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APPENDIX 1
Proposition 1: The FH sequences constructed by Algorithm
1 are uniformly distributed.

Proof: Let hj = {x1, x2, . . .} denote a FH sequence
constructed by Algorithm 1 for a node vj , where xi is the
frequency band assigned to vj during slot i. Let xi conform
to a distribution X . We will show that in Algorithm 1, X is
the uniform distribution. The xi is defined by the permu-
tation π ∈ PK randomly selected for each slot i, where PK

denotes all possible permutations of the available frequency
band set C. Selection of π is done with replacement and is
independent of selections in prior slots. At each slot i, vj
is assigned to rendezvous on frequency band π(m), where
π(m) denotes the mth element of the permutation π. Hence,

Pr [xi = f`] =
∑
m

Pr [vj assigned to p(m)] Pr [p(m) = f`]

=
∑
k

1

K

(K − 1)!

K!

=
1

K
. (1)

In (1), vj is assigned to any of the K elements of π with
equal probability since the order of the rendezvous pairs
within a 1-factor is random (the pair order in a 1-factor
can be arbitrarily shuffled). Moreover, there are (K − 1)!
permutations out of the total K! permutations in PK for
which π(m) = f`. As a result, the value xi conforms to the
uniform distribution and the FH sequence hj is uniformly
distributed.

We emphasize here that FH sequences assigned to each
node are random in terms of the probability of occurrence
of a particular frequency band at any given slot i. How-
ever, the FH sequences assigned to two nodes are not
independent. This is because at each slot, the frequency
bands assigned to each pair of nodes forms a permutation.
Knowing the assigned FH sequence of one node immedi-
ately reduces the uncertainty for the FH sequences of other
nodes. This fact is exploited in the design of the optimal
jamming strategy when FH sequences are compromised.
The adversary uses the compromised FH sequences to
reduce the space of possible frequency bands assigned to

uncompromised pairs of nodes.

APPENDIX 2
Proposition 2: The minimum number of FH schedule
changes for existing broadcast group members when mi-
grating from F2n to F2n+2 due to member addition is
(8n − 4). This minimum is achieved when (2n − 2) pairs
are split and four pairs are deferred.

Proof: Let two nodes v2n+1 and v2n+2 be added to a
broadcast group of size 2n. In the extension of F2n to F2n+2

schedule changes for existing nodes can occur due to (a) a
rendezvous between a newly added node and an existing
one and (b) rescheduling of an node pair between existing
nodes from Fi ∈ F2n to Fj ∈ F2n+2, i 6= j. We compute the
minimum number of schedule changes for each type.

(a) Changes due to rendezvous between a newly added
node and an existing one: In F2n+2, nodes v2n+1 and
v2n+2 must rendezvous with each of the existing nodes
{v1, . . . , vn} (in order to form a proper 1-factorization).
Hence, a total of 4n new node pairs formed by one existing
node and one newly added node must be scheduled. For
these pairs, existing nodes incur one schedule change.
Therefore, the least number of schedule changes due to the
formation of new node pairs is 4n (Node that more than
4n schedule changes may be required if the existing nodes
that meet with the newly added nodes on a given 1-factor
in F2n+2 do not form a split pair on the same 1-factor in
F2n).

(b) Rescheduling of existing node pairs: 1-factorization
F2n+2 has two more 1-factors compared with F2n. More-
over, every 1-factor of F2n+2 has (n+1) pairs. The two extra
1-factors of F2n+2, denoted by F2n−1 and F2n, accommo-
date in total 2(n+1) node pairs. If node pair (v2n+1, v2n+2)
is not part of either F2n−1 or F2n, these two 1-factors must
accommodate four deferred pairs. This is because by the 1-
factorization definition, nodes v2n+1 and v2n+2 rendezvous
with two existing nodes at every 1-factor that does not
contain pair (v2n+1, v2n+2). Consequently, the remaining
(2n − 2) node pairs in F2n−1 and F2n are formed between
existing nodes (they are split pairs moved to the last two 1-
factors of F2n+2). These pairs must be rescheduled because
they were moved to a different 1-factor (one that did not
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exist in F2n). If pair (v2n+1, v2n+2) is part of either F2n−1 or
F2n, one additional node pair between existing nodes must
be rescheduled in either F2n−1 or F2n, and at least one addi-
tional pair must be split in the first (2n− 1) 1-factors, thus
increasing the total number of schedule changes. Hence,
(v2n+1, v2n+2) must be part of the first (2n− 1) 1-factors of
F2n+2. Each of the existing node pairs that is rescheduled in
either F2n−1 or F2n requires two schedule changes (one for
each existing node), making the total number of schedule
changes due to rescheduling of existing node pairs equal to
(4n− 4).

It is straightforward to observe that (2n − 2) split pairs
require (4n− 4) schedule changes, and four deferred pairs
require four scheduled changes (one for each of the existing
nodes that is part of a deferred pair). In addition, when
there are four deferred pairs, (2n−2) pairs between existing
nodes are rescheduled in the last two 1-factors of F2n+2,
accounting for (4n − 4) schedule changes. Summing over
all cases yields the minimum of (8n− 4).

APPENDIX 3
Proposition 3: Let PR = {v1, . . . , v2n−1} denote an R-path
of length (2n − 2) on K2n. Let also vn ∈ K2n denote the
only node that is not part of PR, and v2n+1, v2n+2 denote
the newly added nodes when extending the schedule from
F2n to F2n+2. The deferred pairs are formed by (vn, v2n+1),
(vn, v2n+2), (v1, v2n+1), and (v2n−1, v2n+2).

Proof: According to Proposition 2, when extending F2n

to F2n+2 there exist (2n − 2) split pairs. In our algorithm,
there pairs are determined by an R-path PR of length (2n−
2) edges (recall that the nodes incident to every link in the
R-path represent the split pair. Because the R-path contains
each color exactly once, each split pair corresponds to one
1-factor of F2n.). By construction, PR spans (2n− 1) nodes
of K2n. Let vn denote the node of K2n that is not present
in PR. This node is not part of any split pair. Hence, vn
maintains the rendezvous schedule of F2n for the first (2n−
1) 1-factors of F2n+2. Because F2n+2 must be a valid 1-
factorization, vn will rendezvous with newly added nodes
v2n+1 and v2n+2 in the last two 1-factors of F2n+2. Pairs
(vn, v2n+1) and (vn, v2n+2) are by definition deferred pairs
because they consist of one newly added and one existing
node and rendezvous on the last two 1-factors of F2n+2.

For the remaining two deferred pairs, we show that
newly added nodes v2n+1 and v2n+2 rendezvous with the
endpoints of PR, i.e., v1 and v2n−1. This can be easily shown
by observing that all nodes in PR have a degree of two,
except for v1 and v2n−1. The node degree represents the
number of split pairs that contain any existing node. An
existing node cannot have a degree higher than two, since in
this case, more than two split pairs would involve the same
node. Recall that all split pairs are scheduled to rendezvous
during the last two 1-factors of F2n+2. In order for F2n+2

to be a proper 1-factorization, a node appears on each 1-
factor exactly once. Consequently, nodes v2n+1 and v2n+2

rendezvous with the only nodes of PR with degree one,

that is v1 and v2n−1. The possible deferred pairs involving
v1 and v2n−1 are either (v1, v2n+1) and (v2n−1, v2n+2) or
(v2n−1, v2n+1) and (v1, v2n+2).

APPENDIX 4
Proposition 4: The broadcast delay of TDBS-SU is D =
d nK e(2n− 1) slots.

Proof: To complete a broadcast in the SU mode, the
sender must unicast the broadcast message to the remaining
(2n − 1) broadcast group members. Each of the (2n − 1)
unicast transmissions takes place in one of the (2n − 1) 1-
factors of F2n. Each factor requires d nK e time slots to be
completed (here, all transmissions of a 1-factor are com-
pleted before transmissions of other 1-factors can proceed,
in order to avoid schedule conflicts). Hence, the broadcast
delay is equal to d nK e times the number of 1-factors of F2n.

APPENDIX 5
Proposition 5: The TDBS-AB mode minimizes the broadcast
delay when broadcast is realized as a series of concurrent
unicast transmissions. This minimum delay is equal to D =
d nK edlog2(2n)e slots.

Proof: We first prove that the minimum broadcast delay
when broadcast is realized as a series of concurrent unicast
transmissions is equal to D = d nK edlog2(2n)e slots. Consider
a broadcast group of size 2n. Assume first that K ≥ n (K
denotes the number of available channels). Let αi denote
the size of the relay set by the end of slot i, with α0 , 2
(i.e., the origin node transmits m at slot 0). Because unicast
transmissions are used to relay m, a node can relay m to at
most one other node. Hence, the relay set can at most dou-
ble with every slot. Based on this constraint, the maximum
number of nodes that could have received m by slot i is
equal to αi = 2i+1. The broadcast operation is terminated
when all 2n nodes are in possession of m. Equating αi to
2n and solving for i yields the slot number at which the
broadcast is completed. This is slot i = dlog2 ne−1. Because
our slot numbering starts from zero, the number of slots
needed to complete the broadcast is dlog2 ne.

When K < n, d nK e slots are needed to complete one 1-
factor. Hence, the mimimim broadcast delay until 2n nodes
receive the broadcast message is d nK edlog2(2n)e. Combining
the cases of K ≥ n and K < n yields the minimum
broadcast delay stated in Proposition 5 (when K ≥ n,
d nK e = 1).

We now show that the AB mode achieves the minimum
broadcast delay. Without loss of generality, assume that
a broadcast of a message m is initiated by node Fi(k, 1),
where Fi(k, j) denotes the node located in the kth row,
jth column of 1-factor Fi. With the completion of Fi, the
relay set is R

Fi(k,1)
i = {Fi(k, 1), Fi(k, 2)}. In the splitting

algorithm, nodes Fi(k, 1) and Fi(k, 2) appear in adjacent
rows (due to the cyclic nature of Algorithm 3, rows 1 and 8
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are considered adjacent) on 1-factor Fi+1. Because the pair
(Fi(k, 1), Fi(k, 2)) appears on separate rows of Fi+1, each
node will relay m to two new nodes.

Further execution of the splitting algorithm divides the
nodes in the relay set RFi(k,1)

i+1 to four adjacent rows. Since
none of the nodes in R

Fi(k,1)
i+1 appears on the same row,

the relay set after the completion of factor Fi+1 increases
to eight nodes. Following the recursive application of the
splitting algorithm, the relay set after the completion of
blog2(2n)c 1-factors has a size of 2blog2 2nc. If blog2(2n)c =
log2(2n), the broadcast is complete since 2log2(2n) = 2n. Oth-
erwise, one extra 1-factor is needed to relay the broadcast to
the remaining 2n−2blog2(2n)c nodes. Because 2blog2(2n)c > n,
the splitting algorithm places n nodes from the relay set into
the n rows of the blog2 2nc+1 = dlog2(2n)eth 1-factor. These
n relays complete the broadcast operation. Combining the
two cases yields the required number of 1-factors to be
equal to dlog2(2n)e. Proposition 5 follows by noting that
every 1-factor requires dnk e slots to be completed.

APPENDIX 6

Proposition 6: In the presence of an external jammer, the ex-
pected number E[Z] of 1-factorizations needed to complete
a broadcast operation in the SU mode is,

E[Z] = (1− p)2n−1 +
∞∑
i=2

i(1− pi−1)2n−1 ×

2n−1∑
k=1

(
2n− 1

k

)(
pi−1(1− p)
1− pi−1

)k

, (2)

where p = J
K denotes the jamming probability.

Proof: Suppose that an arbitrary node vj attempts a
broadcast transmission in the presence of an external jam-
mer. This broadcast is completed in a single 1-factorization
if the jammer is unsuccessful in jamming the communi-
cation of vj for (2n − 1) consecutive slots. Because hj is
uniformly distributed, vj ’s transmission on a given slot
is successful with probability

(
1− J

K

)
. Moreover, the suc-

cess/failure events are independent from one slot to an-
other and for every node. Hence,

Pr[Z = 1] =

(
1− J

K

)2n−1

= (1− p)2n−1 .

The broadcast is completed in two 1-factorizations if every
receiver is jammed at most one time, and at least one
receiver is jammed on the first 1-factorization. Taking into
account all possible combinations,

Pr[Z = 2] =

2n−1∑
k=1

(
2n− 1

k

)
(1− p)2n−1−kpk(1− p)k.

Generalizing to the case of Z = i, it follows that,

Pr[Z = i] =

2n−1∑
k=1

(
2n− 1

k

)
(1− pi−1)2n−1−k

p(i−1)k(1− p)k,

= (1− pi−1)2n−1
2n−1∑
k=1

(
2n− 1

k

)
(
pi−1(1− p)
1− pi−1

)k

.

Proposition 6 follows from the definition of the expecta-
tion, i.e., E[Z] =

∑
i iPr[Z = i].

APPENDIX 7

Proposition 7: Let the per-slot jamming probability be equal
to p = 1

K , and let K ≥ n. After the first successful relay of
a broadcast message m, the broadcast delay D2 until m is
received by (2n− 2) nodes (all nodes, but one) is bounded
by,

dlog2(2n)e − 1 ≤ D2 ≤ dlog2(2n)e. (3)

Proof: The lower bound immediately follows from
Proposition 5. The broadcast delay in the absence of a
jammer is equivalent to the delay in the presence of an
external jammer who is unsuccessful in jamming any com-
municating pair for dlog2(2n)e − 1 slots. Hence, after the
first successful relay, the lower bound on D2 follows.

To compute the upper bound on D2, assume that an
arbitrary node j wants to broadcast a message m to the
remaining (2n − 1) nodes. Note that because K ≥ n every
1-factor is completed at one time slot. Let ai denote the
size of the relay set at slot i. Initially, a0 = 2, i.e., node j
has completed its first successful relay. Once ai ≥ 2, the
adversary can jam at most one of the pairs relaying m.
The size of the relay set in this worst-case scenario grows
according to the formula.

ai = 2ai−1 − 1 = 2i + 1, i ≤ dlog2(2n)e − 1, (4)

where ai is computed recursively with a0 = 2. To show
the validity of (4), we refer to the proof of Proposition 5,
where we showed that for ai ≤ n, the size of the relay
set doubles with the increment of i. Because the adversary
jams at most one frequency band per time slot, in the worst
case, ai = 2ai−1 − 1. This is true until ai ≥ n, in which
case the size of the relay set can no longer double. In slot
i, i ≤ dlog2(2n)e − 1, the relay set becomes larger than n
for the first time. That is, it takes i = dlog2(2n)e − 1 slots
until more than half the nodes can relay message m. These
ai ≥ n relay nodes communicate with the remaining 2n −
2i − 1 ≤ n nodes that have not yet received m. Since only
one frequency band is jammed, the number of nodes that
have received m at the end of slot (i+1) is equal to (2n−2).
In this worst case, only one node has not received m after
dlog2(2n)e slots.
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APPENDIX 8
Proposition 8: Under the compromise of r nodes, the jam-
ming probability p is bounded by,

min{1, J

K − d r2e
} ≤ p ≤ min{1, J

K − r
}. (5)

Proof: Let x be the number of frequency bands over
which the r compromised nodes are scheduled to commu-
nicate according to 1-factor F . The number of bands over
which legitimate communications take place in each slot is
reduced to (K−x). This is due to the fact that the frequency
bands assigned to every 1-factor are permutation of the set
of bands C. Hence, the jamming probability is increased to
p = J

K−x . To derive bounds on p, we consider the lowest
and highest values of x. If the compromised nodes are
scheduled to communicate with each other at 1-factor F,
then x = xmin = d r2e, where the ceiling function is used
to account for an odd r. This value of x yields the lower
bound on p. On the other hand, if all r nodes are scheduled
to communicate with legitimate ones (appear on separate
rows in F ), then x = xmax = r, and p attains its maximum
value. Note that p ≤ 1 and hence, r ≤ K − J. When r is
larger than K−J , there are 1-factors where all transmissions
are jammed with certainty.

APPENDIX 9
Proposition 10: Under the compromise of r border nodes
of a cluster i, E[De] is given by,

E[De] =
1

1−
(
PNL
c +

∑NL

i=1

(
NL

i

) (J(1−Pc)
K−r

)i)NC
, (6)

where Pc =
r

NC×NL
denotes the compromise probability.

Proof: At each time slot, the probability that an adjacent
cluster fails to receive a broadcast is due to: (a) all NL

links are shared with compromised border nodes, and
(b) the links shared with uncompromised border nodes
are jammed by the adversary. So the probability that a
neighboring cluster fails to receive a broadcast is,

Pfail = (Pc)
NL +

NL∑
i=1

(
NL

i

)(
J(1− Pc)

K − r

)i

.

The probability that at least one of the neighboring clusters
successfully receive the broadcast at a time slot is,

Psuccess = 1− (Pfail)
NC .

The broadcast among adjacent nodes forms a Bernoulli trial
with a success probability Psuccess, so the average delay
until the first success is 1/Psuccess, which leads to our result.

APPENDIX 10
Proposition 11: Under the compromise of r nodes, E[DIV ]
is given by,

E[DIV ] = 1− (Pc)
NL . (7)

Proof: For any neighboring cluster, the probability that
it can not receive a broadcast is equivalent to the probability
of all NL links contain at least one compromised border
node. This probability is (Pc)

NL . So the expected number
of neighboring clusters that can get a broadcast is NC · (1−
(Pc)

NL). Dividing this value with NC , yields E[DIV ].


