
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, 1

Traffic Decorrelation Techniques for Countering
Colluding Eavesdroppers in WSNs

Alejandro Proaño, Loukas Lazos, and Marwan Krunz
Dept. of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA

E-mail:{aaproano, llazos, krunz}@ece.arizona.edu

APPENDIX

A. Proof of Proposition 1
Proposition 1: When sensors transmit one packet at a

random time within an interval of T , the average number
of hops that a packet can traverse per T is 1.72.

Proof: Consider a source v with a hop-count η =
|p(v, u)| to the destination u. Nodes in p(v, u) randomly
select their transmission times within an interval T . Let
the randomly selected transmission times be denoted by
t1, t2, . . . , tη. We compute the average number of hops
(H) traversed over T by a packet m originating at v1,
using a combinatorial approach. The value of H depends
on the arrangement order of t1, t2, . . . , tη. All possible
arrangements nη! occur with equal probability, as the
transmission times of each sensor are randomly and
independently selected within T.. A packet traverses η
hops during T , only if t1 < t2 < . . . < tη . This events
occurs with probability,

Pr(H = η) =
1

η!
.

Similarly, to find the probability of traversing η − 1
hops, we consider the number of arrangements that
satisfy t1 < t2 < . . . < tη−1, but not tη−1 < tη . Thus,
we obtain,

Pr(H = η − 1) =
1

η!

(
η!

(η − 1)!
− 1

)
.

For an arbitrary number of hops x ≤ η − 1 we get,

Pr(H = x) =
1

η!

(
η!

x!
− η!

(x+ 1)!

)
=

x

(x+ 1)!
.

Computing the expectation of H

E(H) =
η

η!
+

η−1∑
x=1

x2

(x+ 1)!

=
1

(η − 1)!
+

η−1∑
x=1

x2

(x+ 1)!
.

By applying the ratio test of series on the second term
of E(H), we obtain

lim
x→∞

(x+1)2

(x+2)!

x2

(x+1)!

= lim
x→∞

(x+ 1)2(x+ 1)!

x2(x+ 2)!

= lim
x→∞

x2 + 2x+ 1

x3 + 2
≤ 1,

which proves that E(H) is a converging series. Finally,
we compute the convergence value of E(H) via numer-
ical analysis for all η ≥ 1,

E(H) = 1.72.

B. Proof of Proposition 2
Proposition 2: Stage 3 terminates in less than δmax + 1

iterations, where δmax is the maximum degree of any
node in the network.

Proof: By contradiction. Assume that Algorithm 2
does not terminate. That is, there exist a v ∈ V that is
gray for each iteration of Algorithm 2. Based on Step 3
of Stage 1, a node u becomes black if

v = arg maxu∈[N 2
v]

{
δ∗(u)
δ∗max(v)

× 1
f(u)+1

}
.

In the worst-case scenario, v is a leaf node that cannot be-
come black during Stage 2. Each time Stage 1 is executed,
v becomes gray and is dominated by a node u ∈ Nv if,

δ∗(v)

δ∗max(v)
≤ δ∗(u)

δ∗max(u)
× 1

f(u) + 1
,

or,

δ∗(v) ≤ δ∗(u)

δ∗max(u)
× δ∗max(v)

f(u) + 1
,

where δ∗max(v) is the maximum degree in N 2
v and δ∗max(u)

is the maximum degree in N 2
u . Note that because G is

connected, δ∗(v) ≥ 1, and

1 ≤ δ∗(u)

δ∗max(u)
.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, 2

Hence,

1 ≤ δ∗max(v)

f(u) + 1
.

Because we assumed Algorithm 2 does not terminate
and δ∗max(v) is finite, at some iteration n′ of Stage 3,
f(u) = δ∗max(v) for all u ∈ Nv. Therefore, during iteration
n′ + 1 we have δ∗max(v)

f(u)+1 < 1 and,

δ∗(v) ≥ δ∗(u)
δ∗max(u)

× δ∗max(v)
f(u)+1 .

In this case, v becomes black during Stage 1, contradicting
the assumption that v is always gray. Moreover, n′ =
δ∗(v)×δ∗max(v). Also, note that in the worst case δ∗(v) = 1
and δ∗max(v) = δmax, where δmax is the maximum degree
in the network. Thus, n′ = δmax and the maximum
number of iterations of Stage 3 is δmax + 1.

C. Proof of Proposition 3

Proposition 3: The problem of finding an SS-MCDS in
arbitrary graphs is NP-complete.

Proof: We first show that the problem of computing a
single SS-MCDS is NP-complete. To do so, we prove that
SS-MCDS is both in NP and it is at least as hard as the
Minimum Shortest-path Steiner arborescence (MSPSA)
problem, that is known to be NP-complete [1]. We first
define the MSPSA.

Definition 1 (Minimum Shortest-path Steiner arborescence):
Given a graph G(V, E(V)) with positive edge weights,
a target set T ⊆ V and a unique root node µ ∈ T , a
shortest path Steiner arborescence S is a Steiner tree rooted
at µ, spanning all vertices in T such that each path
p(u, µ) is a shortest path in G(S, E(S)), for all u ∈ T . The
arborescence of smallest cardinality is called minimum
shortest-path Steiner arborescence (MSPSA) [2].

The following verifier for the SS-MCDS problem runs
in polynomial time in the size of the input SS-MCDS (D).
In the verifier, p(u, µ) denotes the shortest path between
u and the root node µ in G(V, E(V)), while pD(u, µ)
denotes the shortest path between u and µ in G(D, E(D)).

SS-MCDS Verifier
Input: G(V, E(V)),D, and p(v, µ) for all v ∈ V .
Execution: If the following are true accept, else
reject:

1) For all v ∈ V , either v is in D, or there exist a
u ∈ D for which u ∈ N (v)

2) Nodes in D form a connected subgraph, if so
obtain pD(u, µ) for all u in D

3) For all u ∈ D, |p(u, µ)| = |pD(u, µ)|
In Step 1, the SS-MCDS verifier checks whether D satis-
fies the DS property. If v belongs to D, the check requires
only one computation. However, in the worst case, v
is not in D and the algorithm goes through v’s 1-hop
neighborhood looking for a u ∈ D. Since the maximum
size ofN (v) is |V|−1, the maximum cost of this operation

v
2

µ

v
1

v
3 v

4

v
5

v
6

v
7

v
2

µ

v
1

v
3 v

4

v
5

v
6

v
7

µ'

v'
7

(a) (b)

Fig. 1: (a) G(V, E(V)), (b) G′(V, E(V ′)) and (S,K) formed
by black nodes.

is O(|V|). Therefore, the cost of Step 1 is O(|V|2) or
O(|D|2) (since |V | = O(|D|)). In Step 2, connectivity is
tested by the Floyd and Warshall’s Algorithm, which is
of complexity O(|D|3) [2]. This algorithm also outputs
the shortest paths, pD(u, µ), between u ∈ D and µ, used
in Step 3. Finally, in Step 3, each node v compares the
lengths of p(v, µ) and pD(v, µ). The cost of this operation
is O(|D|). Thus, the total cost of the the SS-MCDS Verifier
is O(|D|3). As the SS-MCDS Verifier runs in polynomial
time, the SS-MCDS problem is in NP.

We now show that the SS-MCDS problem is NP-
Hard. We first prove that MSPSA ≤P SS-MCDS. For the
MSPSA problem, we define the target set as,

T = {v : |p(v, µ)| ≥ |p(u, µ)|,∀u ∈ Nv} ∪ {µ}.

Set T contains all leaf vertices of G (i.e., the set of nodes
for which all their neighbors are closer to the origin µ)
plus µ. Let function f take input graph G(V, E(V)), with
an edge cost w(u, v) = 1,∀(u, v) ∈ E(V), and an origin
vertex µ. Function f constructs G′(V ′, E(V ′)) as follows:
• For each v ∈ T , define a virtual node v′. Assign all

nodes v′ to set X , and make

V ′ = V ∪ X ,

• Connect each v to the corresponding v′ and set the
edge cost c(v′, v) = 0. Edges (v, v′),∀v ∈ V form
edge set E1.

• Connect each u and v in V with |p(u, µ)| = |p(v, µ)|
and (u, v) /∈ E(V), and set the edge cost to c(u, v) =
1. These edges form set E2.

• Define E(V ′) as,

E(V ′) = E(V) ∪ E1 ∪ E2.

To demonstrate the construction of G′, consider the
graph G(V, E(V)) presented in Fig. 1(a). Note that, the
only leaf node is v7, which makes T = {µ, v7}. To
generate G′(V ′, E(V ′)), we first define the set of vir-
tual nodes X = {µ′, v′7}, and their respective 0-cost
links E1 = {(µ, µ′), (v7, v′7)}. Finally, we add links
E2 = {(v1, v2), (v4, v5), (v5, v6)} of unitary cost, to connect
nodes with no links in E(V) that have the same hop-
count to µ. The resulting graph G(V ′, E(V ′)) is shown in
Fig. 1(b).

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, 3

I1 I2
Ih

!

Ih-2

I1

I2h-2
I2h-1

I2h

I3h-2

I4h-4

Ih+2

I3h-4

I3h

I2h-1

I2 I3 I
h

I2h-3

Ih-2

I1

I2h-2
I2h-1

I2h I2h+1 I3h-2

I4h-5
I4h-4

Ih+2

I3h-4

I3h

Ih-1

Ih+1

I3h-3

I3h-1

Ih-1

Ih+1

I3h-3

I3h-1

v1 v2 vh

" # !!!

vh+1 vh+2

!

v2h-1

"

v2h v2h+1

$ #

v3h-2

#%! #%"

v3h-1

!

v3h

#%! #%"

v4h-3

!!! !!! !!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!

!!!
!!!

!!!

upstream

downstream

B
2
 B

1
 B

3
 B

4

Fig. 2: Transmission schedule for a path of length 4h− 3 according to the DFAS algorithm.

We first prove that if (D,K) is an instance of the SS-
MCDS in G′, where K = |D|, it is also an instance of the
MSPSA in G.

1) Each vertex v′ ∈ X is dominated by its respective
vertex v ∈ T .

2) The shortest path property of the SS-MCDS guar-
antees that nodes in T have a shortest path with
respect to µ ∈ D. Therefore, it follows that (D,K) is
an instance of the MSPSA problem.

Conversely, if (D,K) is an instance of the MSPSA
problem in G, we show that (D,K) is an instance of the
SS-MCDS problem in G′. First, note that since E ⊂ E ′,
set D also induces a tree rooted at µ in G′ that includes
the shortest between µ and vertices in T . The rest of the
proof is as follows,

1) As D is rooted at µ, it follows that the shortest
path property (with respect to µ) is satisfied for all
vertices in D.

2) By the Steiner arborescence definition T ⊆ D. Thus,
vertices in X are dominated by their respective
vertices in T .

3) Note that set T includes the node with the highest
hop count (hmax) to µ. It follows that D contains
vertices with hop counts of 1, 2, . . . , hmax, due to the
shortest path property. Since edges in E2 connect all
vertices with the same distance to µ, all vertices in
V ′\X are dominated as well.

4) Therefore, D of size K is a CDS that contains the
shortest paths of all vertices in D with respect to
µ. This makes (D,K) an instance of the SS-MCDS
problem, which concludes both proof directions.

D. Proof of Proposition 4

Proposition 4: The message complexity for partitioning
the WSN to MCDSs using Algorithm 5 is O(δ3max|V|).

Partitioning the WSN to SS-MCDSs (Algorithm 6) yields
the same complexity.

Proof: Algorithm 5 is executed in three stages: the DS
generation stage, the MCDS Approximation stage, and
the MCDS update stage. The overhead of each stage is
analyzed as follows.

Stage 1 – DS generation: In Stage 1, a node v ∈ V
broadcasts packets in three occasions: (a) in Step 1 when
all nodes share their initial values of m(v), δ∗, and r(v),
(b) in Steps 3 or 5, when a node changes colors from white
to black or gray, and (c) in Step 4 when a white neighbor of
v has become gray. Cases (a) and (b) occur only one time
per node, yielding the transmission of 2 packets. Case (c)
can occur up to δ(v) times, as v may become black after
all its neighbors have become gray. Thus, during Stage
1, a node v may transmit up to δ(v) + 2 packets. For a
maximum node degree δmax, this stage has a message
complexity of O(δmax|V|).

Stage 2 – MCDS approximation: In Stage 2, a node v ∈ V
transmits in the following occasions: (a) in Step 1 when
nodes broadcast the value of b, (b) in Step 2, when a
gray node becomes black, (c) in Step 3 when a black
node is dominated by a newly-converted black node,
and (d) in Step 4 when a gray node overhearing the
change of color from gray to black. Cases (a), (b), and (c)
can occur only once per node. However, (d) can occur
multiple times as all black nodes in the neighborhood
of u can become dominated by other nodes, making v
transmit b(v) packets. Thus, the total number of packets
that a node v can transmit during Stage 2 is b(v) + 3.
Moreover, all transmissions must be relayed to the two-
hop neighborhood of v, Therefore, the total number of
transmissions generated in Stage 2 is,

(δ(v)(b(v)+3))|V| ≤ (δ(v)2+3δ(v))|V| ≤ (δ2max+3δmax)|V|.

This stage has a message complexity of O(δ2max|V|).
Stage 3 – MCDS update: In Stage 3, stages 2 and 3 are

repeated until all nodes belong to at least one MCDS.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, 4

According to Proposition 2 of the manuscript, it may take
up to δmax iterations for Stage 3 to terminate. Therefore,
the combined overhead of stages 1 and 2 is multiplied
by δmax.

Combining the overhead of all three stages, we obtain
the message complexity for Algorithm 5 as O(δ3max|V|).

Algorithm 6 has the same complexity as Algorithm
5 because the same stages are executed. The two algo-
rithms differ only in the CDS node selection criteria of
Stage 2. In case of Algorithm 5, the gray node that inter-
connects the highest number of black nodes is changed
to black. In case of Algorithm 6, the selection is restricted
to nodes that induce shortest paths. Because nodes can
change color only once, (except in the pruning stage),
the two steps in the respective algorithms have the same
message overhead. Therefore, the two algorithms have
the same message complexity.

E. Proof of Proposition 5
Proposition 5: In DFAS, a packet is guaranteed to be

forwarded 2h hops per (4h− 4) sub-epochs, irrespective
of the flow direction and the origin sensor.

Proof: To prove Proposition 5, we apply DFAS on a
path of length 4h − 3 nodes (Fig. 2). The path length is
selected to accommodate four subpaths B1, B2, B3 and
B4, so that the proposition can be proved, irrespective
of the sensor that originates a packet transmission and
the traffic direction. Without loss of generality, we select
v1 to be the pseudo-sink and label each node in the path
according to Step 3 of Algorithm 8. We then allocate the
transmission times for each node according to Step 4 of
Algorithm 8. The sub-epoch assignments for each node
are shown in Fig. 2. The arrows between sub-epochs
show the possible flow of traffic in two consecutive sub-
epochs, in either direction.

First, consider nodes with ids 1 or h. From Fig. 2, it
is straightforward to verify that a packet m originating
from a node with id 1 or h can be forwarded in the
upstream or the downstream direction over

H1 = 4h− 4 hops

in 4h − 4 sub-epochs. This is because the neighbors
of nodes with id 1 or h are assigned to transmit in
successive sub-epochs in either direction. Consider now
a node from B1 or B3 with id other than 1 or h, say
j, which is assigned to transmit during sub-epochs Ij ,
I2h−j , I2h+j−2, and I4h−j−2. For the upstream direction,
the worst-case delay for node with id j is incurred when
it initiates the packet forwarding in sub-epochs I2h−j
or I4h−j−2. This is because the upstream neighboring
node of j is scheduled to transmit 2j − 2 sub-epochs
after j (as opposed to being scheduled in the successive
sub-epoch when j initiates the upstream forwarding in
Ij or I2h+j−2). Once the packet reaches the upstream
neighboring node of j, it can be relayed 4h−4−(2j−2) =

4h−2j−2 hops in the remaining sub-epochs of the 4h−4
period. Thus, the total number of hop relays for node
with id j is equal to

H2 = 4h− 2j − 2 hops,

which obtains the minimum value of H2 = 2h hops
for id = h − 1. In a similar way, for the downstream
direction, the worst-case delay for node with id j occurs
when it starts forwarding m in sub-epochs Ij or I2h+j−2.
The downstream node of j is now scheduled to transmit
2h− 2j sub-epochs after j. After the packet reaches the
downstream neighboring node of j, it can be relayed
4h − 4 − (2h − 2j) = 2h + 2j − 4 hops in the rest of the
4h − 4 period. The total number of hops for node with
id j is

H3 = 2h+ 2j − 4 hops,

which obtains its minimum value of H3 = 2h hops for
id = 2. Note that, if the node was chosen from B2 or
B4, the same analysis applies with the difference that
H2 would correspond to the downstream case, and H3

to the upstream one.
Finally, the minimum number of hops irrespective of

the flow direction, in a period of (4h− 4) sub-epochs is
equal to

Hmin = min{H1, H2, H3} = 2h hops,

for h ≥ 2.

F. Proof of Proposition 6
Proposition 6: Let a sensor v belong to f(v) ≥ 1 CDSs.

Suppose that an event Ψ is detected by v at time t(Ψ),
where t(Ψ) is uniformly distributed over z epochs. The
delay until a CDS containing v becomes active is:

1) dmin = 0 epochs.
2) dmax = z − f(v) epochs.
3) dave =

∑z−f(v)
k=1 k × C(z−k−1,f(v)−1)

C(z,f(v)) epochs.
Proof: Without loss of generality, assume that event

Ψ observed by v occurs during the first epoch. If v ∈ D1,
the event is reported during this epoch and the buffering
delay equals zero1. This defines the minimum possible
rotation delay dmin. If v ∈ D2 and v /∈ D1, then v must
wait for one epoch before it can transmit the event report
to the sink. This occurs with probability,

Pr[d = 1] =
C(z − 2, f(v)− 1)

C(z, f(v))
, (1)

where C(n, k) denotes the binomial coefficient. The nom-
inator in (1) denotes the number of ways that f(v)
elements (appearance frequency of v in the z CDSs)
can be chosen from z elements (number of CDSs), such
that one specific element (in our case, D2) is always
selected, while another (i.e., D1) is always not selected.
Alternatively, this can be seen as eliminating D1 from

1. For simplicity, we have ignored the case in which sensor v has
already transmitted all its dummy packets during the first epoch,
before Ψ has occurred.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, 5

D1, . . . ,Dz , fixing D2 and selecting f(v)−1 subsets from
the remaining z − 2 subsets. The denominator denotes
the number of ways that f(v) elements can be chosen
from z elements. In the computation of the probability
in (1), we have implicitly assumed that all arrangements
of f(v) elements out of z are equiprobable.

Generalizing to the case in which v has to wait for k
epochs,

Pr[d = k] =
C(z − k − 1, f(v)− 1)

C(z, f(v))
. (2)

In the worst-case scenario, sensor v has to wait for
z − f(v) epochs before one of the subsets that contain it
becomes active. This scenario occurs if v is part of subsets
Dz−f(v)+1, . . . ,Dz. The value of z−f(v) yields the worst
case rotation delay for v. To compute the average delay,
we sum over all possible delay values, multiple by the
respective probability for each delay.

dave =

z−f∑
k=1

k × C(z − k − 1, f(v)− 1)

C(z, f(v))
.

G. Proof of Proposition 7
Proposition 7: The number of hops traversed by a real

packet m originating from v until it reaches the sink µ
is upper-bounded by |p(v, µ)| + 2rot, where |p(v, µ)| is
the shortest path length between v and µ and rot is the
number of CDS rotations until m reaches µ.

Proof: Without loss of generality, let D1 be active
during epoch Wk. Node v ∈ D1 initiates the relay of
a real packet m to the sink µ. Assume that w ∈ D1

is the last node to forward m, before rotating to a
CDS D2 in Wk+1. The transmission of w is overheard
by a node u ∈ D2 ∩ Nw. First, we show via contra-
diction that paths p(v, w) and p(w, µ) are also shortest
paths between the respective sources and destination.
We break the shortest path p(v, µ) into subpaths p(v, w)
and p(w, µ) and assume that p(v, w) is not a shortest
path between v and w. That is, there is a path p∗(v, w)
such that |p∗(v, w)| < |p(v, w)|. Hence, there exist a path
p∗(v, µ) = p∗(v, w) ∪ p(w, µ) with |p∗(v, µ)| < |p(v, µ)|,
which contradicts the assumption that p(v, µ) is the
shortest path.

With the termination of the epoch Wk, packet m has
traversed |p(v, w)|+ 1 hops to reach u ∈ D2. (|p(v, w)| to
reach w and one hop to reach u). The one-hop neighbor-
hood of w can be divided to three possible subsets with
respect to their hop distance to the sink. One subset at a
distance of |p(w, µ)|, one subset at a distance |p(w, µ)|+1,
and one subset at a distance |p(w, µ)|−1, where |p(w, µ)|
is the length of the shortest path between w and µ.
Again, this claim can be shown via contradiction. If there
was a neighbor k ∈ Nw that could reach µ at fewer hops
than |p(w, µ)| − 1, then w has a shorter path to µ via
k, which contradicts the assumption that p(w, µ) is the

shortest path. If there was a neighbor k ∈ Nw with a
shortest path to µ longer than |p(w, µ)|+ 1 hops, then k
could reach µ in fewer hops via w, which contradicts the
fact that every CDS contains shortest paths to µ.

We therefore conclude that in Step 2 of Algorithm 9,
when node u ∈ D2∩Nw continues to forward m to µ via
the shortest path, p(u, µ) has one of the following sizes:

a. |p(u, µ)| = |p(w, µ)| − 1
b. |p(u, µ)| = |p(w, µ)|
c. |p(u, µ)| = |p(w, µ)|+ 1.

The worst case occurs when |p(u, µ)| = |p(w, µ)| + 1.
If m is delivered during D2, packet m traverses in the
worst case

H = |p(v, w)|+ 1 + |p(u, µ)|+ 1 = |p(v, µ)|+ 2

Therefore, the number of hops traversed by m due to
the rotation of CDSs, increases up to 2 hops. The same
process is repeated each time that a CDS rotation occurs.
So in the worst case, the total number of hops traversed
by m is upper-bounded by |p(v, µ)|+ 2rot, where rot is
the total number of rotations required to delivered the
packet.

REFERENCES
[1] J. Cong, A. Kahng, and K. Leung. Efficient algorithms for the mini-

mum shortest path steiner arborescence problem with applications
to vlsi physical design. Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(1):24–39, 1998.

[2] T. Cormen, C. Leiserson, R. Rivest, C. Stein, et al. Introduction to
algorithms, volume 2. MIT Press Cambridge, 2001.

