (more on this assumption shortly),R can be expressed as:

R = Z k 2−k. (5)

For a given targetPb, we use (4) as an equality, replaceµ(i) with µreq, and deriveµreq as a function ofk. This function

along with (5) is used to approximateµreq as a function ofR, sayg(R). The approximation can be done by simple curve

fitting. Finally, usingµreq = g(R) and (3), one can express the required SNR as a function ofR:

SNRreq =
R

W
g(R)

def
=

f(R)

W
. (6)

In the case of AOM,f(R) can be well-approximated (less than 1% fitting error) by the posynomial function5 aRb
i , for

some real-valued coefficientsa > 0 andb > 1. On the other hand, in the case of VPG,g(R) is a constant that is equal to

µreq (e.g.,g(R) = 14.8 for M = 2), and therefore, SNRreq is simply a linear function ofR. This linearity betweenR and

SNRreq has been the underlying assumption in all previous adaptiverate/power control schemes for OM-based CDMA

networks. We now know that this assumption does not hold for AOM.
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5The definition of a posynomial can be found in Appendix A.
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Using the relationships betweenR and SNRreq, we are now in a position to compare the performance of AOM with VPG

for the single-link case. Figure 4 demonstrates several performance metrics obtained usingZ = W andRmax = W/2.

Part (a) of the figure depicts SNRreq versus the normalized rateR/W . It is clear that for allR < Rmax, AOM requires a

significantly less SNR than VPG to achieve a certain data rate. Such an improvement essentially reflects apower gain.

Equivalently, AOM achieves a much higher rate than VPG for the same SNRreq (i.e., rate gain). Part (b) of the figure

shows the relative rate enhancement of AOM over VPG versus the SNR. It is shown that the rate advantage of AOM over

VPG increases as the SNR decreases, and is very significant inthe low SNR regime. Note that when SNR≥ 8.7 dB, the

link operates atRmax, and AOM uses the same modulation order as VPG, i.e., there isno rate improvement. Part (c) of

the figure shows the energy-per-data bit (Eb) consumption of AOM relative to that of VPG versus the SNR.Eb is defined

as the transmission power divided byR. The figure shows that AOM consumes much lessEb than VPG in the low SNR

regime. TheEb consumption of AOM increases as the SNR increases until the maximum rate is reached, at which AOM

consumes the sameEb as VPG.

In the above discussion, we permitted the modulation orderM to take any real positive value; however, in real life,M

is restricted to a finite set6. Nonetheless, we evaluate the potential gains without thisadditional constraint to serve as an

upper bound on the performance of AOM in practice.

III. JOINT RATE/POWER OPTIMIZATION FOR AOM SYSTEMS

The analysis presented in the previous section focused on the single-user case. For a network of users, increasing one

user’s power increases that user’s SNR, and consequently its rate. However, this comes at the expense of the SNR for

other users, whose data rates must now be reduced to combat the added interference. Determining the best powers and

rates that optimize a given objective function (e.g., network throughput) is not straightforward. The goal of this section

is to define objective functions and derive policies that optimize them for the case of a network of users (i.e., multiuser

case).

We study two throughput-oriented objective functions: (1)minimizing the maximum service time, and (2) maximizing

the sum of users’ transmissions rates. The two functions differ in two aspects: the time scale at which rate adaption is

carried out and the required hardware.

A. Minimizing the Maximum Service Time

Let Li be the load (in bits) to be transmitted over linki, i ∈ I, whereI is the set of active links in the network. Recall

thatRi is the data rate (in bits/sec) for linki. The service time for linki, denoted bySi, isLi/Ri. A scheme that minimizes

the maximum service timeSmax = max{Si, i ∈ I} has the advantage of being easy to integrate in many current wireless

network standards. For example, the access point (AP) of an IEEE 802.11 WLAN (or the Piconet controller of an IEEE

6The burden of demodulation for high values ofM can be alleviated by using the Fast Walsh Transform method [2], which requires onlyM log2M

real additions and subtractions.
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802.15.3 WPAN) can utilize its polling medium access mechanism to measure the channel gains between the AP and

each mobile node, and to probe nodes about their loads. Usingchannel gains and load values, the AP can compute the

optimum powers and rates that minimizeSmax. A scheme that minimizesSmax does not require users to receive any

feedback from the AP while transmitting, i.e., only one transceiver is required at a node. Furthermore, rate adaptationis

carried out on a per-packet basis (i.e., the whole packet is transmitted at one rate), which is practical for current wireless

networks standards [29].

Given the channel gains and the loadsLi ∀i ∈ I, the goal is to find the transmission powers and rates (i.e.,P
(i)
t and

Ri, ∀i ∈ I) so as to minimizeSmax. Formally, this problem is stated as follows:



























































minimize
{Ri,P

(i)
t , i∈I}

{

max
i∈I

Li

Ri

}

subject to:
hiiP

(i)
t

P

j∈I−{i}

hjiP
(j)
t +Pthermal

≥ f(Ri)
W , ∀i ∈ I

0 ≤ P
(i)
t ≤ Pmax, ∀i ∈ I

Rmin ≤ Ri ≤ Rmax, ∀i ∈ I

(7)

The first constraint reflects the BER requirement of linki, since it mandates thati’s SNR be greater than or equal to
f(Ri)

W = SNRreq (see (6)). f(Ri)
W is equal toRi

W µreq for VPG and is approximated bya(Ri/Z)b(Z/W ) for AOM, where

a andb are two constants whose values are obtained from the fitting of f(R). In our simulations,a ≈ 9.8 andb ≈ 1.2,

with less than 1% fitting error. Although the formulation in (7) assumes the same minimum rate, maximum rate, and

maximum power constraints for all nodes, this can be easily extended to handle the case of node-specific constraints.

Note that this formulation is applicable to both PTP and MultiPTP networks.

Proposition 1: The optimization problem in (7) is a generalized geometric program (GGP). This GGP can be trans-

formed into a geometric program (GP), which itself can be transformed into a nonlinear convex program7.

Proof: With simple algebraic manipulations, (7) can be expressed as:











































































minimize
{Ri,P

(i)
t , i∈I}

{

max
i∈I

{LiR
−1
i }

}

subject to:
[

∑

j∈I−{i}

hjiP
(j)
t + Pthermal

]

[

hiiP
(i)
t

]−1 f(Ri)
W ≤ 1

P
(i)
t P−1

max ≤ 1

RiR
−1
max ≤ 1

R−1
i Rmin ≤ 1

(8)

7See Appendix A for a brief description of GGP and GP.
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where the constraints in (8) are to be satisfied for alli ∈ I. If f(R) is a posynomial (see Appendix A), which is the case

for both VPG and AOM, (8) is a GGP. In its current form, this GPPcannot be solve optimally and efficiently. Therefore,

we make two transformations. The first one transforms the above GGP into a GP. To this end, we introduce a new

auxiliary variablet such that:

t ≥
Li

Ri
, ∀i ∈ I. (9)

With the introduction oft, (8) becomes:



















































































minimize
{t,Ri,P

(i)
t , i∈I}

t

subject to:

LiR
−1
i t−1 ≤ 1

[

∑

j∈I−{i}

hjiP
(j)
t + Pthermal

]

[

hiiP
(i)
t

]−1
f(Ri)

W ≤ 1

P
(i)
t P−1

max ≤ 1

RiR
−1
max ≤ 1

R−1
i Rmin ≤ 1

(10)

It is obvious that (8) and (10) are equivalent forms, meaningthat the powers and rates that minimizet also minimize

the objective function in (8). Formulation (10) is an example of a GP, which can be easily transformed into a nonlinear

convex program using a logarithmic change of variables [8].Formally, letz
def
= log t, xi

def
= log P

(i)
t , andyi

def
= log Ri

∀i ∈ I (so thatt = ez, P (i)
t = exi , andRi = eyi). Instead of minimizing the objective functiont, we now minimize logt.

Also, each constraint of the formf ≤ 1 is changed to logf < 0. This results in the following (equivalent) optimization

problem:


















































































minimize
{z,xi,yi, i∈I}

z

subject to:

log Lie
−yie−z ≤ 0

log

[

∑

j∈I−{i}

hjie
xj + Pthermal

]

h−1
ii e−xi f(eyi)

W ≤ 0

log exiP−1
max ≤ 0

log eyiR−1
max ≤ 0

log e−yiRmin ≤ 0

(11)

At first, the above formulation may look more complicated than (10). However, unlike (10), (11) is aconvex optimization

problem that can be solved efficiently (see [8] for more details). Once (11) is solved forxi andyi, ∀i ∈ I, the optimal

power and rate allocation is simply given byP
(i)
t = exi andRi = eyi ∀i ∈ I.

Proposition 1 applies to both PTP and MultiPTP networks, andalso for VPG as well as AOM schemes. In the case of
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MultiPTP networks, the structure of the problem can be further simplified to allow for even a faster computation of the

optimal solution. The following proposition enables the subsequent derivation of this solution.

Proposition 2: The powers and rates that optimize (7) are such that the first constraint is satisfied with equality.

Proof: See Appendix B.

In MultiPTP networks, the receiver is common to all transmitters, and so the channel gainshji andhii can be simply

written ashj andhi, respectively. Hence, utilizing Proposition 2, the optimal power and rate allocation in the case of

MultiPTP networks must satisfy the following set of linear equations:

hiP
(i)
t

∑

j∈I−{i}

hjP
(j)
t + Pthermal

=
f(Ri)

W
, ∀i ∈ I. (12)

Using the same derivation methodology as in [35], (12) can bereduced to:

∑

j∈I

1
(

W
f(Rj)

+ 1
) = 1 −

Pthermal

P
(i)
t hi

(

W
f(Ri)

+ 1
) , ∀i ∈ I. (13)

By imposing the constraintP (i)
t < Pmax and noting that (13) is valid∀i ∈ I, the following inequality can be obtained:

∑

j∈I

1
(

W
f(Rj)

+ 1
) ≤ 1 −

Pthermal

min
i∈I

[

Pmaxhi

(

W
f(Ri)

+ 1
)] . (14)

This equation determines the feasibility of a set of rates, BER requirements, and maximum power constraints. Next, we

use (14) to derive the optimal solution for (7). Consider thefollowing proposition:

Proposition 3: The powers and rates that optimize (7) are such thatLi

Ri
=

Lj

Rj
∀ i, j ∈ I.

Proof: See Appendix C.

This proposition says that, at the optimal solution to (7), all users have the same service time (S). Hence,Ri = Li/S

∀i ∈ I. Accordingly, (14) can be written as:

∑

j∈I

1
(

W
f(Lj/S) + 1

) ≤ 1 −
Pthermal

min
i∈I

[

Pmaxhi

(

W
f(Li/S) + 1

)] . (15)

The only unknown in this equation isS, and so it can be easily solved for the minimumS. Note that a unique solution

always exist, since the left-hand side (LHS) of (15) is0 atS = ∞, and it increases asS decreases, while the RHS is1 at

S = ∞, and it decreases asS decreases. In Section IV, we use (15) to show the significant performance improvement of

AOM over VPG.

B. Maximizing the Sum of Users Rates

The goal of this objective function is to maximize network throughput, subject to constraints on the BER, the maximum

transmission power, and the minimum and maximum transmission rates. This function, which has been the focus of much
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previous research, requires fast rate adaptation; for the network to operate at the optimal point, whenever a user completes

the transmission of a packet, all other transmitters must update their rates in the midst of transmitting their packets.This

means that users must use intra-packet rate adaptation (i.e., different portions of the same packet must be transmittedat

different rates). Furthermore, maximizing the sum of ratesrequires users to be able to receive feedback about their new

rates while transmitting, which may necessitate the use of amultiple-channel multiple-transceiver architecture. Note that

the minimum-rate constraint, which has been overlooked in most previous studies, is crucial for multimedia networks;

without this constraint, some users may never be allowed to transmit, particularly if they experience a “bad” channel

relative to other users (i.e., their channel gains are relatively small).

The power/rate optimization problem for both AOM and VPG canbe formulated as follows:



























































maximize
{Ri,P

(i)
t , i∈I}

∑

i∈I

Ri

subject to:
hiiP

(i)
t

P

j∈I−{i}

hjiP
(j)
t +Pthermal

≥ f(Ri)
W , ∀i ∈ I

0 ≤ P
(i)
t ≤ Pmax, ∀i ∈ I

Rmin ≤ Ri ≤ Rmax, ∀i ∈ I.

(16)

Unfortunately, this objective function cannot be transformed into the minimization of a posynomial as was done in the

previous section. So it is not possible to formulate this problem as a GGP, a GP, or a nonlinear convex program. In fact, the

problem exhibits an unknown number of local maxima, and there are no efficient algorithms to solve it optimally for the

general case (i.e., PTP networks). However, in order to get afeeling of how much improvement AOM can provide over

VPG, we fix one dimension of the problem, namely, the transmission powers, and limit our attention to rate optimization.

Specifically, for PTP networks, we examine the case when nodes use the maximum power (Pmax). First, consider the

following result.

Proposition 4: The powers and rates that optimize (16) are such that the firstconstraint is satisfied with equality.

Proof: The proof is similar to the one for Proposition 2, and is omitted for brevity.

If all users operate atPmax, then from Proposition 4, it is easy to compute the users rates for both AOM and VPG by

solving the following set of equations:

Ri = f−1







W hiiPmax
∑

j∈I−{i}

hjiPmax + Pthermal






, ∀i ∈ I. (17)

For MultiPTP networks, we follow a different approach that allows us to obtain a lower bound on the achievable gain of

AOM over VPG schemes. Without loss of generality, let the users in the setI be ordered according to their link-channel
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gains, i.e.,i < j ⇒ hi ≥ hj . It has been shown in [19] that in the case of VPG8, the optimal solution for (16) has the

following structure:

• The set of bestv1 users (Iv1) operate at rateRmax (i.e., at the maximum-rate boundary) and their powers satisfy

hiP
(i)
t = hjP

(j)
t ∀i, j ∈ Iv1 , i.e., they have equalreceived powers.

• The set of nextv2 best users (Iv2) operate at powerPmax (i.e., at the maximum-power boundary) and ratesRi < Rmax

∀i ∈ Iv2 . Note thathiP
(i)
t < hjP

(j)
t ∀i ∈ Iv2 and∀j ∈ Iv1 (see [19] for more details).

• At most, there is one userU (whose order inI is v1 + v2 + 1) that operates at rateRU and powerP (U)
t such that

Rmin < RU < Rmax andP
(U)
t < Pmax. Furthermore,hUP

(U)
t < hiP

(i)
t andRU < Ri ∀i ∈ {Iv1

⋃

Iv2}.

• The remaining users,Iv3 = I − Iv1 − Iv2 − {U}, operate at rateRmin (i.e., at the minimum-rate boundary) and

power hiP
(i)
t = hjP

(j)
t ∀i, j ∈ Iv3 , i.e., they have equalreceived powers. Furthermore,hiP

(i)
t < hjP

(j)
t ∀i ∈ Iv3

and∀j ∈ {Iv1

⋃

Iv2

⋃

U}.

Using this solution structure, we now present a propositionthat will enable us to derive a novel algorithm for finding the

optimal solution for VPG networks. We then show how this algorithm can be used as a heuristic for AOM networks.

Proposition 5: For VPG MultiPTP networks, the optimal solution to (16) is such that there is only one element in the

set{Iv2

⋃

U}, i.e., some users operate at the maximum-rate boundary, others operate at the minimum-rate boundary, and

only one user operates at a rate in between these two boundaries.

Proof: See Appendix D.

This optimal solution is intuitive and agrees with previously reported information theoretic results [38]; if there is

no constraint on the maximum rate, the system throughput is maximized while simultaneously satisfying each user’s

minimum-rate constraint only when the best-channel user isallowed to transmit at a power larger than the one required

for it to achieveRmin. If there is a constraint on the maximum rate, allowing only the best user to increase his power may

not achieve the maximum network throughput. The reason is that the best user cannot utilize any extra power beyond

the one required to achieveRmax. Hence, the optimal policy will then be that some best-channel users operate atRmax

(without usingPmax), some bad-channel users operate atRmin, and at most one user operates at a rate that is between

Rmax andRmin.

Based on Proposition 5, the optimal solution for VPG networks can be found by assigning rateRmax to the maximum

possible number of users such that the feasibility condition (14) is not violated, and then assigning to the next best user

the maximum power at which (14) is satisfied with equality. The details of the algorithm are as follows:

1) Assign rateRmin ∀i ∈ I and check the feasibility condition in (14); if this condition is not satisfied, then there is no

solution to this problem; otherwise go to the next step.

2) Assign rateRmax to the best user inI, say userj, and check the feasibility condition in (14); if satisfied, then set

I = I − {j} and repeat this step; otherwise, go to the next step.

8The authors in [19] did not consider a minimum-rate constraint; however, their results extend to the case whenRmin > 0.
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3) Find the maximum power (Pallowed) thatj can use such that (14) is satisfied with equality; the transmission power

of j is then given byPj = min{Pallowed, Pmax}.

This rate/power assignment (RPA) algorithm gives an optimal solution for VPG. We now explain the intuition behind

using the same algorithm as aheuristic for AOM. The main idea is to replace the objective function in(16) by a slightly

different but related objective function, and then measurethe actual throughput under this new function. First, note that

in the case of AOM,f(Ri), which was shown in Part (a) of Figure 4, can be well-approximated by a second-degree

polynomial inRi, saya1R
2
i +b1Ri +c1, which can be written as

(

a1(Ri + b2)
2 + c2

)

for some coefficientsa1, b1, c1, b2,

andc2. Of course such an approximation has a higher fitting error than the posynomial fitting chosen earlier
(

i.e.,aRb
i

)

.

Let Oi
def
= (Ri + b2)

2, Omin
def
= (Rmin + b2)

2, andOmax
def
= (Rmax + b2)

2, and replace the objective function in (16) by
∑

i∈I Oi. Then, the optimization problem becomes:



























































maximize
{Oi,P

(i)
t , i∈I}

∑

i∈I
Oi

subject to:
hiiP

(i)
t

P

j∈I−{i}

hjiP
(j)
t +Pthermal

≥ a1Oi+c2
W , ∀i ∈ I

0 ≤ P
(i)
t ≤ Pmax, ∀i ∈ I

Omin ≤ Oi ≤ Omax, ∀i ∈ I

(18)

This formulation has a similar structure to the one of VPG. Since RPA finds the optimal solution to VPG, it can also find

the optimal solution to (18) (a1 andc2 are constants that do not affect the optimization algorithm). This means that RPA

can be used to maximize
∑

i∈I(Ri + b2)
2. The powers and rates that maximize

∑

i∈I(Ri + b2)
2 are not necessarily equal

to the ones that maximize
∑

i∈I Ri. However, we expect them to be close. In this sense, RPA can beused as a heuristic

method to maximize
∑

i∈I Ri. The simulation results in Section IV show that based on thisheuristic, AOM provides

significant performance advantages over VPG.

IV. PERFORMANCEEVALUATION

A. Simulation Setup

In this section, we evaluate the performance of AOM and contrast it with that of VPG [19]. Our results are based

on numerical experiments conducted using MATLAB. Our performance metrics include the service time (S)9, the sum

of users rates, and the average energy consumption per bit (Eb), defined as
PN

i=1 Pi
PN

i=1 Ri
. Note thatEb is a more significant

measure than the average transmission power. In fact, it is misleading to compare the average transmission power of

two systems that transmit at different data rates, as the cost of transmitting a certain number of bits depends on both the

transmission power and the rate. In some cases, we also studythe throughput and energy fairness indexesIR =
(

PN
i=1 Ri)

2

N
PN

i=1 R2
i

9At the optimal solution for the first objective function, allusers have thesame service timeS (see Proposition 3).
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andIE =
(

PN
i=1(Pi/Ri))

2

N
PN

i=1(Pi/Ri)2
, respectively [20]. The fairer the system, the higher are the values ofIR andIE. IR measures

the “equality” of users allocation of throughput. If all users get the same amount of throughput, then the fairness indexis

1, and so the system is 100% fair. As the discrepancy in throughput increases,IR decreases. A scheme that favors only

few users has a fairness index close to zero.IE measures the discrepancy in the amount of energy each user invests in

delivering one bit of information. Typically, a system designer would like this per-bit energy to be equal for all users to

extend the lifetime of users’ batteries. To simulate the channel gains, we assume the two-ray propagation model with a

path loss factor of 4. Note, however, that the problem formulation does not depend onhow the channel attenuation matrix

is generated, i.e., any other fading model can be used. The total bandwidth of the system (i.e., the chip rate) isW = 1

MHz. We letPmax = 20 dBm.

B. Point-to-Point Networks

In this scenario,N transmitting nodes are randomly placed across a square areaof length 600 meters. For each

transmitterj, the receiving nodei is placed randomly within a circle of radius 100 meters that is centered atj. Given

the location of theN receivers andN transmitters, the channel attenuation the channel attenuation between any pairs of

nodesi andj is computed using the the two-ray propagation model with attenuation factor equals to4. The matrixH is

then formed with entrieshij . Whenever the solution set is empty for the generatedH (i.e.,Rmin cannot be achieved for all

users), a new set of transmitters and receivers are randomlygenerated. The maximum-rate constraintRmax is chosen such

that the modulation orderM used in VPG is equal to 16, which is theminimum M used in AOM. For this experiment,

we letRmin = Rmax/100.

Number of Scheme Minimize MaxSi Maximize
∑

Ri

Node Pairs S Eb
∑

Ri Eb IR IE

(N ) (sec) (microjoules/bit) (Mbps) (microjoules/bit)

20
VPG 73.6 1.86 1.83 1.09 0.50 0.21

AOM 25.5 0.45 2.08 0.96 0.58 0.30

30
VPG 137.5 0.58 2.57 1.17 0.47 0.51

AOM 69.3 0.34 2.94 1.02 0.55 0.58

TABLE I
PERFORMANCECOMPARISON BETWEENAOM AND VPG IN PTPNETWORKS.

The performance of AOM and VPG is shown in Table I. The resultsare reported forN = 20 andN = 30 based on the

average of100 independent realizations of the matrixH. For the first objective function, (i.e., minimizing the maximum

service time), all nodes are assumed to have 1 Mbits of data. Although a randomly generated workload is more practical,

the choice of equal workloads is meant to facilitate the discussion. ForN = 20 andN = 30, AOM achieves a reduction

in S by 65.4% and 50%, respectively, while simultaneously achieving about 75% and 42% energy savings, respectively.
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The reason for this considerable improvement can be explained as follows. From Proposition 3, we know that at the

optimal powers and rates, all users have the sameS. Since users have the same load (1 Mbits), the optimal solution is

when all users transmit at thesame rate. This rate must be chosen to accommodate the worst-channel user (i.e., lowest

SNR). AOM, as Figure 4 shows, has a significant performance advantage over VPG atlow SNR values; thus providing a

smaller service time and a much lower energy consumption than VPG.

For the second objective function (i.e., maximizing the sumof users rates), the optimal solution in PTP networks is

unknown; however, to provide a feeling of what the AOM improvement is, we let all users transmit atPmax, and compute

the corresponding optimal rates using (17). For bothN = 20 and N = 30, AOM achieves about 15% increase in

throughput, 13% saving in energy, and about 16% improvementin IR relative to VPG. The improvement inIE for N = 20

is particulary significant (about 42%). Such an improvementis justified by noting that AOM achieves a significant

throughput gain for low-rate (low-SNR) links, sometimes twice that of VPG, but provides little gain for high-rate links.

This has a negligible impact on throughput, but has a significant impact onIE .

C. Multipoint-to-Point Networks

In this section, we considerN transmitting nodes that are randomly placed within a squarearea of length 200 meters.

The common receiver is placed at the center of the square. Given the location of the nodes, the channel attenuation matrix

H. Similar to the PTP case, whenever the solution set is empty for the generatedH, a new set of transmitters is randomly

generated. The results are obtained based on the average of 100 independent realizations of the matrixH.

For the first objective function, the workload at each transmitter is selected randomly between1 and20 Mbits. As

before,Rmax is chosen such that the modulation orderM used in VPG is equal to16. Figure 5 depicts the performance

of AOM and VPG for the first objective function. Part (a) of thefigure depicts the service timeS versusN . It is shown

that asN exceeds10, AOM achieves considerably lowerS than VPG. For example, whenN = 50, S under AOM is

only 45% ofS under VPG. It is also shown thatS under both AOM and VPG increases withN . This is expected since as

N increases, the multiple access interference (MAI) also increases, and users are forced to transmit at lower rates, which

increases their service times.

Note that for VPG, theS-versus-N curve is approximately linear, while for AOM, the slope of that curve decreases

slightly with N . This can be explained by examining (15). The RHS of (15) is close to1, asPthermal is typically very

small. In the case of VPG,f(Li/S) = µreqLi/S, WS/Liµreq � 1, and so the LHS of (15) can be well-approximated

by
µreq
S

∑

i∈I Li ≈
µreq
S NLave, whereLave is the expected value ofLi. This explains whyS increases almost linearly

with N . For the AOM case,f(Li/S) = a(Li/S)b for some coefficientsa > 0 and b > 1. It is easy to show that

theS-versus-N curve can be approximated byS ≈ cN1/b, for some coefficientsc > 0. Thus, its derivative (or slope)

decreases withN .

Part (b) of Figure 5 depictsEb versusN . It shows that in addition to reducing the service time, AOM achieves a

significant energy saving over VPG. For example, forN = 50, AOM energy expenditure is less than 40% that of VPG.
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Fig. 5. Performance of AOM and VPG based on the minimization of the maximum service time in MultiPTP networks.

Next, we study the impact of increasingPthermal on the service timeS. Figure 6 showsS as a function ofPthermal

for N = 30. The workload is generated as in Figure 5. For all values ofPthermal, AOM consistently shows a good

improvement over VPG. For both AOM and VPG, however,S starts to increase exponentially whenPthermalexceeds−60

dBm. The reason is that at this value,Pthermal becomes comparable to the maximum received powers for bad-channel

users. Hence, the SNR of the users deteriorates significantly, causing a fast drop in their rates, and a corresponding

dramatic increase inS.
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Fig. 6. Service timeS of AOM and VPG in MultiPTP networks as a function ofPthermal.

In the case of the second objective function (i.e., maximizing the sum of users rates), we set the maximum modulated

bit rate Z to W/5. As before,Rmax is chosen such that the modulation orderM used in VPG is equal to 16 (i.e.,

Rm/R = 4), soRmax = W/20. Part (a) of Figure 7 depicts the throughput performance versusN for three different

values ofRmin (Rmax/50, Rmax/100, and zero). Recall that the used RPA algorithm is optimal forVPG , but is only a

heuristic for AOM, so the results in Figure 7 represent a lower bound on the achievable gain of AOM over VPG. Several
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observations can be made based on this figure.

0 5 10 15 20 25 30 35 40 45 50 55
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Number of Transmitting Nodes

T
ot

al
 T

hr
ou

gh
pu

t (
M

bp
s)

Rmin=Rmax/50
Rmin=Rmax/100
Rmin=0

AOM

VPG

(a)

10 20 30 40 50
0

1

2

3

4

5

6

7

8

9
x 10

−6

Number of Transmitting Nodes

E
ne

rg
y 

C
on

su
m

pt
io

n 
(jo

ul
es

/b
it)

VPG
AOM

(b)

Fig. 7. Performance versusN under the throughput maximization criterion for MultiPTP networks.

First, AOM achieves considerably more throughput than VPG;e.g., forRmin = Rmax/50 andN = 50, AOM achieves

about 30% more throughput than VPG. This is because for any power allocation vector, AOM enables higher rates

than VPG. Second, in the cases ofRmin = Rmax/50 andRmin = Rmax/100, asN increases, the throughput for AOM

increases, while the throughput for VPG decreases. This canbe explained as follows. For VPG, asN increases, more

bad-channel users are required to operate atRmin. To enable this, other (good-channel) users must decrease their powers

(and consequently their rates) to reduce the MAI. The increase in the total throughput due to a higher number of bad-

channel users doesnot offset the decrease in the throughput of the good-channel users. Therefore, the overall effect is

a slight reduction in network throughput. This is not the case, however, for AOM. Simulation results indicate that the

increase in the total throughput due to more bad-channel users is higher than the decrease in the throughput of the good-

channel users. This can be justified as follows. Unlike VPG, AOM uses higher OM orders at low data rates and thus

requires much less SNR than VPG to achieveRmin. Thus, good-channel users donot need to reduce their powers (and

their rates) considerably to accommodate the new users, andso the reduction in the throughput of the good-channel users

is not considerable (when compared to the VPG case). The overall effect is a slight increase in network throughput. The

throughput of AOM increases withN until the RPA is unable to find a feasible solution.

Another observation is that asRmin increases, the throughput for VPG decreases, while the throughput for AOM

increases. So the throughput gain of AOM over VPG goes up withRmin. This can be explained as follows. Increasing

Rmin tightens the constraints (i.e., reduces the solution space), and this results in a lower throughput whenever RPA is

optimal. This is exactly what happens in the VPG case since RPA is optimal for VPG. But since RPA isheuristic for

AOM, we conjecture that its performance becomes closer to the optimal one asRmin increases, and so the throughput

increases.

The last point to note about Figure 7-(a) is that forRmin = 0, both AOM and VPG are almost linear. The reason is
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that whenRmin = 0, RPA allocates powers only to good-channel users until the network “saturates,” i.e.,v1 users are

assignedRmax and only one user is assigned the rest of the power such that (14) is satisfied. Adding more users has no

impact once (14) is satisfied.

As in the PTP case, the throughput advantage of AOM over VPG comes with energy savings. Part (b) of Figure 7

depicts the energy consumption of AOM and VPG as a function ofN for Rmin = Rmax/50. This figure shows that AOM

achieves a significant energy saving over VPG (up to 25%).

Next, we study the fairness properties of AOM and VPG. Part (a) and (b) of Figure 8 depictIR andIE, respectively,

as a function ofN (recall that the fairer the system, the higher are the valuesof IR andIE). The results are forRmin =

Rmax/50. It can be observed that relative to VPG, AOM can improveIR andIE up to 21% and 30%, respectively.
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Fig. 8. Fairness versusN under the throughput maximization criterion for MultiPTP networks.

Finally, we study the effect of varying the minimum processing gain (PG) by varyingRmax. We fix Rmin in this

experiment atW/500. Figure 9 shows the performance of AOM and VPG as a function ofthe minimum PG. It can be

observed that the sum of rates decreases as the PG increases for both AOM and VPG. This agrees with the previous

intuition that reducingRmax tightens the solution space, and so decreases the achieved maximum. Furthermore, it not

difficult to notice that RPA favors higher values ofRmax.

V. CONCLUSIONS ANDOPEN ISSUES

In this paper, we investigated the potential performance gains of using adaptive orthogonal modulation (AOM) in mul-

tirate CDMA networks. We showed that, relative to a variableprocessing gain (VPG) system that uses fixed orthogonal

modulation (OM) order, AOM can significantly increase the network throughput while simultaneously reducing energy

consumption. We studied the problem of optimal joint rate/power control for AOM-based systems under two objective

functions: minimizing the maximum service time and maximizing the sum of users rates. For the first objective function,

we showed that the optimization problem can be formulated asa GGP, which can be transformed into a nonlinear convex
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Fig. 9. Throughput in MultiPTP networks as a function of the minimum processing gain (varied throughRmax).

program, and be solved optimally and efficiently. In the caseof the second objective function, we obtained a lower bound

on the achievable gain of AOM over fixed-modulation schemes.Unlike previous work on adaptive transmission, which

have focused mainly on cellular networks, ours is applicable to both PTP and MultiPTP networks.

In PTP networks, our results show that, when compared with fixed OM order VPG schemes, AOM can achieve more

than 50% improvement in the service time and, simultaneously, more than 40% reduction in energy consumption. In

MultiPTP networks, we derived a simple algorithm for findingthe optimal powers and rates for VPG, and explained the

intuition behind using that algorithm as a heuristic for AOM. Our results show that the achievable throughout gain can be

up to 30% compared to VPG. Furthermore, AOM achieves more than 45% reduction in the service time relative to VPG.

In our analysis, we let the modulation orderM to take real positive value. However, in reality,M is restricted to a

finite set. Our future work will focus on studying the impact of restrictingM to a finite set of values.

AOM is still a newly explored area of research. Several challenges remain to be addressed, including finding the

optimal solution for maximizing the sum of rates for AOM in MultiPTP networks, the optimal algorithm for maximizing

the sum of rates for VPG and AOM in PTP networks, and closed-form approximations to the optimal solutions. In

addition to solving for these theoretical limits, our future work will focus on how to integrate these algorithms within

current wireless networks protocols.

APPENDIX

A. Geometric Programming

Let x1, . . . , xn ben variables inR
+, and letx def

= (x1, . . . , xn). A function f is called aposynomial in x if it can be

written in the formf(x1, . . . , xn) =
∑K

k=1 ckx
a1k
1 xa2k

2 . . . xank
n , whereck ≥ 0 andaik ∈ R. If K = 1, thenf is called a

monomial function. A GP is an optimization problem of the form [8]:
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minimize
{xi, i∈I}

f0(x)

subject to:

fi(x) ≤ 1, i = 1, . . . , v

gi(x) = 1, i = 1, . . . , u

xi ≥ 0, i = 1, . . . , n

(19)

wheref0, . . . , fv are posynomial functions andg1, . . . , gu are monomial functions. A functionf is ageneralized posyn-

omial if it can be formed by the addition, multiplication, positive (fractional) power, or maximum of posynomials [7]. A

GGP is an optimization problem of the form (19), wheref0, . . . , fv are generalized posynomial functions andg1, . . . , gu

are monomial functions.

B. Proof of Proposition 2

This proof is by contradiction. Denote the assigned powers and rates by the vectorsPt, and R, wherePt
def
=

(P
(1)
t , . . . , P

(N)
t ) andR

def
= (R1, . . . , RN ). Let (Po

t ,R
o) be the optimal power and rate allocation that optimize (7),

i.e., maxi∈I

{

Li

Ro
i

}

≤ maxi∈I

{

Li

Ri

}

for any feasible(Pt,R). Given(Po
t ,R

o), suppose that one of the equalities, e.g.,

themth link, in the first constraint in (7) is not satisfied, i.e.,

hmmP
o(m)
t

∑

j∈I−{m} hjmP
o(j)
t + Pthermal

>
f(Ro

m)

W
. (20)

The LHS of the first constraint in (7) is a strictly increasingfunction of P (i)
t and is a strictly decreasing function of

P
(j)
t for j 6= i, while the RHS is a strictly increasing function ofRi. Hence, there must be some power decrement

−4P < 0 for link m and some rate increment4R > 0 for all the links, that makes the allocation(Po′
t ,Ro′), where

P
o′
t = (P

o(1)
t , . . . , P

o(m−1)
t , P

o(m)
t − 4P,P

o(m+1)
t , . . . , P

o(N)
t ) andR

o′ = (Ro
1 + 4R, . . . , Ro

N + 4R), a feasible

solution to (7). That is, the following inequalities are still satisfied under(Po′
t ,Ro′):

hmm(P
o(m)
t −4P )

∑

j∈I−{m} hjmP
o(j)
t + Pthermal

≥
f(Ro

m + 4R)

W
, (21)

hiiP
o(i)
t

∑

j∈I−{i}−{m} hjiP
o(j)
t + hmi(P

o(m)
t −4P ) + Pthermal

≥
f(Ro

i + 4R)

W
∀i ∈ I − {m}. (22)

Under(Po′
t ,Ro′), we havemaxi∈I

{

Li

Ro
i +4R

}

< maxi∈I

{

Li

Ro
i

}

. This is a contradiction to the optimality assumption

thatmaxi∈I

{

Li

Ro
i

}

≤ maxi∈I

{

Li

Ri

}

for any feasible(Pt,R). Therefore, the assumption that there is a link that does not

satisfy the equality of the first constraint in (7) can not be true.
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C. Proof of Proposition 3

This proof is by contradiction. Denote the optimal powers and rates by the vectorsPo
t , andR

o, respectively, i.e.,

maxi∈I

{

Li

Ro
i

}

≤ maxi∈I

{

Li

Ri

}

for any feasible(Pt,R). Supposemaxi∈I

{

Li

Ro
i

}

> mini∈I

{

Li

Ro
i

}

. Assume that the

transmission time of themth link is the minimum among all users, i.e.,Lm

Ro
m

= mini∈I

{

Li

Ro
i

}

. The LHS of the first

constraint in (7) is a strictly increasing function ofP
(i)
t and is a strictly decreasing function ofP

(j)
t for j 6= i, while

the RHS is a strictly increasing function ofRi. Hence, there must be some power decrement−4P < 0 and some

small rate decrement−4R1 < 0 for link m, and some small rate increment4R2 > 0 for all the other users, that

makes the allocation(Po′
t ,Ro′), whereP

o′
t = (P

o(1)
t , . . . , P

o(m−1)
t , P

o(m)
t − 4P,P

o(m+1)
t , . . . , P

o(N)
t ) and R

o′ =

(Ro
1 + 4R2, . . . , R

o
m−1 + 4R2, R

o
m −4R1, R

o
m+1 + 4R2, . . . , R

o
N + 4R2), a feasible solution to (7). That is, under

(Po′
t ,Ro′), the following inequalities are still satisfied:

hmm(P
o(m)
t −4P )

∑

j∈I−{m} hjmP
o(j)
t + Pthermal

≥
f(Ro

m −4R1)

W
, (23)

hiiP
o(i)
t

∑

j∈I−{i}−{m} hjiP
o(j)
t + hmi(P

o(m)
t −4P ) + Pthermal

≥
f(Ro

i + 4R2)

W
∀i ∈ I − {m}. (24)

The small rate variations inRo′ is in the sense that Lm

Ro
m−4R1

≤ maxi∈I−{m}

{

Li

Ro
i +4R2

}

. Under(Po′
t ,Ro′), we have

maxi∈I

{

Li

Ro
i

}

= maxi∈I−{m}

{

Li

Ro
i

}

> maxi∈I−{m}

{

Li

Ro
i +4R2

}

= max
{

maxi∈I−{m}

{

Li

Ro
i +4R2

}

, Lm

Ro
m−4R1

}

. This

is a contradiction to the optimality assumption thatmaxi∈I

{

Li

Ro
i

}

≤ maxi∈I

{

Li

Ri

}

for any feasible(Pt,R). Therefore,

it must be thatmaxi∈I

{

Li

Ro
i

}

= mini∈I

{

Li

Ro
i

}

.

D. Proof of Proposition 5

Consider two networksA andB. NetworkA hasv1 elements inIv1 , v2 (wherev2 > 1) elements inIv2 , one element

in U , andv3 elements inIv3 , whereIv1 , Iv2 , U , andIv3 are as defined in Section III-B. Such allocation of powers and

rates adheres to the optimal structure proved in [19]. Network B hasv1 elements inIv1 , only one element in the set

I
′

v2

def
= {Iv2

⋃

U}, andv3 elements inIv3 . Our goal is to show that networkB always has a higher throughput thanA.

Consider networkB. Utilizing (17), and assuming thatPthermal is small compared to the MAI10, the throughput of this

network is:

TB = v1Rmax + v3Rmin +
W

µreq

huPu

v1P
v1
rB

+ v3P
v3
rB

, (25)

wherehu andPu are the channel gain and transmission power of the single element ofI
′

v2
, P v1

rB
is the received power of

elements inIv1 , P v3
rB

and is the received power of the elements inIv3 .

10This assumption is quite reasonable in CDMA networks [47].
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For networkA, the transmission powers are different, and so is the MAI. Therefore, users inIv1 must increase or

decrease their powers so as to attain their rates (Rmax) and to fulfill their BER constraints. The new received powersP v1
rA

must be such that the SNR of users inIv1 in networkA is the same as their SNR in networkB. Similarly, users inIv3

must increase or decrease their powers toP v3
rA

to maintain the same SNR. For the SNR of users inIv1 to stay the same,

the following must hold:

P v1
rA

(v1 − 1)P v1
rA

+ v3P
v3
rA

+
∑

j∈I′v2

hjPj
=

P v1
rB

(v1 − 1)P v1
rB

+ v3P
v3
rB

+ huPu
, (26)

It is quite easy to verify that ifP v1
rA

= αP v1
rB

andP v3
rA

= αP v3
rB

, whereα =
∑

j∈I′v2
hjPj/huPu, then (26) will be satisfied.

It can also be shown that the same value ofα results in equal SNR of users inIv3 for networksA andB. Having decided

the values ofP v1
rA

andP v3
rA

, we are now able to express the throughput of networkA as:

TA = v1Rmax + v3Rmin+

W

µreq

∑

i∈I′

v2

hiPi

v1P
v1

rA + v3P
v3

rA +
∑

j∈I′

v2
−{i}

hiPj
(27)

The first two terms in (27) and (25) are equal, so to determine whetherTA is bigger or lesser thanTB , we only need to

consider the last term in each equation. To this end, we divide the last term in (27) by the one in (25), and useP v1
rA

= αP v1
rB

andP v3
rA

= αP v3
rB

; thus, after some manipulation, we obtain:

∑

i∈I′v2

[v1P
v1
rB

+v3P
v3
rB ]hiPi

2

4v1P
v1
rB

+v3P
v3
rB

+huPu

P

j∈I
′
v2

−{i}
hiPj

P

j∈I
′
v2

hjPj

3

5

P

j∈I
′
v2

hjPj

<
∑

i∈I′v2

hiPi
P

j∈I
′
v2

hjPj
=

P

i∈I
′
v2

hiPi

P

j∈I
′
v2

hjPj
= 1

Thus,TA < TB. So far, we have shown that there is only one user that is operating at powerPu that is higher than the

minimum power required to achieveRmin, but we have not shownwhich user is that. It is not difficult to see thatTB

in (25) is an increasing function of the received power (i.e., huPu). Hence, the best channel user inI − {Iv1} must be

chosen to operate atPu, so the order of that user isv1 + 1.
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