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Abstract

Constraint-based path selection is an invaluable part of a full-ßedged quality of service (QoS)

architecture. Internet service providers want to be able to select paths for QoS ßows that optimize
network utilization and satisfy user requirements and as such increase revenues. Unfortunately,
Þnding a path subject to multiple constraints is known to be an NP-complete problem. Hence,
accurate constraint-based path selection algorithms with a fast running time are scarce. Numerous
heuristics and a few exact algorithms have been proposed. In this paper, we compare the lion�s
share of these algorithms. We focus on restricted shortest path algorithms and multi-constrained
path algorithms. The performance evaluation of these two classes of algorithms is presented based
on complexity analysis and simulation results and may shed some light on the difficult task of
selecting the proper algorithm for a QoS-capable network.
Keywords: Multi-constrained path selection, QoS routing, algorithms, performance evaluation

1 Introduction

There is a continuous demand for a mission-critical Internet that can provide various levels of quality-

of-service (QoS) guarantees and/or service differentiation to voice, video, and data applications in

a uniÞed manner. Realizing the potential beneÞts of being able to use the Internet as a uniÞed

transport technology, the research community and industry have been paying signiÞcant attention

to enabling QoS-based networking in the Internet. Users require tailor-made services with high QoS

and reliability, which a best-effort paradigm cannot provide. Internet service providers on the other

hand seek a more commercial Internet, which enables them to provide differentiated services, optimize

network throughput, and possibly increase proÞt. To accommodate the need for QoS, the research

community has proposed a variety of QoS-capable frameworks (e.g., IntServ, DiffServ, MPLS) [1].

Since these frameworks largely rely on the underlying routing table, one of the key issues in QoS-

proÞcient architectures is how to determine efficient paths that can satisfy the QoS requirements of

multimedia applications. This problem is commonly known as constraint-based path selection and has

been shown to be NP-complete. Accordingly, the research community has proposed many heuristics

and only a few exact algorithms. In this paper, we provide a descriptive overview of these algorithms

and focus on their performance evaluation using extensive simulations. To the best of our knowledge,
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no comparative study has been conducted before, except for the limited simulation studies in the

original papers describing these algorithms.

Before giving the formal deÞnition of the problem, we describe the notation that is used throughout

this paper. Let G(N,E) denote a network topology, where N is the set of nodes and E is the set of

links. With a slight abuse of notation, we also use N and E to denote the number of nodes and the

number of links, respectively. The source and destination nodes are denoted by s and d. P denotes

a path between s and d and h reßects the hopcount of a path. The number of QoS measures (e.g.,

delay, hopcount) is denoted by m. Each link (u, v) ∈ E is characterized by an m-dimensional link

weight vector, consisting of m nonnegative QoS weights wi(u, v), i = 1, . . . ,m. QoS measures can be

roughly classiÞed into additive1 (e.g., delay) and non-additive (e.g., available bandwidth). In case of

an additive measure, the weight of a path is equal to the sum of the corresponding weights of the links

along that path. For a non-additive measure, the weight of a path is the minimum (or maximum) link

weight along that path. The QoS constraints are denoted by Li, i = 1, ...,m. In general, constraints on

non-additive measures can be dealt with by pruning from the graph all links (and possibly disconnected

nodes) that do not satisfy the requested QoS constraint. For our performance evaluation, we only

consider the more difficult, additive measures. Furthermore, the compared algorithms assume that the

network-state information (i.e., link weights) is accurately maintained at every node via QoS-aware

networking protocols. All algorithms that are evaluated in this paper were designed to solve (an

instance of) the multi-constrained path selection problem:

DeÞnition 1 Multi-Constrained Path (MCP) problem: Consider a network G(N,E). Each link

(u, v) ∈ E is associated with m additive weights wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li,

i = 1, ...,m, the problem is to Þnd a path P from s to d such that: wi(P )
def
=

P
(u,v)∈P

wi(u, v) ≤ Li for
i = 1, ...,m.

A path obeying the above condition is said to be feasible. Note that there may be multiple feasible

paths between s and d. A modiÞed (and more difficult) instance of the MCP problem is to retrieve the

shortest path among the set of feasible paths. This problem is known as the multi-constrained optimal

path (MCOP) problem and is attained by adding a second condition on the path P in DeÞnition 1:

l(P ) ≤ l(Q) for any feasible path Q between s and d, where l(.) is a path length function. A solution to
the MCOP problem is also a solution to the MCP problem, but not necessarily vice versa. Considerable

work in the literature has focused on a special case of the MCOP problem known as the restricted

shortest path (RSP) problem. In this problem, the goal is to Þnd the least-cost path among those that

satisfy only one constraint denoted by ∆, which bounds the permissible delay of a path. The MCP

problem and its variants are known to be NP-complete [2].

In this paper, we compare the lion�s share of QoS algorithms based on extensive simulations.

For these algorithms, we investigate: (a) how often the algorithms return feasible paths, and (b) their

complexity. Complexity refers to the intrinsic minimum amount of resources needed to solve a problem

or execute an algorithm. Complexity can be divided into computational-time complexity and space

complexity. Here, we focus on the computational-time complexity. We consider both the worst-case

complexity and the empirical execution times. Table 1 (Section 4) summarizes the worst-case time

1Multiplicative measures can be transformed into additive measures by taking their logarithm.
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and space complexities of all considered algorithms. All algorithms have been implemented with the

same data structure, namely Fibonacci heaps. The simulations presented in this paper consisted of

creating a Waxman topology or a square lattice, through which the algorithms computed an RSP or

MCP path. Waxman graphs belong to the class of random graphs, where the probability of existence

of a link between two nodes decays exponentially with the geographic distance between those two

nodes. Such graphs are often chosen because of their resemblence to the actual network topologies

and also because they are easy to generate, allowing for the evaluation of a large number of topologies.

This last property is crucial in an extensive algorithmic study, where it is necessary to evaluate many

scenarios in order to be able to draw conÞdent conclusions. We have chosen the Waxman parameters

such that the longest minimum hopcount between two nodes in a 100-node graph is around 7. The

class of lattices was chosen to reßect a hard topology class, as motivated in [3]. All simulations are

based on 104 generated topologies, leading to an accuracy of roughly two digits.

The remainder of this paper is organized as follows. In Section 2, we consider the RSP problem,

present the algorithms that target this problem, evaluate their performance using simulations, and

provide conclusions. Section 3 adopts the same approach for the MCP problem. Section 4 concludes

with a summary and discussion.

2 RSP Algorithms

In this section, we Þrst brießy describe the most important RSP algorithms. For a more in-depth

discussion, we refer the reader to [4] and the references therein. After our description of the RSP

algorithms, we present the simulation results followed by conclusions.

2.1 Description of RSP Algorithms

Exact Algorithms: Widyono [5] presented an exact solution to the RSP problem called Constrained
Bellman-Ford (CBF). CBF maintains a list of paths from s to every other node, ordered in

increasing cost and decreasing delay. It selects a node whose list contains a path that satisÞes

the delay constraint ∆ and that has the minimum cost. CBF then explores the neighbors of

this node using a breadth-Þrst search, and (if necessary) adds new paths to the list maintained

at each neighbor. This process continues as long as ∆ is satisÞed and there exists a path to be

explored.

2-Optimal Approximation: One general approach for dealing with NP-complete problems is to look
for an approximation algorithm with a polynomial time complexity. An algorithm is said to be 2-

optimal if it returns a path whose cost is at most (1+2) times the cost of the optimal path, where

2 > 0. Approximation algorithms perform better in minimizing the cost of a returned feasible

path as 2 goes to zero. However, the computational complexity is proportional to 1/2, making

these algorithms impractical for small values of 2. In our simulations, we consider Hassin�s

algorithm [6] as a representative 2-optimal approximation algorithm.

Backward-Forward Heuristic: The backward-forward heuristic (BFH) Þrst determines the least-
delay path (LDP) and the least-cost path (LCP) from every node u to d [7]. It then starts from
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s and explores the graph by concatenating two segments: (1) the so-far explored path from s

to an intermediate node u, and (2) the LCP or the LDP from node u to d. BFH simply uses

Dijkstra�s algorithm with the following modiÞcation in the relaxation procedure: a link (u, v) is

relaxed if it reduces the total cost from s to v, while its approximated end-to-end delay obeys

the delay constraint.

Lagrangian-based Linear Composition: The Lagrangian-based linear composition algorithm com-
bines the delay and cost of each link into a link weight w(u, v) = αd(u, v) + βc(u, v) and Þnds

the shortest path with respect to (w.r.t.) w(u, v). The parameters α and β are called the mul-

tipliers, and a key issue is how to determine appropriate values for them. This can be done by

iteratively Þnding the shortest path w.r.t. the linear combination and adjusting the multipliers�

values in the direction of the optimal solution [8]. Several reÞnements have been proposed to

the basic Lagrangian-based composition approach. For example, one can use the k-shortest

path algorithm2 to close the gap between the optimal solution and the returned path. For our

simulations, we use the approach of Juttner et al. [8].

Hybrid Algorithms: Hybrid algorithms use combinations of the aforementioned approaches. One
such heuristic called DCCR was provided in [9]. DCCR tries to solve the RSP problem through

the minimization of a nonlinear length function and using a k-shortest path algorithm. In order to

improve the performance with small values of k, the search space is reduced using a Lagrangian-

based algorithm (with y iterations) before applying DCCR. This Þnal hybrid algorithm is called

SSR+DCCR.

2.2 Performance Evaluation of RSP Algorithms

In this subsection, we compare the RSP algorithms by simulations using Waxman graphs and lattices.

In each Waxman graph, the delay and cost of every link (u, v) are taken as independent uniformly

distributed random variables in the range [1, 100]. In the class of lattices, the delay and the cost

of every link (u, v) are negatively correlated: the delay is chosen uniformly from the range [1, 100]

and the corresponding cost is set to 101 minus the delay. In each simulation experiment, we generate

104 graphs and select node 1 and node N as the source and destination node. For the lattices, this

corresponds to a source in the upper left corner and a destination in the lower right corner, leading

to the largest minimum hopcount.

We select the delay constraint ∆ as follows. First, we compute the least-delay path (LDP) and the

least-cost path (LCP) between the source and the destination using Dijkstra�s algorithm. If the delay

constraint ∆ < d(LDP), then there is no feasible path. If d(LCP) ≤ ∆, then the LCP is the optimal
path. Since these two cases are easy to deal with, we compare the algorithms under the more difficult

cases where d(LDP) < ∆ < d(LCP). To investigate how the different values of the delay constraint

affect the performance of the compared algorithms, for each graph we select Þve different values for

∆ in the range (d(LDP), d(LCP)), as follows:

∆(x) = d(LDP) +
x

5
(d(LCP)− d(LDP)), x = 1, 2, 3, 4, 5. (1)

2A k-shortest path algorithm does not stop when the destination has been reached for the Þrst time, but continues

until it has been reached through k different paths succeeding each other in length.
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All considered RSP algorithms were found capable of Þnding a feasible path that satisÞes the delay

constraint ∆. Therefore, the challenging part of the RSP problem is not to Þnd a feasible path, but the

ability of the algorithm to minimize the cost of a selected feasible path. We compare the algorithms

based on how inefficient they are in minimizing the cost of a returned feasible path, when compared

to the exact algorithm (CBF) that Þnds a feasible path with the minimum cost. The inefficiency of

an algorithm A is deÞned as

inefficiencyA
def
=
c(A)− c(CBF )

c(CBF )

where c(·) is the average cost of the feasible paths that are returned by an algorithm. We also report the
execution time of the compared algorithms. To make the results machine independent, the execution

times are normalized by the execution time of Dijkstra�s algorithm (LDP).

The simulation results indicate that for the considered graphs, the execution times of the 2-optimal

approximation algorithms (even when 2 = 1) are much larger than those of the other compared al-

gorithms. Therefore, we exclude the 2-approximations from our plots. We compare the following al-

gorithms: the exact CBF, the least delay path (LDP), Lagrangian-based Linear Composition (LLC),

Backward-forward heuristic (BFH), DCCR with k = 2 and k = 5 (where k refers to the maximum

number of paths that can be stored at a node), and SSR+DCCR with k = 5. Since the relative

differences between the algorithms (in terms of inefficiency and execution time) do not vary signiÞ-

cantly with x in ∆(x), we only report the average of the inefficiency and the execution time of the

algorithms3.

The results are shown in Figure 1 as a function of the number of nodes N . In all cases, the basic

LDP algorithm has the highest inefficiency and the lowest execution time. With a slight increase in

execution time, BFH gives a signiÞcantly lower inefficiency than the LDP algorithm. Actually, BFH

also has a lower inefficiency (even with less computational time) than LLC and DCCR with k = 2.

Since the inefficiency of DCCR and SSR+DCCR is controlled by the value of k, they can give a lower

inefficiency if k increases. However, this will result in a longer execution time. Moreover, in some

cases (e.g., the lattices with negatively correlated link delay and cost), no signiÞcant improvement can

be obtained with the small values of k (e.g., k ≤ 5). In this case, many subpaths with small cost and
high delay will initially be stored. These subpaths are likely to lead to infeasible paths. Only if k is

high enough, the paths with higher cost and lower delay will be stored, which may lead to the optimal

solution. The BFH concept is more valuable in this scenario, because it foresees whether a path may

be able to improve the cost or obey the constraint.

2.3 RSP Conclusions

Our conclusions for the RSP problem are conÞned to the considered classes of graphs with the speciÞed

link weight distribution.

The simulation results indicated that a lower inefficiency is generally only obtained at the expense

of increased execution time. Therefore, a hybrid algorithm similar to SSR+DCCR seems to be a

3Although not plotted here, the inefficiency of all algorithms except for SSR+DCCR increases as ∆ increases. As ∆

increases, more paths with small cost become feasible and the search space becomes larger. Since most algorithms do

not reduce their search space, the chance of Þnding an optimal path is often decreased as ∆ increases. SSR+DCCR can

sometimes circumvent this situation by reducing the search space at the cost of increasing the execution time.

5



50 100 150 200 250 300 350 400
10-4

10-3

10-2

10-1

100

101

Number of nodes

in
ef

fic
ie

nc
y

Least Delay Path (LDP)
Lagrangian-based Linear Composition (LLC)       
Backward-Forward Heuristic (BFH)
DCCR k=2
DCCR k=5
SSR+DCCR k=5

50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

50

Number of nodes

tim
es

 D
ijk

st
ra

 (C
P

U
 ti

m
e)

Least Delay Path (LDP)
Lagrangian-based Linear Composition (LLC)              
Backward-Forward Heuristic (BFH)
DCCR k=2
DCCR k=5
SSR+DCCR k=5
CBF (exact one)

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

in
ef

fic
ie

nc
y

Least Delay Path (LDP)
Lagrangian-based Linear Composition (LLC)              
Backward-Forward Heuristic (BFH)
DCCR k=2
DCCR k=5
SSR+DCCR k=5

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

Number of nodes

tim
es

 D
ijk

st
ra

 (C
P

U
 ti

m
e)

Least Delay Path (LDP)
Lagrangian-based Linear Composition (LLC)              
Backward-Forward Heuristic (BFH)
DCCR k=2
DCCR k=5
SSR+DCCR k=5
CBF (exact one)

Figure 1: Scaling of the performance measures with N . The inefficiency and normalized CPU time

are shown for the class of Waxman graphs (above) and for the class of square lattices (below).

good solution for the RSP problem. The main advantage of a hybrid algorithm would be to initially

determine a good path with a small execution time (e.g., by using BFH) and to improve the inefficiency

with a k-shortest path approach while controlling the complexity with the value of k. From this, we

conclude that rather than on a single approach, a combination of key concepts (e.g., a nonlinear

length function, search space reduction, tunable accuracy through a k-shortest path algorithm, and

backward-forward search) leads to efficient algorithms for the RSP problem.

3 MCP Algorithms

In this section, we start with a brief description of the MCP algorithms considered in our performance

study. A more in-depth discussion of these algorithms can be found in [4], [10], and the references

therein. Subsequently, we present the simulation results and conclusions.

3.1 Description of MCP Algorithms

Jaffe�s Approximation: Jaffe [11] proposed a Lagrange-based approximation for the MCP problem
based on minimizing a linear combination of the link weights: w(u, v) =

Pm
i=1 diwi(u, v), where

di are positive multipliers. By choosing di = 1
Li
, the largest volume inside the constraints volume

is scanned, before a possibly infeasible path can be selected.

Iwata�s Fallback Algorithm: Iwata et al. [12] proposed a heuristic that Þrst computes one (or

6



more) shortest path(s) based on one QoS measure and then checks if all the constraints are met.

If this is not the case, the procedure is repeated with another measure until a feasible path is

found or all QoS measures are examined. In our simulations, we only consider one shortest path

per QoS measure.

SAMCRA and TAMCRA: Both TAMCRA [13] and its successor SAMCRA [14] incorporate three
fundamental concepts: (1) a nonlinear measure for the path length l(P ) = maxj=1,...m

³
wj(P )
Lj

´
,

(2) a k-shortest path approach, and (3) the principle of non-dominated paths4 to reduce the

search-space. SAMCRA also includes a fourth �look-ahead� concept. Similar to BFH, the look-

ahead concept precomputes one or multiple shortest path trees rooted at the destination and

then uses this information to reduce the search-space. In TAMCRA, k is Þxed (giving it a

polynomial complexity), but with SAMCRA this k can grow exponentially in the worst case.

For the simulations with TAMCRA we set k = 2. A better performance can be achieved when

k is increased (if k is unrestricted, all paths between s and d are returned, ordered according to

their lengths).

Chen�s Approximate Algorithms: Chen and Nahrstedt [15] provided two heuristics for the MCP
problem: EDSP based on Dijkstra and EBF based on Bellman-Ford. In these algorithms, the

MCP problem is simpliÞed by scaling down m− 1 (real) link weights. The user has to provide
m − 1 values for xi, i = 1, ...,m − 1, that are used as scaling factors. The algorithms then
adopt a dynamic programming approach to return a path that minimizes the Þrst (real) weight

provided that the other m − 1 (scaled down integer) weights are within the constraints. We
have chosen to implement the EBF version for our simulations. Unfortunately, to achieve a

good performance, high xi�s are needed, which makes this approach computationally intensive

for practical purposes.

Randomized Algorithm: Korkmaz and Krunz [16] proposed a randomized heuristic for the MCP
problem that uses the concept of look-ahead. Based on look-ahead information, the algorithm

randomly selects nodes that are likely to lead to a feasible path. Under the same network

conditions, multiple executions of the randomized algorithm may return different paths between

the same source and destination pair. For our simulations, we execute only one iteration of the

randomized heuristic.

H_MCOP: Korkmaz and Krunz [17] also provided a heuristic called H_MCOP. This heuristic tries
to Þnd a path within the constraints by using the nonlinear path length function of TAMCRA and

the concept of look-ahead. In addition, H_MCOP tries to simultaneously minimize the weight

of a single �cost� measure along the path. H_MCOP uses two modiÞed Dijkstra executions.

Limited Path Heuristic: Yuan [18] presented two heuristics for the MCP problem. The Þrst �lim-
ited granularity� heuristic resembles the algorithm of Chen and Nahrstedt [15]. Therefore, we

only consider the second heuristic, known as �limited path� heuristic (LPH). LPH is an ex-

tended Bellman-Ford algorithm that uses concepts (2) and (3) of TAMCRA. To conform with

the queue-size allocated for TAMCRA, we let k = 2 for LPH.

4A path P is dominated by a path Q if wi(Q) ≤ wi(P ), for i = 1, ...m, with inequality for at least one i.
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A*Prune: Liu and Ramakrishnan proposed A*Prune [19] and considered the problem of Þnding

not only one but K shortest paths satisfying the constraints. For our simulations, we take

K = 1. A*Prune uses the concept of look-ahead and then starts extracting/pruning nodes in

a Dijkstra-like fashion until K feasible paths are found. A*Prune uses Jaffe�s length function³
l(P ) =

Pm
i=1

wi(P )
Li

´
on the predicted (look-ahead) end-to-end path weights.

3.2 Performance Evaluation of MCP Algorithms

In this subsection, we present and discuss the simulation results for the MCP problem. For the

Waxman graphs and lattices, the weights of a link are sampled from independent and uniformly

distributed random variables in the range (0, 1]. For the lattices, we consider two negatively correlated

QoS measures, for which the link weights are assigned as follows: w1 is uniformly distributed in the

range (0, 1] and w2 = 1− w1.
The choice of the constraints is important, since it determines how many (if any) feasible paths

exist. We experimented with strict as well as loose constraints. In the case of loose constraints, our

simulation results (not shown here) indicate that all MCP algorithms provide near-optimal success

rates with small execution times. Accordingly, we focus our attention on the case of strict constraints.

Note that for MCOP algorithms, loose constraints increase the number of feasible paths and hence

the search space. This makes it difficult to Þnd the optimal path. Fortunately, MCOP algorithms can

be easily adapted to solve only the MCP part of the problem, by stopping as soon as a feasible path

is reached.

The set of strict constraints is chosen as follows:

Li = wi(P ), i = 1, ...,m

where P is the path for which maxj=1,...m (wj(P )) is minimum. In this case, only one feasible path is

present in the graph (hence, MCP ≡ MCOP). This also allows us to fairly compare MCP and MCOP
algorithms.

We report the success rate and the normalized execution time. The success rate of an algorithm is

deÞned as the number of times that an algorithm returned a feasible path divided by the total number

of iterations. The normalized execution time of an algorithm is deÞned as the execution time of the

algorithm (over all iterations) divided by the execution time of Dijkstra�s algorithm.

Our simulations revealed that Bellman-Ford-based algorithms (Chen�s algorithm and the Limited

Path Heuristic) require signiÞcantly more execution time than their Dijkstra-based counterparts. We,

therefore, do not include the former algorithms in the comparisons below.

Figure 2 gives the success rate and normalized execution time for the class of Waxman graphs

and lattices (with negatively correlated link weights), with m = 2 under strict constraints. The exact

algorithms SAMCRA and A*Prune always give a success rate of one. The difference in the success

rate of the heuristics under strict constraints is signiÞcant. Jaffe�s algorithm and Iwata�s algorithm

perform signiÞcantly worse than the others. In the class of two-dimensional lattices, this difference

disappears as the success rates of all heuristics tend to zero as N increases, even for fairly moderate

values of N .

The same Þgure also displays the normalized execution time that the algorithms used to obtain

the corresponding success rate. For the class of Waxman graphs, the execution time of SAMCRA does
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Figure 2: Success rate (left) and normalized execution time (right) for the class of Waxman graphs

(above) and lattices (below) as a function of the number of nodes (m = 2 and strict constraints).

not deviate much from the polynomial time heuristics. In fact, all algorithms display a polynomial

execution time. For the class of lattices, the execution times of the exact algorithms grow exponentially,

which is the price paid for exactness in hard topologies. SAMCRA and A*Prune use different length

functions. The choice of a proper length function is very important, which opens the question of what

is the best length function?

We have also simulated the performance of the algorithms as a function of the number of constraints

m (m = 2, 4, 6 and 8) under independent uniformly distributed link weights. The results for the class

of Waxman graphs (N = 100) and Lattices (N = 49) are plotted in Figure 3. We can see that the

algorithms display a similar ranking in the success rate as in Figure 2. Some algorithms display a

linear increase in the execution time. All these algorithms have an initialization phase in which they

execute the Dijkstra algorithm m times. Finally, we can observe that if m grows, A*Prune slightly

outperforms SAMCRA. This can be attributed to the non-dominance principle, which becomes of less

signiÞcance as m increases. However, the time needed to check for non-dominance is only manifested

in a small difference between the execution times of SAMCRA and A*Prune.

3.3 MCP Conclusions

We now present our conclusions for the considered classes of graphs, namely the Waxman graphs and

the square lattices. The simulation results indicated that SAMCRA-like algorithms performed best

at an acceptable computational cost, which can be attributed to the following features:
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Figure 3: Success rate and normalized execution time as a function of munder strict constraints. The

results above are for Waxman graphs with N = 100, and below for the lattices with N = 49. In both

classes of graphs, the link weights are independent and uniformly distributed random variables.

1. Dijkstra-based search with a nonlinear length function

A nonlinear length function is a prerequisite for exactness. When the link weights are positively

correlated, a linear approach may give a high success rate in Þnding feasible paths, but under

different circumstances the returned path may signiÞcantly violate the constraints. However,

the choice of the best length function is not trivial.

Our simulations indicated that, even on sparse graphs, Dijkstra-like search runs signiÞcantly

faster than a Bellman-Ford-like search.

2. Search-space reduction

Reducing the search-space is always desirable, because this reduces the execution time of an

algorithm. The non-dominance principle is a very strong search-space reducing technique, es-

pecially when the number of constraints m is small. When m grows the look-ahead concept

together with the constraint values provide a better search-space reduction.

3. Tunable accuracy through a k-shortest path functionality

Routing with multiple constraints and a nonlinear length function may require that multiple

paths be stored at a node, necessitating a k-shortest path approach. By tuning the value of k,

a good balance between success rate and computational complexity may be reached.

4. Look-ahead functionality
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The look-ahead concept is based on information from path trees rooted at the destination, which

are computed in polynomial time. These path trees are used to reduce the search-space and to

facilitate the search for a feasible path. In the latter functionality, a predicted end-to-end path

length may lead the search sooner in the correct direction, thereby saving in execution time.

The exactness of the TAMCRA-like algorithms depends on the value of k. If k is not restricted,

then both MCP and MCOP problems can be solved exactly, as done by SAMCRA. Although k is

not restricted in SAMCRA, simulations on Waxman graphs with independent uniformly distributed

random link weights show that the execution time of this exact algorithm increases linearly with the

number of nodes, providing a scalable solution to the MC(O)P problem. Simulation results also show

that TAMCRA-like heuristics with small values of k render near-exact solutions. The results for the

class of two-dimensional lattices with negatively correlated link weights are completely different. In

such hard topologies, the heuristics are useless whereas the exact algorithms display an exponential

execution time. We believe that the best approach for such (unrealistic) graphs is via a hybrid

algorithm that uses a good heuristic to make intelligent choices on which path to follow, combined

with an exact SAMCRA-like algorithm that incorporates all the four above-mentioned concepts. If

a solution to MCP suffices, then this algorithm should be stopped as soon as a feasible path is

encountered.

4 Summary and Discussion

Several researchers investigated the constraint-based path selection problem and proposed various

algorithms, mostly heuristics. This paper has evaluated several of the algorithms that were proposed

for the restricted shortest path and multi-constrained (optimal) path problems, via simulations in the

class of Waxman graphs and the much harder class of two-dimensional lattices. Table 1 displays the

worst-case complexities of the algorithms evaluated in this paper.

Algorithm time space

CBF O(eαN) O(eαN)

LDP O(N logN +E) O(N)

BFH O(N logN +E) O(N)

LLC O(E2 log2(E)) O(N)

SSR+DCCR O(yE logN + kE log(kN) + k2E) O(kN)

Jaffe�s algorithm O(N logN +mE) O(N)

Iwata�s algorithm O(mN logN +mE) O(N)

SAMCRA, TAMCRA O(kN log(kN) + k2mE) O(kmN)

EBF O(x2 · · · xmNE) O(x2 · · · xmN)
Randomized algorithm O(mN logN +mE) O(mN)

H_MCOP O(N logN +mE) O(mN)

A*Prune O(N !(m+N +N logN)) O(mN !)

Table 1: Worst-case time and space complexities of the considered QoS path selection algorithms.
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The simulation results show that the worst-case complexities of Table 1 should be interpreted

with care. For instance, the real execution time of H_MCOP will always be longer than that of

Jaffe�s algorithm under the same conditions, since H_MCOP executes the Dijkstra�s algorithm twice.

In general, the simulation results indicate that SAMCRA-like algorithms that use a k-shortest path

algorithm with a nonlinear length function while eliminating paths via the non-dominance and look-

ahead concepts, give the better performance for the considered problems (RSP, MCP, MCOP). The

performance and complexity of these algorithms is easily adjusted by controlling the value of k. When

k is not restricted, the SAMCRA-like algorithms lead to exact solutions. In the class of Waxman or

random graphs with uniformly distributed link weights, simulation results suggest that the execution

times of such exact algorithms increase linearly with the number of nodes. The exponential increase

in execution time is only observed in the class of two-dimensional lattices. Heuristics perform poorly

in such topologies, whereas exactness comes at a high price in complexity. In our simulations the

polynomial-time 2-approximation schemes displayed an extensive execution time and were therefore

omitted from the plots. More research is necessary to indicate whether these algorithms might provide

a good alternative for exact algorithms in large and hard topologies.
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