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APPENDIX 1
Proposition 1: For two random and independently gen-
erated sequences mj and m`, defined over an alphabet
A = {1, . . . ,K}, the expected Hamming distance E[d(mj

,m`)] as a function of the sequence length X is given by

E[d(sj , s`)] =
K − 1

K
X. (1)

Proof: The proof is a direct consequence of the random-
ness and independence assumptions. Based on the sequence
generation process outlined in Section 4.1, Pr[mj(i) = k] =
1
K , ∀i. Since the two sequences mj and m` are assumed
to be independent and random, they differ at slot i with
probability

Pr[mj(i) 6= m`(i)] =
K − 1

K
. (2)

The expected Hamming distance between two sequences of
length X is equal to the expected number of successes in
X such Bernoulli trials, i.e., E[d(mj ,m`)]=

K−1
K X.

APPENDIX 2
Proposition 2: Consider two random and independently
generated sequences mj and m` that are defined over
an alphabet A = {1, . . . ,K}. Suppose that the sequences
are adjusted to m′j and m′`, respectively, according to the
process outlined in Section 4.2. The expected Hamming
distance E[d(m′j ,m

′
`)] as a function of the length X of the

sequences is

E[d(m′j ,m
′
`)] =

(
1− (K(i)− yK) ·

(xK
K

)2
−yK ·

(
xK + 1

K

)2)
·X (3)

where xK
4
= b K

K(i)c and yK
4
= [K (mod K(i))].

Proof: According to Step 2 in Section 4.2, the hopping
sequences are modified by a modulo K(i) operation. The
number of indexes of the original sequence that map to
the same index in the modified sequence depends on the
quotient of the division of K by K(i), given by xK = b K

K(i)c,
and the remainder, given by yK = [K (mod K(i))] . In

particular, for a modified sequence m′j , it follows from
elementary modulo arithmetic that

Pr[m′j(i) = w] =

{
xK+1
K , if 1 ≤ w ≤ yk, yk > 0.

xK

K , if yk + 1 ≤ w ≤ K(i).
(4)

LetM be the event that two modified sequences m′j and
m′` match at slot i. Based on (4), we have

Pr[M] =

K(i)∑
w=1

Pr[m′j(i) = w,m′`(i) = w] (5a)

=

K(i)∑
w=1

Pr[m′j(i) = w] Pr[m′`(i) = w] (5b)

=

yk∑
w=1

(
xK + 1

K

)2

+

K(i)∑
yK+1

(
xK
K

)2

(5c)

= yK ·
(
xK + 1

K

)2

+
(
K(t1)− yK

)
·
(
xK
K

)2

. (5d)

Equation (5b) is due to the independence in the genera-
tion of the original sequences mj and m`. Equation (5c) is
due to the probability distribution in (4) and Equation (5d)
follows from the simplification of the sum. Given Pr[M], it
is easy to see that the expected Hamming distance for two
sequences of length X is given by (3).

APPENDIX 3
Proposition 5: The optimal strategy of an external jammer
is to continuously jam the channel that is most frequently
visited by cluster nodes.

Proof: Let cjam denote the subsequence of mjam cor-
responding to the locations of control channel slots; i.e.,
cjam = {mjam(i) : i ∈ v} (v denotes the random
slot position vector). Let also P = {p1, p2, . . . , pK} and
Q = {q1, q2, . . . , qK} denote the probability distribution
functions from which values c(i) and cjam(i) are drawn,
respectively. Q is optimal when the expected Hamming
distance E [d(c, cjam)] is minimized, i.e., the jammer is able
to overlap with c in the maximum number of slots. Suppose
that π = {π(1), . . . , π(k)} is a permutation of the set of
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channels {1, . . . ,K} such that pπ(1) ≥ . . . ≥ pπ(K). That is,
the discrete probabilities of Pr[c(i) = k] are arranged in
descending order. The probability that c and cjam overlap
at index i (which corresponds to slot v(i)) is

Pr[c(i) = cjam(i)] =

K∑
j=1

Pr[c(i) = π(j), cjam(i) = π(j)]

=

K∑
j=1

pπ(j)qπ(j) (6)

For a sequence of length X, the expected Hamming
distance between c and cjam is E[d(c, cjam)] = (1−Pr[c(i) =
cjam(i)])X (overlapping in two different slots are indepen-
dent events). Hence, the expected Hamming distance is
minimized when (6) is maximized.

Maximization of (6) can be shown as follows. Con-
sider two distributions P = {p1, p2, . . . , pK} and Q =
{q1, q2, . . . qK}, and also consider two cases for the distri-
bution Q: {qπ(1), qπ(2), . . . , qπ(K)} = {1, 0, . . . , 0} and {q′π(1),
q′π(2), . . . q

′
π(K)} with q′π(1) < 1. Let S =

∑K
j=1 pπ(j)qπ(j) and

S′ =
∑K
j=1 pπ(j)q

′
π(j). Then,

S′ − S =

K∑
j=1

pπ(j)q
′
π(j) −

K∑
j=1

pπ(j)qπ(j)

=

K∑
j=1

pπ(j)q
′
π(j) − pπ(1) · qπ(1)

≤
K∑
j=1

pπ(1)q
′
π(j) − pπ(1)

= pπ(1)

K∑
j=1

q′j − pπ(1)

= 0.

Hence,
∑K
j=1 pπ(j)qπ(j) is maximized when the distribu-

tion {qπ(1), qπ(2), . . . qπ(K)}= {1, 0, . . . , 0}.

APPENDIX 4
Proposition 6: In static spectrum networks, the expected
evasion delay E[D] for re-establishing the control channel
when no node has been compromised is

E[D] =
K

K − 1
· L+M

M
. (7)

Proof: E[D] is equal to the expected number of required
slots N before the control-channel slot occurs for the first
time, times the number of triesR needed to evade jamming.
Thus,

E[D] = E[RN ] = E[R]E[N ]. (8)

Note that R and N are independent random variables.
The probability of evading jamming for random hopping
sequences, assuming an optimal jamming strategy, is equal
to K−1

K . Thus, E[R] = K
K−1 . By construction, slot i is a

control-channel slot with probability M
L+M . Therefore, the

first re-occurrence of the control channel follows a geomet-
ric distribution with parameter M

L+M , and E[N ] = L+M
M .

Substituting E[R] and E[N ] into (8) completes the proof.

APPENDIX 5
Proposition 7: The expected delay until the new CH assigns
new hopping sequences to n − 1 cluster nodes (excluding
the compromised CH) is

E[D2] =
K2

K − 1
(n− 1)Xc. (9)

Proof: Once the CH is considered compromised, all
cluster nodes hop according to self-generated random se-
quences. Let mCH denote the hopping sequence of the new
CH. The CH succeeds in communicating with node nj at
slot i if mCH(i) = mj(i) and mCH(i) 6= mjam(i). Given that
the sequences mj and mCH are random,

Pr[mj = mCH ,mj 6= mjam] =
1

K

K − 1

K
=
K − 1

K2
. (10)

The number of slots until the first success is geometrically
distributed with mean of K2

K−1 . The CH has to repeat the
same process for all n− 1 cluster nodes (the compromised
CH is excluded from the hopping sequence update process).
Assuming that Xc time slots are needed for the assignment
of the new sequence, the expected delay E[D2] until all
cluster nodes have received a new hopping sequence is
equal to K2

K−1 (n− 1)Xc.


