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Abstract

Statistical evidence suggests that the autocorrelation function �(k) (k = 0; 1; : : :) of a compressed-

video sequence is better captured by �(k) = e

��

p

k

than by �(k) = k

��

= e

�� log k

(long-range

dependence) or �(k) = e

��k

(Markovian). A video model with such a correlation structure is

introduced based on the so-called M jGj1 input processes. In essence, the M jGj1 process is a

stationary version of the busy-server process of a discrete-timeM jGj1 queue. By varying G, many

forms of time dependence can be displayed, which makes the class of M jGj1 input models a good

candidate for modeling many types of correlated tra�c in computer networks. For video tra�c,

we derive the appropriate G that gives the desired correlation function �(k) = e

��

p

k

. Though not

Markovian, this model is shown to exhibit short-range dependence. Poisson variates of the M jGj1

model are appropriately transformed to capture the marginal distribution of a video sequence. Us-

ing the performance of a real video stream as a reference, we study via simulations the queueing

performance under three video models: ourM jGj1 model, the fractional ARIMA model [9] (which

exhibits LRD), and the DAR(1) model (which exhibits a Markovian structure). Our results indi-

cate that only the M jGj1 model is capable of consistently providing acceptable predictions of the

actual queueing performance. Furthermore, only O(n) computations are required to generate an

M jGj1 trace of length n, compared to O(n

2

) for a F-ARIMA trace.
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1 Introduction

Recent indications of persistent correlations in various types of network tra�c (including Ethernet LAN

[7, 19], WAN [28], and variable-bite-rate (VBR) video tra�c [2, 9]) have spurred an ongoing debate

on the relevance of these correlations to the dimensioning of network resources. While there is general

agreement on the importance of tra�c correlations, researchers tend to disagree on how much of them

should be incorporated in a tra�c model. Conventional tra�c models are Markovian in nature, with

an autocorrelation function (ACF) that drops o� exponentially. They include many familiar models

such as autoregressive models, Markov Arrival processes (MAP), and Markov modulated processes

(cf. [1, 8, 23] for surveys). Markovian models exhibit short-range dependence (SRD), in that the ACF

�(k) (k = 1; 2; : : :) is summable, i.e.,

P

k

�(k) < 1, implying a rapid decay of the ACF for large

lags k. Note, however, that a SRD model is not necessarily Markovian. The persistence of tra�c

correlations and their presence at multiple time scales have prompted some researchers to consider

instead long-range dependent (LRD) models. The ACF in LRD models drops o� slowly (typically as a

power function) to the extent that the correlations now have an in�nite sum;

P

k

�(k) =1. The LRD

phenomenon has long been observed in other domains such as hydraulics and economics (see [2] and

the references therein). In teletra�c studies, advocates of LRD argue that such a phenomenon has

signi�cant impact on network performance, and thus must be taken into account when dimensioning

network resources. On the other hand, supporters of Markovian modeling, while acknowledging the

presence of such a phenomenon, argue that for networks with �nite bu�ers it is su�cient to incorporate

correlations up to some �nite lag that is proportional to the bu�er size [12, 10, 29].

As indicated above, the key di�erence between these two modeling approaches lies in asymptotic

behavior of the ACF: Markovian models give rise to an ACF of the form �(k) � e

��k

(� > 0), whereas

in LRD models we �nd �(k) � k

��

= e

�� log k

(� > 0), which drops o� much slower than its Markovian

counterpart. These ACFs represent two extremes, between which other forms can be envisioned, at

least in principle. More generally, the ACF can have the general representation �(k) � e

�f(k)

, for

some monotone function f : IN! IR

+

which increases no slower than log k but no faster than k.

The challenge for the tra�c modeler is to identify a class of stochastic processes that can display

forms of correlations as diverse as possible. One such class, which is considered here, is the class of

M jGj1 input processes, which are obtained from the (correlated) busy-server process of a discrete-

time M jGj1 queue. The viability of M jGj1 processes for modeling network tra�c can be attributed

to several factors [25]. Firstly, they constitute a versatile class of processes, which can display various

forms of time dependencies, the extent of which is governed by the service-time distribution G; in fact,

the M jGj1 process was �rst mentioned by Cox [3] as an example of a process exhibiting LRD (which

occurs when G is a Pareto distribution). Secondly, the M jGj1 model arises naturally in teletra�c

as the limiting case for the aggregation of on/o� sources [20]. Thirdly, queueing performance for

these processes is sometimes feasible, as demonstrated in [4, 27, 26, 21]. Finally, when their queueing
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analysis in not tractable (as in the case of the video model presented in this paper), the computational

complexity for generating synthetic M jGj1 traces is only O(n), with n being the trace length. This

low complexity allows for fast generation of these traces to be used in network simulations.

In this paper, we investigate the use of M jGj1 processes in modeling VBR compressed video

streams. We start by re-examining the empirical ACF of four VBR video sequences, which were

generated by JPEG and MPEG-2 encoders. Statistical evidence suggests that the empirical ACF is

better captured by �(k) � e

��

p

k

than by �(k) � k

��

= e

�� log k

(LRD) or �(k) � e

��k

(Markovian),

where k is the lag between frames. Accordingly, we introduce an M jGj1-based video model with an

ACF of the form �(k) � e

��

p

k

. We determine the appropriate G that provides such an ACF. Though

non-Markovian, this model is SRD. The variates in the basic M jGj1 process are Poisson distributed.

To capture the frame-size distribution of a real video sequence, the Poisson marginal distribution is

transformed into a hybrid Gamma/Pareto distribution, in line with the �ndings in [9]. This nonlinear

transformation is shown to have negligible impact on the original correlation structure.

As a means of validating the appropriateness of our M jGj1 model, we study its queueing perfor-

mance via simulations and contrast it to two previously proposed video models: the F-ARIMA model

[9] (a LRD model) and the discrete autoregressive of order one model (DAR(1)) [14] (a Markovian

model). Using the queueing performance for the real video streams as a reference point, we evaluate

the performance for the three models with respect to two measures: the cell loss rate due to bu�er

over
ow and the frame error rate. The main conclusions drawn from our study are that (i) theM jGj1

model provides acceptable performance predictions over a wide spectrum of tra�c loads; (ii) the per-

formance of the F-ARIMA model is overly sensitive to the size of the bu�er, which makes it in certain

cases underestimate the actual performance by several orders of magnitude; and (iii) the DAR(1)

model provides very good performance predictions at heavy loads, but performs poorly at light loads.

The adequacy of the M jGj1 video model is justi�ed by the fact that it attempts to capture both

short-term and long-term correlations, hence combining the goodness of Markovian models at small

lags with that of LRD models at large lags. It is a compromise that incorporates the bene�ts of the

two competing paradigms.

The rest of the paper is structured as follows. In Section 2 we give an overview of M jGj1 input

processes. In Section 3 we present the �tting results for the ACFs of four video sequences. The

M jGj1-based video model is introduced in Section 4. Issues related to generating synthetic M jGj1

traces are discussed in Section 5. In Section 6 we present simulations of the queueing performance

under the three video models. Section 7 concludes the paper.

2 M jGj1 Input Processes

In this section, we formally introduce the class of M jGj1 processes, and summarize some of their

properties as they relate to our modeling e�orts; additional information can be found in [24, 26].
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2.1 Stationary M jGj1 Input Processes

Consider a discrete-time system with an in�nite number of servers. During time slot [n; n + 1) (n =

0; 1; : : :), �

n+1

new customers arrive into the system. Customer j, j = 1; : : : ; �

n+1

, is presented to

its own server, which begins its service by the start of slot [n + 1; n + 2), with a service time �

n+1;j

(in number of slots). Let b

n

denote the number of busy servers, or equivalently, the number of

customers present in the system at the beginning of time slot [n; n + 1), with b

0

being the initial

number of customers present in the system. It is assumed that the IN{valued random variables (rvs)

b

0

, f�

n+1

; n = 0; 1; : : :g, f�

n;j

; n = 1; 2; : : : ; j = 1; 2; : : :g and f�

0;j

; j = 1; 2; : : :g satisfy the following

assumptions: (i) they are mutually independent; (ii) f�

n+1

; n = 0; 1; : : :g are i.i.d. Poisson rvs with

parameter � > 0; (iii) f�

n;j

; n = 1; : : : ; j = 1; 2; : : :g are i.i.d. rvs with common pmf G on f1; 2; : : :g.

Let � be a generic IN{valued rv distributed according to the pmf G; assume that E [�] < 1. Then,

the M jGj1 input process is simply the busy-server process fb

n

; n = 0; 1; : : :g.

For n = 0; 1; : : :, let b

n

denote the IN

n+1

-valued rv (b

0

; b

1

; : : : ; b

n

). The fact that the M jGj1

process fb

n

; n = 0; 1; : : :g exhibits some form of positive dependence is indicated by the following

result [27]:

Proposition 1 For any choice of the initial condition rv b

0

and of the service times f�

0;i

; i = 1; 2; : : :g,

the rvs fb

n

; n = 0; 1; : : :g are associated in the following sense: For any n = 0; 1; : : : and any pair of

non-decreasing mappings f; g : IN

n+1

! IR, it holds that

E [f(b

n

)g(b

n

)] � E [f(b

n

)]E [g(b

n

)] (1)

provided the expectations exist and are �nite.

From (1), we already conclude that

cov[b

n

; b

n+k

] � 0; n; k = 0; 1; : : : (2)

The notion of association used above was introduced in [5], and has been found useful in many contexts

when formalizing the idea of positive dependence.

Thus far, no additional assumptions are made on the rvs f�

0;i

; i = 1; 2; : : :g, which represent

the service durations of the b

0

customers initially present in the system. Various scenarios can, in

principle, be accommodated: If the initial customers start their service at time n = 0, then it is

appropriate to assume that the rvs f�

0;j

; j = 1; 2; : : :g are also i.i.d. rvs with common pmf G. On

the other hand, if we take the viewpoint that the system has been in operation for some time, then

these rvs f�

0;j

; j = 1; 2; : : :g may be interpreted as the residual work (expressed in time slots) that

the b

0

\initial" customers require from their respective servers before service is completed. In general,

the statistics of the rvs f�

0;j

; j = 1; 2; : : :g cannot be speci�ed in any meaningful way, except for the
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situation when the system is in steady state.

Although the busy server process fb

n

; n = 0; 1; : : :g is in general not a (strictly) stationary process,

it does admit a stationary and ergodic version. The existence of this stationary regime emerges very

naturally through the following proposition. We use =) to indicate weak convergence.

Proposition 2 There exists a stationary and ergodic IN{valued process fb

?

n

; n = 0; 1; : : :g such that

fb

n+k

; n = 0; 1; : : :g =) fb

?

n

; n = 0; 1; : : :g as k !1 (3)

for any choice of the initial condition rv b

0

and of the service times f�

0;i

; i = 1; 2; : : :g.

This stationary version fb

?

n

; n = 0; 1; : : :g admits an explicit construction, which corresponds to

taking (i) b

0

to be Poisson distributed with parameter �E [�]; (ii) f�

0;j

; j = 1; 2; : : :g to be i.i.d. rvs

distributed according to the forward recurrence time �̂ associated with �. The pmf of �̂ is given by

P [�̂ = r]

4

=

P [� � r]

E [�]

; r = 1; 2; : : : (4)

Based on the above construction, several useful properties of the stationary version fb

?

n

; n = 0; 1; : : :g

are readily obtained [24]:

Proposition 3 The stationary and ergodic version fb

?

n

; n = 0; 1; : : :g of the busy-server process has

the following properties:

1. For each n = 0; 1; : : :, the rv b

?

n

is a Poisson rv with parameter �E [�];

2. It holds that

lim

n!1

1

n+ 1

n

X

k=0

b

?

k

= �E [�] a:s: (5)

3. The covariance structure of fb

?

n

; n = 0; 1; : : :g is given by

�(k) � cov[b

?

n

; b

?

n+k

] = �E

�

(� � k)

+

�

; n; k = 0; 1; : : : (6)

Henceforth, by an M jGj1 input process we mean its stationary version fb

?

n

; n = 0; 1; : : :g, as

described above. This stationary process, which is fully characterized by the pair (�;G), will be used

here as the basis for tra�c modeling.

2.2 Correlation Properties of M jGj1 Input Processes

We note from (6) that

�(k) = �

1

X

i=0

P

�

(� � k)

+

> i

�
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= �

1

X

i=0

P [� > k + i]

= �

1

X

i=k+1

P [� � i]

= �E [�]

1

X

i=k+1

P [�̂ = i]

= �E [�]P [�̂ > k] ; k = 0; 1; : : : (7)

Thus, the ACF for an M jGj1 process is given by

�(k)

4

=

�(k)

�(0)

= P [�̂ > k] ; k = 0; 1; : : : (8)

since �(0) = �E [�] by (6). By varying G, the process fb

�

n

; n = 0; 1; : : :g can display various forms of

positive autocorrelations, the extent of which is controlled by the tail behavior of G.

To close this section, we point out that the process fb

?

n

; n = 0; 1; : : :g can induce both SRD and

LRD behaviors: From (8), it follows readily [27] that

1

X

k=0

�(k) = �E [�]E [�̂] =

�

2

E [�(� + 1)] ; (9)

whence

1

X

k=0

�(k) = E [�̂] =

1

2

+

E

�

�

2

�

2E [�]

: (10)

Consequently, the process fb

�

n

; n = 0; 1; : : :g is LRD (resp. SRD) if and only if E

�

�

2

�

is in�nite (resp.

�nite). In particular, the M jGj1 input tra�c will be LRD when G is Pareto, with a shape parameter

in the interval (1; 2) [3].

3 Correlation Structure of VBR Video Sources

In our study, we examined four public-domain VBR video traces (Table 1). These traces were generated

using three di�erent encoding mechanisms (see references for further details). Each trace represents

an integer-valued sequence of number of cells per frame for a given movie.

Movie Source Trace Length (frames) Compression Scheme

Star Wars M. Garrett [9] 174,000 DCT (intra-coding)

Beauty and the Beast W. Feng [6] 143,442 JPEG

Crocodile Dundee W. Feng [6] 168,565 JPEG

Wizard of Oz M. Krunz [18] 12,600 MPEG-2 (I sequence)

Table 1: Summary of the four VBR traces used in the study.
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While a model is expected to capture some statistical properties of the underlying empirical data,

its goodness is ultimately determined based on its ability to achieve the goal it was designed for.

In teletra�c studies, the goal of a model is to predict accurately the network performance for the

purpose of dimensioning network resources. Thus, the queueing performance is the crucial factor

that determines the appropriateness of a tra�c model. Since tra�c correlations are known to have

a profound impact on queueing behavior, preliminary indications of the goodness of a model can be

obtained by examining its correlation structure.

The ACFs for the four traces are shown in Figure 1. Each empirical ACF was �tted by three

functions: (a) �(k) = e

��k

(Markovian), (b) �(k) = k

��

(LRD), and (c) �(k) = e

��

p

k

. The last �t

was chosen because its drop-o� behavior is similar to that of the empirical ACF (but other forms are

also possible). For �ts (a) and (c), � is obtained by least-square �tting. For the LRD �t of Star Wars

trace, � = 0:4 was obtained from the estimated value of the Hurst parameter (H = 1 � �=2 � 0:8),

which was reported in [9]. For the other traces, the Hurst parameter was estimated by several methods,

including variance-time plots, R/S analysis, and Whittle's approximation (see [2, 31] for discussion of

these tests). In the interest of brevity, we only display the estimated values for the various parameters

in Figure 1. Clearly, the Markovian �t drops o� much faster than the real ACF, so it only captures the

short-term correlations. The LRD �t is not adequate either since it underestimates the correlations

at lags 1 through 1000, and even beyond. Only at very large lags, the LRD �t becomes acceptable. In

contrast, the choice �(k) = e

��

p

k

provides a very good �t at both small and large lags, particularly for

the �rst three traces. Note that using a larger value for H would not improve the LRD �t, since k

��

always drops o� fast and then maintains almost a 
at appearance. Hence, it always underestimates

the correlations up to some lag, and overestimates them beyond that lag.

4 M jGj1-Based Model for Video Tra�c

As indicated in Figure 1, the ACF of a video sequence is adequately captured by

�(k) = e

��

p

k

; k = 0; 1; 2; : : : (11)

for some constant � > 0. A model with such an ACF can be constructed using M jGj1 input

processes. In teletra�c modeling studies, a common practice is to try to capture the �rst two moments,

the autocorrelation structure, and the general shape of the marginal distribution. More recently,

researchers have realized the importance of capturing the tail of the marginal distribution (e.g., [9, 10,

22]), which is especially important for computing the bu�er over
ow probability at a multiplexer.

The parameters of theM jGj1 process that can be used in the �tting are the service distributionG

and the arrival rate �. WhileG can be chosen to provide a given autocorrelation structure (via (6)), the

arrival rate � can only be �tted to one moment (mean or variance). To capture the complete marginal
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Figure 1: Fitting the autocorrelation function of VBR video sequences.
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distribution (including the mean and variance) as well as the correlation structure, we proceed in two

steps. First, we choose G in the M jGj1 model that provides the target ACF. Then, we identify a

pointwise transformation that transforms the Poisson marginal distribution of the original M jGj1

process into a more appropriate distribution. These steps are described next.

4.1 Modeling the Correlation Structure

We seek the pmf G which is responsible for a correlation sequence of the form (11). To that end, we

note from Proposition 3 and (8) that the correlation structure of the stationary M jGj1 input process

(which is parameterized by � and G) is completely determined by the pmf of �̂ (thus of �). It turns

out that the inverse is also true, as we now show.

Indeed, if �(k); k = 0; 1; : : :, is the ACF of the stationary M jGj1 input process (�; �), then (4)

and (8) together imply

�(k) � �(k + 1) = P [�̂ > k]�P [�̂ > k + 1]

= P [�̂ = k + 1]

=

1

E [�]

P [� > k] ; k = 0; 1; : : : (12)

so that the mapping k ! �(k) is necessarily decreasing and integer{convex. Taking into account the

facts �(0) = 1 and P [� > 0] = 1, we conclude from (12) (with k = 0) that

E [�]

�1

= 1� �(1) (13)

with �(1) < 1 necessarily by the �niteness of E [�]. Combining (12) and (13) we �nd that

P [� > k] =

�(k) � �(k + 1)

1� �(1)

; k = 0; 1; : : : (14)

Note also from (14) that

E [�] =

1

X

k=0

P [� > k] =

1� lim

k!1

�(k)

1� �(1)

(15)

and (13) then imposes lim

k!1

�(k) = 0. A moment of re
ection readily yields the following invert-

ibility result.

Proposition 4 An IR

+

{valued sequence f�(k); k = 0; 1; : : :g is the autocorrelation function of the

stationary M jGj1 process with integrable � if and only the corresponding mapping k ! �(k) is

decreasing and integer{convex with �(0) = 1 > �(1) and lim

k!1

�(k) = 0, in which case the pmf G of

� is given by (14).

10



Di�erencing (14) yields the pmf of �:

P [� = k] =

�(k � 1)� 2�(k) + �(k + 1)

1� �(1)

; k = 1; 2; : : : (16)

The mapping x ! e

�

p

x

is decreasing and convex on IR

+

, so that the sequence k ! e

��

p

k

is

automatically decreasing and integer-convex on IN. Proposition 4 can thus be applied to the correlation

sequence (11). Upon substitution into (13) and (16), we �nd that the desired pmf for � is simply

P [� = k] =

e

��

p

k�1

� 2e

��

p

k

+ e

��

p

k+1

1� e

��

; k = 1; 2; : : : (17)

and its mean service time is given by

E [�] = (1� e

��

)

�1

: (18)

The value of � used in (17) and (18) is obtained by �tting the empirical ACF. It might be suggested

that in determining the pmf of �, the empirical ACF be used directly in (16) instead of an analytical

�t just performed. However, the empirical ACF is not always monotone, and thus there is no a priori

guarantee that P [� � k] � 0 in (14) for all k = 1; 2; : : :.

To conclude, we observe by an elementary comparison that

1

X

k=0

�(k) = 1 +

1

X

k=1

e

��

p

k

� 1 +

Z

1

0

e

��

p

t

dt = 1 +

2

�

2

<1; (19)

and the correlation structure (11) indeed gives rise to an SRD model.

4.2 Modeling the Marginal Distribution

By Proposition 3, theM jGj1 model produces correlated variates with a Poisson marginal distribution

F

Poisson

, whose tail drops faster than that of the empirical distribution of a real video sequence. This

is illustrated in Figure 2 for the Star Wars sequence where the parameter of the Poisson distribution

(of the M jGj1 �t) is obtained by matching the sample mean to �E [�], and setting � accordingly

(E [�] is estimated from the empirical ACF via (18)). Indeed, the sample mean provides a natural

estimate of �E [�] owing to the ergodic property (5) of M jGj1 processes. The tail of the marginal

distribution plays an important role in determining the bu�er over
ow probability at a multiplexer

[10]. Hence, we need to provide a better �t to the empirical tail than the Poisson �t. To do that,

we transform the Poisson distribution of the M jGj1 process into a more appropriate distribution.

The key idea here resides in the following well-known observation: For a frame-size distribution F ,

a transformation T : IR ! IR can always be constructed so that if the IR-valued rv X is distributed

according to some distribution H, then the IR-valued rv Y = T (X) is distributed according to F .

11
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Figure 2: Complementary frame-size distribution for the Star Wars trace along with several �ts.

Indeed, it su�ces to take

T (x)

4

= F

�1

(H(x)); x 2 IR (20)

where F

�1

denotes the (generalized) inverse of F .

The program is now clear: Consider a (stationary)M jGj1 process fb

?

n

; n = 0; 1; : : :g characterized

by the pair (�;G). The common distribution H of these variates is Poisson with parameter �E [�].

For any frame-size distribution F , de�ne the transformed process fa

n

; n = 0; 1; : : :g as

a

n

4

= T (b

?

n

) = F

�1

(H(b

?

n

)) = F

�1

(F

Poisson

(b

?

n

)); n = 1; 2; : : : (21)

For each n = 0; 1; : : :, the rv a

n

will be distributed according to F . In fact, the transformed process

fa

n

; n = 0; 1; : : :g is still stationary and ergodic. In general, the covariance structures of the two

processes will not be exactly the same. The best one may hope for is that these covariance structures

are approximately equal, i.e.,

cov[a

n+k

; a

n

] ' cov[b

?

n+k

; b

?

n

]; n; k = 0; 1; : : : (22)

Next, we need to select an appropriate distribution F . Several theoretical �ts have been suggested

for the frame-size distribution of a video sequence, including Gamma [14], lognormal [13, 17], and

hybrid Gamma/Pareto distributions [9]. The last �t was found quite appropriate for Star Wars data.

12



Accordingly, we use it here to model the frame-size distribution. As explained in [9], the Gamma

distribution is used to capture the general shape of the empirical distribution, whereas the Pareto

distribution is used to capture the tail of the empirical distribution. Let F

�

and F

P

denote the

cumulative probability functions for the Gamma and Pareto distributions, respectively. Although F

�

has no closed-form expression, its derivative is given simply by

f

�

(x) =

!

s

�(s)

x

s�1

e

�!x

; x � 0 (23)

where the parameters s > 0 and ! > 0 are the shape and scale parameters, respectively, and the

standard Gamma function �(s) is given by

�(s)

4

=

Z

1

0

x

s�1

e

�x

dx; s > 0: (24)

The Pareto distribution we use has the explicit form

F

P

(x) =

8

<

:

1� (

a

x

)

�

if x � a

0 if x < a

(25)

with parameters � > 0 and a > 0 which are both determined by �tting.

The hybrid Gamma/Pareto distribution F

�=P

is then given by

F

�=P

(x) =

8

<

:

F

�

(x) if x � x

�

F

P

(x) if x > x

�

(26)

for some x

�

> 0. As in [9], the parameters of the Gamma distribution are obtained by matching the

�rst and second moments of the empirical sequence to those of a Gamma rv.

Once the Gamma part is �tted, x

�

can be estimated graphically by inspecting the tail of the

empirical distribution, and determining where it starts to deviate from the tail of the Gamma �t

(Figure 2). Using the continuity condition F

�

(x

�

) = F

P

(x

�

) along with least-square �tting of the

Pareto tail, estimates of a and � can be obtained. Table 2 gives the estimated parameters for three

traces (frame sizes are in 48-byte cells). Since the fourth video trace is relatively short, accurate �tting

of its extreme tail is not possible.

Trace Mean Std. Dev. ! s x

�

a �

(cells) (cells) (1/cells) (cells) (cells)

Star Wars 579.5 130.3 3.41E{2 19.78 650 576 10.7

Beauty & Beast 264.3 74.6 4.75E{2 12.55 398 215 5.31

Crocodile Dundee 225.0 48.7 9.50E{2 21.4 355 224 10.1

Table 2: Estimated values of various parameters in the hybrid Gamma/Pareto model.
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Thus, we select F = F

�=P

, and the Poisson variates of theM jGj1 process can now be transformed

into Gamma/Pareto variates. Let fb

?

n

; n = 0; 1; : : :g denote theM jGj1 process with � = 1 and service

time distribution (17), so that its correlation structure is given by (11). The sequence fb

?

n

; n = 0; 1; : : :g

is transformed into a new sequence fa

n

; n = 0; 1; : : :g through the transformation

a

n

= F

�1

�=P

(F

Poisson

(b

?

n

)); n = 1; 2; : : : (27)

where F

Poisson

is the cumulative probability function of a Poisson rv with parameter E [�] (given by

(18)) and

F

�1

�=P

(y) =

8

<

:

F

�1

P

(y) = a=(1 � y)

1=�

if y > F

P

(x

�

) = 1� (a=x

�

)

�

F

�1

�

(y) otherwise

(28)

with F

�1

�

obtained numerically.

Since only the Gamma part is used in �tting the mean and variance, the mean and variance of

a

n

will be slightly di�erent from their empirical counterparts. For example, the mean frame size in a

synthetic trace is given by

E [a

n

] =

Z

x

�

0

xf

�

(x)dx+

Z

1

x

�

f

P

(x)dx (29)

while the empirical mean is �tted to

R

1

0

xf

�

(x)dx. However, this slight discrepancy is of no signi�cance.

As pointed out above, this transformation does not, in general, preserve the original correlation

structure. However, in all our experiments, the e�ect of transformation was barely noticeable. An

example of the sample ACFs of several transformed M jGj1 traces, along with their average (i.e., the

average of the sample ACFs) is shown in Figure 3 based on Star Wars �tting. The average ACF is

almost indistinguishable from the theoretical ACF of the non-transformed M jGj1 process.

5 Synthetic Trace Generation and Computational Issues

Ideally, we would like to analytically determine the queueing performance for a tra�c model so that

control decisions related to call admission and resource allocation can be done on-line. However, there

is a natural tradeo� between the complexity of a model and the relative accuracy of its queueing

predictions. A detailed video model, such as the one considered in this paper, does not easily lend

itself to queueing analysis, but can be used to drive network simulations. Performance evaluation

by means of simulations is useful in o�-line dimensioning problems (e.g., bu�er sizing under a �xed

quality of service). The simulation time can sometimes be reduced by employing certain problem-

speci�c techniques (some of which are discussed in the next section). Separating the issue of model

construction from that of queueing tractability allows highly accurate models to be developed. It

should also be mentioned that models with analytically tractable performance are not always usable

in on-line tra�c control problems, particularly when extensive numerical computations are needed to
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Figure 3: Impact of transformation on the autocorrelation structure.

obtain the results. While network simulations can be driven by \real" data, such data sets are often

not available or very di�cult to obtain. A stochastic model, on the other hand, encompasses many

realizations that represent independent yet structurally" similar (i.e., homogeneous) streams, which

are ideal for statistical multiplexing studies.

5.1 Simulation Models

To verify the appropriateness of the M jGj1-based model, we investigate its queueing performance

and contrast it with the performance of two popular video models: the F-ARIMA model [9] (which

exhibits LRD), and the DAR(1) model [14] (which exhibits a Markovian structure). By a suitable

transformation, we ensure that all models share the same hybrid Gamma/Pareto marginal distribution,

thereby eliminating the impact of the marginal frame-size distribution. In all three models, the hybrid

Gamma/Pareto distribution is discretized to obtain integer-valued frame sizes.

Synthetic realizations from the three video models were generated and used in the queueing sim-

ulations described in the next section. Each of the M jGj1 and DAR(1) traces consists of 1; 000; 000

data points, while each F-ARIMA trace consists of 500; 000 data points (a data point corresponds to

a frame size measured in cells). The F-ARIMA traces are shorter than their M jGj1 and DAR(1)

counterparts since generating F-ARIMA traces of length 1; 000; 000 is computationally prohibitive.

More speci�cally, it requires O(n

2

) computations to generate a F-ARIMA trace of length n using

Hosking's algorithm [15] (before transformation). In contrast, both the M jGj1 and DAR(1) models
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require only O(n) computations per trace. To generate a F-ARIMA trace of only 100; 000 points using

Hosking's algorithm, it took about three days of execution on a Sparc-10 workstation. To generate

500; 000-long F-ARIMA traces, we used an approximation due to Haslett and Raftery [11], which was

incorporated in the S-Plus package. Even with this approximation, it took about two days to obtain

one 500; 000-long F-ARIMA trace, compared to less than a minute for a 1; 000; 000-long M jGj1 or

DAR(1) trace. Extensive simulations based on the three models were conducted. For brevity, we show

the results for one real trace (the Star Wars) and its corresponding models.

5.2 F-ARIMA and DAR(1) Models

The F-ARIMA model [9] used here is constructed by transforming a fractional ARIMA process with

a standard normal marginal distribution into one with a hybrid Gamma/Pareto distribution. An

example of the sample ACF of a synthetic F-ARIMA realization for the Star Wars trace is shown in

Figure 4.

The theoretical ACF of a F-ARIMA process is given by

�(k) =

d(1 + d) � � � (k � 1 + d)

(1� d)(2 � d) � � � (k � d)

; k = 1; 2; : : : ; 0 < d < 0:5 (30)

which behaves as k

��

only asymptotically (d = H � 1=2). In fact, the ACF of the F-ARIMA model

underestimates the short-term correlations of the real data even more than k

��

.

We have transformed the normally distributed variates of the standard F-ARIMA model into

Gamma/Pareto variates. Here, as with the M jGj1-based model, inspection of Figure 4 suggests that

the transformation has almost no impact on the correlation structure of the original F-ARIMA process.

This is in keeping with the work in [16] where under mild conditions, a transformed LRD Gaussian

process is shown to maintain its Hurst value.

The DAR(1) model is obtained as follows [1]: Let fV

n

; n = 0; 1; : : :g and fU

n

; n = 0; 1; : : :g

be two mutually independent processes of i.i.d. rvs. For n = 0; 1; : : :, the rv V

n

is Bernoulli with

P [V

n

= 1] = 1 � P [V

n

= 0] = r, and the rv U

n

is an IN-valued rv distributed according to the pmf

�(i)

4

= P [U

n

= i], i = 0; 1; : : :. A DAR(1) process fX

n

; n = 0; 1; : : :g is de�ned through the recursion

X

n

= V

n

X

n�1

+ (1� V

n

)U

n

; n = 1; 2; : : : (31)

with given X

0

. The sequence fX

n

; n = 0; 1; : : :g is a Markov chain with the same marginal distribution

as � = (�(0); �(1); : : : ; ), i.e., P [X

n

= i] = �(i), i = 0; 1; : : :, and with an ACF of of the form �

k

= r

k

,

similar to that of the familiar AR(1) process. In [14] the DAR(1) model was used to characterize video-

teleconferencing streams, with the marginal distribution taken as a negative binomial distribution; the

discrete analog of a Gamma distribution. Here, instead, we use a hybrid Gamma/Pareto marginal

distribution, consistent with our choice for the other two models examined in the paper.
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5.3 Generation of M jGj1 traces

A CSIM program

1

was written to generate synthetic M jGj1 traces. The program simulates an

M jGj1 queue with in�nite servers. Time is slotted in frame periods. At the start of a time slot, a

batch of arrivals is generated according to a Poisson distribution with � = 1. Each arrival is kept for

a random time � whose pmf is given by (17). A synthetic M jGj1 trace is obtained from the number

of remaining customers at the beginning of each time slot. This trace is then transformed into one

with a Gamma/Pareto marginal distribution.

The computational complexity for generating anM jGj1 trace of length n (before transforming the

marginals) isO(n). To show that, we provide a sequential version of our CSIM program, which is shown

in Figure 5. There are three nested `for' loops in this algorithm. In each iteration of the outermost

loop, a batch of Poisson arrivals is generated. A service time is obtained for each customer in the

batch (the second `for' loop). Finally, the e�ect of the service time of a customer is incorporated in the

innermost loop by incrementing the values of busy servers in future time slots during which a customer

is being served. It is easy to see that the average complexity of the algorithm is O(n�E [�]). Since �

and E [�] are �xed and independent of n, the complexity is O(n). The computational complexity for

the generation of DAR(1) traces is also O(n) (see [14] for details on how to generate DAR(1) traces).

We note that due to the correlated nature of cell losses, extremely long traces are needed to obtain

meaningful results under small cell loss probabilities. In fact, we �rst tried using shorter traces of

1

CSIM is a C-based discrete-event simulation language [30].
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A

4

= Poisson rv with mean � = 1 (batch size)

�

4

= rv with distribution G given in (16)

X[k]

4

= kth value in the resulting trace (number of busy servers)

n

4

= trace length

for i = 1 to n do

Set X[i] := 0 /* initialize counters */

end for

for i = 1 to n do

generate batch size: A � Poisson(�)

for j = 1 to A do

generate a service time: � � G

for k = 1 to �

increment counter: X[i+ k] = X[i+ k] + 1

end for

end for

end for

Figure 5: Sequential algorithm for generating an M jGj1 synthetic trace.

length 100,000, and found that for realistic loss rates, losses occur in only few frames, e.g., in one

particular experiment, a loss rate of 8.3E{6 (484 cells) came from �ve errored frames only. Intuitively,

correlations make it more likely that large frames follow each other, thus causing correlated periods of

bu�er over
ow. Moreover, 100,000-long realizations may not be long enough to display the extreme tail

of the frame-size distribution, causing the loss performance to be underestimated. For example, the

maximum frame size in the Star Wars trace is 894 cells. In order to display this value in a transformed

M jGj1 trace, the corresponding value before transformation is 33, i.e., F

�1

�=P

(F

Poisson

(33)) = 894. An

M=G=1 trace before transformation is a realization of n identically distributed rvs b

?

1

; : : : ; b

?

n

, which

are associated (Proposition 1). By the well-known properties of associated rvs [5], we have

P [max

i=1;:::;n

b

?

i

> x] � 1�

n

Y

i=1

P [b

?

i

< x] = 1� F

Poison

(x)

n

; x 2 IR : (32)

Thus, for n = 100; 000, we �nd that

P [max

i=1;:::;n

b

?

i

> 32] < 1� (F

Poisson

)(32))

100;000

= 0:4745; (33)

i.e., there is less than 50% chance that the 100,000-long realization reaches the real maximum frame

size.
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6 Queueing Performance

To verify the appropriateness of the M jGj1 model, we investigate its queueing performance and

compare it to the performance of the F-ARIMA and DAR(1) video models. For brevity, we show the

results for one real trace (the Star Wars) and its corresponding video models. The queueing system

consists of a single-server FIFO queue with capacity B (in cells) and constant release rate C (cells/slot).

Two types of simulations were conducted. The �rst is for a single stream (i.e., no multiplexing), which

is used to contrast the performance of the three models with reference to the performance under

the real trace. It is expected that discrepancies in the bu�er over
ow behavior are most apparent

in the single-stream case. In the second type of simulations, we investigate the performance for

several, statistically multiplexed streams. Obtaining the performance for real video streams in this

case raises a fundamental challenge: Since no two real traces exhibit the same statistical structure

(due to di�erences in scene dynamics), in principle one cannot obtain the multiplexing performance

for independent and homogeneous real video streams. Possible approximate approaches that can be

used for this purpose include:

(i) Obtain multiple \real" streams from a single empirical trace by arranging the trace as a circular

list, starting each stream at a random location in this list, and proceeding sequentially until the

circle is completed [14]. The problem with this approach is that the resulting streams are not

independent, particularly if the starting times are not su�ciently separated.

(ii) Multiplex traces of di�erent movies. Since traces typically di�er in their statistical properties

(e.g., mean, variance, etc.), multiplexing them amounts to multiplexing heterogeneous streams.

This works well if we are only interested in the heterogeneous case. However, we are also

interested in the homogeneous case which gives us a better understanding of the multiplexing

gain and the average loss performance that individual streams will experience.

While neither approach is completely satisfactory, unfortunately one has no other alternatives.

We opted for a modi�ed version of the �rst approach, whereby the starting times are chosen to be

maximally separated (to reduce the potential dependence between the multiplexed streams). Fur-

thermore, we limit our study of the performance under real streams to the case of �ve multiplexed

streams, so that streams' starting points are su�ciently distanced from each other. Of course, no such

restriction is necessary when studying the multiplexing performance under the various tra�c models.

In all experiments, we assume that cells in each frame are evenly distributed over the frame duration.

Two measures of performance are considered: the cell loss rate, and the frame error rate. A frame is

errored when one or more of its cells are lost. This measure is important for applications that do not

implement error concealment mechanisms for recovery from partial frame losses.
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6.1 Single Stream

The cell loss rate (CLR) and the frame error rate (FER) are examined at three loads: U = 80%

(heavy load), 60% (moderate load), and 40% (light load). A summary of the simulations results to

two signi�cant digits is given in Table 3. The depicted results for the three models represent the

averages of ten independent runs.

For U = 80% and 60%, the bu�er size is varied from 100 to 2500 cells. As expected, CLR and FER

for a real stream are quite high at U = 80%. Adding extra bu�er barely provides any improvement

in performance. In contrast, reducing the load from 80% to 60% (i.e., increasing bandwidth by 33%)

improves the CLR by about an order of magnitude. The bu�er size seems to have a bigger impact on

the FER than on the CLR. At both U = 80% and U = 60%, the FER for the real stream decreases

by about 50% when B is increased from 100 to 2500 cells.

By comparing the performance for the three models with reference to the performance for the

real stream, we observe the following: In the heavy-load regime, both M=G=1 and DAR(1) models

provide acceptable predictions of CLR and FER, with DAR(1) being slightly more accurate. Under

the F-ARIMA model, the performance is overly sensitive to the bu�er size, to the extent that it

underestimates the actual CLR and FER by orders of magnitude when B is large. This is clearly

a consequence of not su�ciently capturing the short-term correlations. Going to the moderate-load

regime, we observe that once again both M=G=1 and DAR(1) models provide signi�cantly more

accurate predictions of CLR and FER than the F-ARIMA model. In this regime, DAR(1) andM=G=1

models give comparable results (particularly, with respect to the CLR measure).

Interestingly, in the light-load regime (U = 40%), the DAR(1) model is no more capable of pro-

viding acceptable performance predictions. In fact, no losses were observed in any of the DAR(1)

simulations (although 10 independent simulations each with a 1,000,000-long trace were used). The

M=G=1 model is quite accurate in this regime. The F-ARIMA model is still overly sensitive to the

bu�er size, although the gap between its performance and the real performance is now smaller (when

B is small the F-ARIMA model overestimates CLR and FER, but as B increases the model starts to

underestimate both performance measures). The main conclusion to be drawn from Table 3 is that

of the three examined models, only the M=G=1 model is observed to consistently provide acceptable

performance predictions at various tra�c loads. The performance of the M=G=1 is always within

an order of magnitude of the real performance. The capability of the M=G=1 model of providing

acceptable results can be attributed to the fact that it incorporates the good aspects of Markovian

and LRD models; similar to Markov models, it incorporates the short-term correlations, and similar

to LRD models, it captures the slowing decaying nature of the correlation structure in a VBR video

sequence.

The M jGj1 model slightly underestimates the actual queueing performance, particularly at in-

termediate loss rates (i.e., 1.0E{3 to 1.0E{4) and large bu�er sizes. An examination of the real trace
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reveals that much of the discrepancy is related to some `nonstationarity" in the real data, which is

not accounted for in the M jGj1 model. In particular, the �rst and last few thousand frames of the

Star Wars trace exhibit stronger statistical correlations than the rest of the trace. We speculate these

frames correspond to the compressed frames in the credits (the portion that contains the names of

actors, acknowledgements, etc.).

In the above simulations, the simulation time was signi�cantly reduced by conducting the discrete-

event simulation at the frame level (rather than the cell level). The algorithm that was used for these

single-stream simulations is shown in Figure 6. It exploits the fact that only the frame sizes, the

service rate, the maximum bu�er size, and the queue length at the beginning and end of each time

slot are relevant to the computation of the CLR and FER measures.

Q

j

4

= length of the queue at the beginning of the jth slot

C

4

= service rate (cells/slot)

B

4

= bu�er size

X

j

4

= jth value in the trace (e.g., frame size)

Initialize

Q

1

:= 0

lost cells := 0

for j = 1 to last frame do

if X

j

� C then /* under
ow */

Q

j+1

:= maxfQ

j

+X

j

� C; 0g

else

T := Q

j

+X

j

� C �B

if T > 0 /* cell losses */

lost cells := lost cells + T

Q

j+1

:= B

else

Q

j+1

:= T +B

end if

end if

end for

Figure 6: Algorithm for approximating the loss rate for a single trace.

6.2 Multiplexed Streams

In this section, we investigate the multiplexing performance for the three models for the purpose of

contrasting their di�erent behaviors. It is not our objective here to provide a thorough evaluation

of the multiplexing gain and the associated resource allocation problem, which will be the topic of a
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Bu�er Cell Loss Rate Frame Error Rate

Size (cells) Real M=G=1 F-ARIMA DAR(1) Real M=G=1 F-ARIMA DAR(1)

100 1.7E{2 1.1E{2 8.5E{3 1.9E{2 1.1E{1 6.7E{2 4.8E{2 1.2E{1

500 1.6E{2 9.6E{3 1.6E{3 1.7E{2 9.1E{2 5.0E{2 7.3E{3 9.9E{2

1000 1.5E{2 8.7E{3 4.6E{4 1.5E{2 7.9E{2 4.3E{2 1.9E{3 8.0E{2

1500 1.4E{2 8.0E{3 1.7E{4 1.3E{2 7.0E{2 3.8E{2 6.7E{4 6.7E{2

2000 1.3E{2 7.6E{3 7.9E{5 1.2E{2 6.3E{2 3.5E{2 2.9E{4 5.7E{2

2500 1.2E{2 7.2E{3 4.1E{5 1.1E{2 5.8E{2 3.2E{2 1.5E{4 4.9E{2

(a) U = 80%

Bu�er Cell Loss Rate Frame Error Rate

Size (cells) Real M=G=1 F-ARIMA DAR(1) Real M=G=1 F-ARIMA DAR(1)

100 1.2E{3 6.6E{4 7.6E{4 5.6E{4 6.2E{3 2.9E{3 3.4E{3 4.7E{3

500 1.1E{3 4.9E{4 7.1E{5 4.8E{4 5.1E{3 1.7E{3 2.4E{4 3.4E{3

1000 1.0E{3 4.0E{4 8.9E{6 4.0E{4 4.4E{3 1.3E{3 2.3E{5 2.5E{3

1500 1.0E{3 3.4E{4 1.6E{6 3.4E{4 3.9E{3 1.1E{3 4.2E{6 2.0E{3

2000 9.6E{4 3.0E{4 5.2E{7 3.0E{4 3.6E{3 9.1E{4 6.0E{7 1.6E{3

2500 9.1E{4 2.7E{4 2.0E{7 2.6E{4 3.3E{3 7.9E{4 2.0E{7 1.3E{3

(b) U = 60%

Bu�er Cell Loss Rate Frame Error Rate

Size (cells) Real M=G=1 F-ARIMA DAR(1) Real M=G=1 F-ARIMA DAR(1)

10 1.3E{5 1.2E{5 5.3E{5 0 6.4E{5 7.1E{5 1.8E{4 0

20 1.3E{5 1.1E{5 4.9E{5 0 5.8E{5 5.7E{5 1.7E{4 0

30 1.3E{5 1.1E{5 4.7E{5 0 5.8E{5 4.0E{5 1.6E{4 0

40 1.3E{5 1.1E{5 4.4E{5 0 5.8E{5 3.8E{5 1.5E{4 0

50 1.2E{5 1.0E{5 4.2E{5 0 5.8E{5 3.7E{5 1.4E{4 0

60 1.2E{5 1.0E{5 3.9E{5 0 5.8E{5 3.6E{5 1.3E{4 0

70 1.2E{5 9.7E{6 3.7E{5 0 5.3E{5 3.5E{5 1.2E{4 0

80 1.2E{5 9.5E{6 3.5E{5 0 5.3E{5 3.5E{5 1.1E{4 0

90 1.2E{5 9.2E{6 3.3E{5 0 5.3E{5 3.5E{5 1.1E{4 0

100 1.2E{5 9.0E{6 3.1E{5 0 5.3E{5 3.5E{5 9.9E{5 0

200 1.1E{5 7.2E{6 1.9E{5 0 4.7E{5 2.3E{5 5.4E{5 0

300 9.9E{6 6.2E{6 1.1E{5 0 4.1E{5 1.9E{5 3.0E{5 0

400 8.9E{6 5.6E{6 7.4E{6 0 4.1E{5 1.7E{5 1.9E{5 0

500 7.9E{6 5.0E{6 4.8E{6 0 3.5E{5 1.4E{5 1.3E{5 0

600 6.8E{6 4.5E{6 2.9E{6 0 3.5E{5 1.3E{5 8.8E{6 0

700 5.8E{6 4.2E{6 1.7E{6 0 2.9E{5 1.1E{5 5.4E{6 0

800 4.8E{6 3.9E{6 1.0E{6 0 2.9E{5 9.8E{6 2.8E{6 0

900 3.8E{6 3.6E{6 7.8E{7 0 2.3E{5 8.8E{6 8.0E{7 0

1000 2.8E{6 3.4E{6 6.7E{7 0 2.3E{5 7.9E{6 6.0E{7 0

(c) U = 40%

Table 3: Average cell loss and frame error rates at three di�erent loads (Star Wars trace). Ten

independent replications are used to obtain the values for each model.
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future study. For simplicity, we assume that frames' boundaries of multiplexed streams are aligned in

time, so the time axis is slotted in frame periods. This specialization allows us to signi�cantly reduce

the simulation time using the following optimization.

Consider a simulation experiment in which N video streams (indicated by their frame-size traces)

are to be multiplexed. Assume that the N streams have the same number of frames, n. Let fX

(k)

j

; j =

1; 2; : : : ; ng be the frame-size sequence for the kth stream, k = 1; 2; : : : ; N . To obtain the CLR and

FER for the multiplexed N streams, we �rst compute an aggregate trace fX

j

; j = 1; 2; : : : ; ng from

the pointwise sum of the N traces, i.e., X

j

=

P

N

k=1

X

(k)

j

, for j = 1; : : : ; n. For a time slot (i.e., a

frame period) in which bu�er over
ow cannot occur, the aggregate trace can be used to update the

bu�er occupancy at the end of that slot. This updating is done on a frame-by-frame basis, using

an algorithm similar to the one in Figure 6. For time slots during which bu�er over
ow is possible

(based on some su�cient conditions that will be introduced shortly), the individual traces are used to

simulate the performance on a cell-by-cell basis.

Fortunately, bu�er over
ow occurs only in a small fraction of the total number of simulated time

slots (n). Let Q

j

denote the queue length at the beginning of the jth slot. It can be shown that either

of the following two conditions guarantees no bu�er over
ow during the jth slot:

1. (X

j

� C)

T

(Q

j

� B �N).

2. (X

j

> C)

T

(X

j

� C � B �Q

j

)

T

(Q

j

� B �N).

With this optimization, the simulation time for computing the queueing performance for N mul-

tiplexed streams is O(n + �nWN), where n is the trace length, � is the fraction of slots for which

neither of the above conditions is satis�ed, and W is the average number of cells per frame per stream

during bu�er over
ow. Typically, �W � 1, making the complexity much less than O(Nn).

To give an idea about the e�ciency of the above simulation approach, Table 4 gives an example

of the simulation times for ten multiplexed M=G=1 streams with di�erent bu�er sizes (the results

in the table were based on a single run). As the bu�er size increases, both CLR and FER decrease,

resulting in shorter simulation times. In this example, a reduction of almost an order of magnitude in

the CLR resulted in an equivalent reduction of an order of magnitude in simulation time.

The multiplexing performance for the three models is shown in Table 5 for N = 5 and N = 10

at a load of U = 80%. Each value in the table represents an average over N streams and over 5

independent simulations. In the case of N = 5, we have also provided results for real streams, with

the �ve streams being derived from the original empirical trace as described before. It can be observed

that the M=G=1 model provides the closest performance to the real performance. The F-ARIMA

model is overly sensitive to the bu�er size (i.e., the CLR and FER in the F-ARIMA model decrease

with an increase in the bu�er size faster than the corresponding trend seen by real video sources).

Such an overly sensitive behavior (which we have seen before in the case of N = 1) can lead to
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Bu�er Size (cells) Average CLR Simulation Time (seconds)

100 3.2E{5 512.84

200 3.0E{5 381.95

300 2.8E{5 362.72

400 2.7E{5 328.50

.

.

.

.

.

.

.

.

.

3500 7.8E{6 108.13

4000 6.1E{6 95.47

4500 4.4E{6 88.39

5000 2.7E{6 63.52

Table 4: Example of the reduction in the simulation time as the CLR decreases (N = 10).

overallocation or underallocation of bu�er and bandwidth resources. While the DAR(1) model shows

acceptable sensitivity to bu�er size, it is shown to overestimate both CLR and FER.

The results for N = 10 are provided for the purpose of contrasting the three models. But since the

performance under real video streams is not available in this case, one cannot make de�nite conclusions

about the relative accuracy of the three models (for N = 10, we could not use the previous trick to

obtain ten streams from a single empirical trace since the extracted streams start to show some non-

negligible cross-correlations). However, one can make few observations by contrasting the behavior

when N = 10 to the previous case when N = 5. As in the case of N = 5, the performance for

the F-ARIMA model when N = 10 is more sensitive to the bu�er size than the other two models.

Both DAR(1) and M=G=1 models display comparable sensitivities to bu�er size. However, the

CLR performance for the DAR(1) model is more than an order of magnitude higher than that of

the M=G=1 model. Given the performance for the real streams when N = 5 and that for the

DAR(1) model when N = 10, one could conclude that the DAR(1) is probably overestimating the

CLR performance (realistically, we should expect an appreciable reduction in the CLR when going

from N = 5 to N = 10). Of course, a conclusive judgment would require obtaining the performance

for ten multiplexed real streams.

7 Concluding Remarks

In this paper, we investigated a new approach for characterizing VBR video streams based on M jGj1

processes. These processes enjoy several attractive features that make them a viable approach for

modeling various types of network tra�c. A compelling statistical evidence from four di�erent video

traces suggests that the ACF of a VBR sequence is better captured by e

��

p

k

than by e

��k

(Marko-

vian) or e

�� log k

(LRD). While Markovian models capture the short-term correlations and LRD models

capture the long-term correlations, the �t e

��

p

k

is shown to su�ciently capture the empirical cor-

relations at all lags. To display such a correlation structure, an M jGj1-based model for video was

developed, which exhibits short-range dependence (though not Markovian). The Poisson marginals of

24



Bu�er Cell Loss Rate Frame Error Rate

Size (cells) Real M=G=1 F-ARIMA DAR(1) Real M=G=1 F-ARIMA DAR(1)

200 2.6E{4 2.3E{4 2.1E{4 8.2E{4 6.2E{3 3.7E{3 4.8E{3 1.3E{2

400 2.4E{4 2.0E{4 6.9E{5 7.7E{4 5.7E{3 2.9E{3 1.5E{3 1.1E{2

600 2.3E{4 1.8E{4 2.6E{5 7.2E{4 5.3E{3 2.5E{3 5.5E{4 9.6E{3

800 2.2E{4 1.7E{4 1.1E{5 6.8E{4 5.1E{3 2.2E{3 2.2E{4 9.3E{3

(a) N = 5

Bu�er Cell Loss Rate Frame Error Rate

Size (cells) M=G=1 F-ARIMA DAR(1) M=G=1 F-ARIMA DAR(1)

100 7.4E{6 2.1E{5 1.4E{4 2.2E{4 7.9E{4 3.0E{3

200 6.3E{6 1.3E{5 1.3E{4 1.7E{4 4.6E{4 2.8E{3

300 5.6E{6 7.8E{6 1.3E{4 1.5E{4 3.0E{4 2.6E{3

400 4.8E{6 4.7E{6 1.2E{4 1.2E{4 1.8E{4 2.4E{3

(b) N = 10

Table 5: Average cell loss and frame error rates for N multiplexed streams (U = 80%).

the M jGj1 process were transformed into ones with a more appropriate distribution (due to Garrett

and Willinger [9]). The impact of the transformation is shown to be negligible. With the performance

of a real stream taken as a reference, we examined the queueing performance under the M jGj1 model

and contrasted it to the performances for two popular video models: the F-ARIMA model (LRD)

and the DAR(1) (Markovian). Our simulation results indicate that the M jGj1 model consistently

provides acceptable predictions of the actual cell loss and frame error rates at various tra�c loads and

bu�er sizes. In contrast, the performance for F-ARIMA model is overly sensitive to the bu�er size, to

the extent that it sometimes underestimates the real performance by several orders of magnitude. The

DAR(1) model, while showing acceptable trend to changes in bu�er size, sometimes gives unacceptably

optimistic predictions (e.g., the case of a single stream with 40% tra�c intensity), and in other times

pessimistic predictions (case of multiplexed streams). An additional advantage of the M jGj1 model

over the F-ARIMA is that only O(n) computations are needed to generate a synthetic trace of size n,

compared to O(n

2

) for a F-ARIMA trace. Our future work will focus on using the M jGj1 model in

on-line admission control and dynamic resource allocation. Towards this end, we have been working

on analytically obtaining the queueing performance for multiplexed M jGj1 sources and using such

performance to compute the e�ective bandwidth. Results of this research will be reported in a future

work.
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Appendix

A Proof of Equation (6)

The derivation of (6) is based on the following well-known result on random sums of i.i.d. rvs.

Lemma 1 Let fX;X

n

; n = 1; 2; : : :g be a sequence of IR-value i.i.d. rvs which are independent of an

IN-valued rv �. For any two functions f; g : IR! IR, we have

cov

2

4

�

X

j=1

f(X

j

);

�

X

i=1

g(X

i

)

3

5

= E [�]E [f(X)g(X)] +

�

E [�(� � 1)]� (E [�])

2

�

E [f(X)]E [g(X)]

= E [�] cov[f(X); g(X)] + var(�)E [f(X)]E [g(X)] (34)

provided the expectations exist. 2

Consider the M jGj1 input process fb

n

; n = 0; 1; : : :g. For each n = 0; 1; : : :, we note that

b

n

= b

(0)

n

+ b

(a)

n

(35)

where the rvs b

(0)

n

and b

(a)

n

describe the contributions to the number of customers in the system at

the beginning of slot [n; n + 1) from those initially present (at n = 0) and from the new arrivals,

respectively. Under the enforced operational assumptions, we readily have

b

(a)

n

=

t

X

s=1

�

s

X

i=1

1 [�

s;i

> n� s] (36)

and

b

(0)

n

=

b

0

X

i=1

1 [�

0;i

> n] : (37)

The stationary version fb

?

n

; n = 0; 1; : : :g is obtained by assuming that (i) the rv b

0

is a Poisson rv

with parameter �E [�]; (ii) the rvs f�

0;j

; j = 1; 2; : : :g are i.i.d. rvs distributed according to the pmf

(4) of the forward recurrence time associated with �.

Fix n = 0; 1; : : : and k = 1; 2; : : :. By independence, we have

�(k)

4

= cov[b

n

; b

n+k

] = cov[b

(0)

n

; b

(0)

n+k

] + cov[b

(a)

n

; b

(a)

n+k

]: (38)
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First we consider the term cov[b

(a)

n

; b

(a)

n+k

]: Under the enforced independence assumptions,

cov

2

4

b

(a)

n

;

n+k

X

s=n+1

�

s

X

i=1

1 [�

s;i

> n+ k � s]

3

5

= 0 (39)

so that

cov[b

(a)

n

; b

(a)

n+k

] = cov

2

4

b

(a)

n

;

n

X

s=1

�

s

X

i=1

1 [�

s;i

> n+ k � s]

3

5

= cov

2

4

b

(a)

n

;

n

X

s=1

�

s

X

i=1

1 [�

s;i

> n+ k � s]

3

5

(by independence)

=

n

X

r=1

n

X

s=1

cov

2

4

�

r

X

j=1

1 [�

r;j

> n� r] ;

�

s

X

i=1

1 [�

s;i

> n+ k � s]

3

5

=

n

X

s=1

cov

2

4

�

s

X

j=1

1 [�

s;j

> n� s] ;

�

s

X

i=1

1 [�

s;i

> n+ k � s]

3

5

=

n

X

s=1

E [�

s

]E [1 [�

s;1

> n� s] � 1 [�

s;1

> n+ k � s]]

+

n

X

s=1

�

E [�

s

(�

s

� 1)]�E [�

s

]

2

�

P [�

s;1

> n� s]P [�

s;1

> n+ k � s] (40)

where the last equality follows by Lemma 1. Making use of the fact that the i.i.d. rvs f�

n+1

; n =

0; 1; : : :g are Poisson rvs with parameter �, we see that (40) reduces to

cov[b

(a)

n

; b

(a)

n+k

] = �

n

X

r=1

P [� > r + k � 1] : (41)

Next, we consider cov[(b

(0)

n

; b

(0)

n+k

]. Again, making use of Lemma 1 under the enforced independence

assumptions, we conclude that

cov[b

(0)

n

; b

(0)

n+k

] = cov

2

4

b

0

X

i=1

1 [�

0;i

> n] ;

b

0

X

j=1

1 [�

0;j

> n+ k]

3

5

= E [b

0

]P [�̂ > n+ k]

+

�

E [b

0

(b

0

� 1)]� (E [b

0

])

2

�

P [�̂ > n]P [�̂ > n+ k]

= �E [�]P [�̂ > n+ k] (42)

since b

0

is a Poisson rv with mean �E [�]. Combining (41) and (42), we have

cov[b

�

n

; b

�

n+k

] = �E [�]P [�̂ > n+ k] + �

n

X

r=1

P [� > r + k � 1]
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= �E [�]

1

X

r=1

P [�̂ = n+ k + r] + �

n

X

r=1

P [� > r + k � 1]

= �

1

X

r=1

P [� � n+ k + r] + �

n

X

r=1

P [� � r + k]

= �

1

X

r=1

P [� � k + r]

= �

1

X

r=1

P

�

(� � k)

+

� r

�

(43)

and the proof of (6) is now completed.
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