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Abstract

In this paper, we address the problem of minimizing en-
ergy consumption on transmitting a certain number of in-
formation bits in a CDMA wireless sensor network (WSN).
Both the transmission energy and signal-path circuit en-
ergy consumption are included in the objective function.
The total energy consumption is minimized by jointly op-
timizing the transmission power and time for each active
node in the network. For the numerical solution, we prove
this formulation can be transformed to a convex geomet-
ric programming problem. For the analytical solution, we
prove that the joint optimization on power and time can be
decoupled into two sequential sub-problems: a paramet-
ric linear program in which the transmission time is a pa-
rameter, and a convex optimization problem to determine
the optimal transmission time. Accordingly, closed-form
solutions are found for both sub-problems and hence for
the original formulation. Our results are verified through
numerical examples and simulations.

1 Introduction

1.1 Motivations

Advances in mixed-signal design and microelectronic fab-
rication have made it possible to integrate analog and dig-
ital processing, sensing and wireless communication into
a single integrated circuit. Such a device, when packaged
with a battery and other electronics, forms a small, low
cost sensor unit that can be easily deployed in large num-
bers to form a wireless sensor network (WSN). In the near
future, WSNs will be utilized in a wide range of military
and civilian applications, such as surveillance with ob-
ject detection and tracking, environment and health mon-
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itoring, inventory tracking, failure detection, and many
more [1]. The individual sensors, being powered by small
batteries, have very limited energy capacity. Even in mod-
erate size networks, replacement of batteries will not be
feasible, either due to lack of access or very high cost.
Consequently, strategies for achieving very high energy
efficiency so as to maximize the lifetime of the network
are essential.

Recently, it was established that the energy required to
transmit a given amount of information increases expo-
nentially as the transmission time decreases [3]. This sim-
ple transmission energy-delay tradeoff has been utilized
in the design of energy-efficient packet scheduling pro-
tocols for single-user wireless links. In [4] and [5], the
“lazy scheduling” approach was proposed. According to
this approach, the energy used to transmit packets over a
wireless link is minimized by judiciously varying packet
transmission times according to the delay requirements.
In [6] and [7], traffic smoothing is performed, resulting in
an output packet traffic that is less bursty than the input
traffic, and leading to significant power savings.

Although the tradeoff between transmission energy and
transmission time has been extensively studied in the con-
text of general wireless networks, such work is not directly
applicable to WSNs due to specific features in node orga-
nization and transmission in a WSN. More specifically,
because of the high density of nodes in a WSN, e.g., 20
nodes per meter� is not an unusual case [2], the average
transmission distance between nodes is usually small. On
the other hand, as more sophisticated computational and
sensing functions are incorporated into a node, the circuit
energy consumption will become increasingly significant.
As a result, for such short-distance communications, the
circuit energy consumption is no longer negligible rela-
tive to the transmission energy [13]. Therefore, a more
complicated tradeoff emerges between energy and trans-
mission time; although increasing the transmission time
reduces the transmission energy, it also increases the cir-
cuit energy consumption. Another important feature that
distinguishes a WSN from traditional wireless networks
is the high correlation between nodes in a WSN. Because
WSNs are often designed to cooperate on executing some



joint task, less emphasis is put on per-node fairness. Ac-
cordingly, it is more reasonable to minimize the total en-
ergy consumption in the network instead of minimizing
the energy consumption of individual nodes, i.e., a multi-
user environment is more preferable for the optimization.
Embracing the impact of circuit energy consumption and
the new context of multiple access optimization, a new
formulation is necessary to minimize the overall energy
consumption in a WSN.

1.2 Related Works

A commonly studied approach for improving energy effi-
ciency in WSNs is based on incorporating a “sleep” mode
in the MAC (medium access control) operation (see, for
example, [8, 9, 10, 11] and the references therein). This
approach is motivated by the low duty cycle of sensors in
typical deployment scenarios. Sensors will turn off their
radio during idle times or when other nodes are transmit-
ting. Different implementations have been devised for the
sensor “sleep” operation. For example, in the SMACS-
EAR protocol [8] sensors are scheduled to wake up at ran-
dom times. In the S-MAC protocol [10], nodes are peri-
odically put into sleep. The STEM protocol [9] emulates
a paging channel to wake up sensor by having a separate
ultra low-power radio. The CSMA-based MAC scheme
in [11] shortens the carrier sensing (listening) duration by
turning off the radio during the backoff period.

In the above schemes, the energy gain is achieved by
suppressing energy consumption in the non-transmission
phase (e.g., while a node is listening to the channel). Some
recent studies have focused on controlling the transmis-
sion parameters to significantly improve energy efficiency.
For example, in [12] the optimal packet size that mini-
mizes the transmit energy consumption for a WSN was
studied. The authors in [13]-[14] exploited the trade-
off between transmission and circuit energy consumption
to provide an “optimal” cross-layer coding-modulation
scheme for a single link.

More recently, the focus has shifted towards energy
conservation and protocol design for multi-access trans-
mission. In [15] the authors proposed an energy-efficient
hybrid TDMA/FDMA MAC protocol for WSNs. They
provided an analytical expression for the optimal number
of channels that achieves the lowest power consumption.
The works in [16] and [17] improve upon [13]-[14] by ex-
tending energy minimization to the multi-access case us-
ing a variable-length TDMA scheme. This scheme, how-
ever, has two practical limitations. First, as any TDMA-
based scheme, it requires strict synchronization among
various nodes. Second, its variable-length time-slot as-
signment approach does not scale well in a dense WSN
with many nodes.

1.3 Contributions and Paper Organizations

In this work, we consider the use of CDMA as the channel
access mechanism for sensors in a WSN. We study the op-
timal joint power/time control that minimizes energy con-
sumption in a CDMA-based WSN. Both the transmit and
the circuit energy consumption are accounted for in this
optimization. In our setup, sensors are allowed to trans-
mit data simultaneously to a remote sink using different
spreading (signature) codes. Such a setup was first pro-
posed in [19]. More recently, it was used in [18] to study
the interference-connectivity tradeoff and in [20] for an
ALOHA MAC protocol. In contrast to the TDMA scheme
proposed in [15]-[17], the drawbacks of time synchroniza-
tion and variable-time slot allocation are not present in a
CDMA WSN.

The main contribution of this paper is twofold. First, al-
though the objective function and the constraints in the un-
derlying optimization problem are not convex, by exploit-
ing the special structure of the formulation we success-
fully develop both numerical and closed-form analytical
solutions to this problem. Numerically, this formulation
is converted to a posynomial optimization problem that
can be accurately solved by using geometric programming
(GP). Second, analytically, we prove that the problem of
jointly optimizing the transmission power and transmis-
sion time can be decoupled into two separate sequential
sub-problems. The first is a parametric linear program
for optimizing the transmission power with the transmis-
sion time being a parameter, and the second is a con-
vex optimization problem for finding the optimal trans-
mission time. We present closed-form solutions to both
sub-problems, and consequently, to the original problem.
Numerical examples and simulations are presented to val-
idate our results. We also demonstrate the significant en-
ergy savings achieved by joint transmission power/time
optimization.

The rest of this paper is organized as follows. We de-
scribe the system model in Section II. We formulate the
problem and present the geometric programming-based
numerical solution in Section III. Section IV presents
an approximate closed-form analytical solution to the
energy-minimization problem. Section V presents numer-
ical examples and simulations, and Section VI concludes
our work.

2 Model Description

2.1 System Model

We consider a DS-CDMA-based WSN [19][20] that con-
sists of a set of densely distributed sensor nodes �. The
nodes transmit their data to a remote base station in a
one-hop WSN or to a local cluster head in a clustered



 

 

Figure 1: System model.

WSN [21]. Let o denote the destination node and let �
be the number of active sensors at any given time instant,
as illustrated in Figure 1. The information from the � sen-
sors is transmitted simultaneously over a spread-spectrum
bandwidth of � Hz. The single-sided power spectrum
density of the additive white Gaussian noise (AWGN) is
�� watt/Hz.

Per-cycle transmission power and transmission time
control for all sensor nodes is performed by �. For sensor �
(� � �� � � � � � ), there are �� bits in the queue waiting to be
transmitted to � using transmit power ��� and for a trans-
mission duration 	�. Different transmission rates are sup-
ported by using variable spreading gains. Let the channel
gain between nodes � and � be 
� and assume the channel
is stationary for the duration 	�. The quality-of-service
(QoS) requirement of sensor � is presented by the triple
(��� 	 ������ � ����), where �� is the minimum bit-energy-
to-interference-ratio threshold for the received signal from
sensor �, 	 ������ � 	� is an upper limit on the transmission
delay, and ���� � ��� is the maximum transmit power
(assumed the same for all nodes). As is common in DS-
CDMA systems, we assume BPSK modulation. We must
point out that, although we assume a common ���� for
all nodes and BPSK modulation for the system, the analy-
sis presented is not limited to these specific assumptions,
and the corresponding results can be easily extended to ac-
commodate heterogeneous power constraints and higher
modulation schemes.

Remark: The above system model is suitable for a wide
range of practical WSNs, including clock-driven, event-
driven, and inquiry-driven systems. For a clock-driven
WSN, the remote node � periodically (e.g., with period
	 ) broadcasts beacons to activate simultaneous data trans-
missions from all nodes in �. In this case, � � ��� and
	 ������ � 	 . For an event-driven WSN, a subset of � is
activated simultaneously by the occurrence of an event.
The activated nodes begin to transmit their sensed data
roughly at the same time. Depending on the type of sensed
data, e.g., voice, video, etc., there may be different dead-
lines for the transmissions from different sensors. Such
deadlines are captured by 	 ������ � � � �� � � � � � . For an
inquiry-driven WSN, node � broadcasts the inquiry re-
quest to the set �, leading to a response from those sensors

that have the desired answers. For a real-time inquiry, the
desired information is usually needed by a certain time
limit 	 �����.

2.2 Energy Consumption Model

Consider the �th sensor node with �� backlogged bits. The
energy consumption at this node consists of transmission
energy consumption and circuit energy consumption, i.e.,

�� � ���� � ����	�� (1)

where ��� is the power consumed by the circuit at sensor
�. Following a similar model to the one in [13], ��� can be
written as

��� � 
� � �
�

�
� ������ (2)

where 
� is a transmit-power-independent component that
accounts for the power consumed by the digital-to-analog
converter, the signal filters, and the modulator. ����

def
�

� �
�
� ����� is the power consumed by the power ampli-

fier (PA), whose value is related to the transmission power
via the efficiency of the PA �, where � � ���

��������
.

Physically, � is determined by the drain efficiency of the
RF power amplifier and the modulation scheme [13][22].
Substituting (2) into (1), the energy consumption of sensor
� is given by
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�

�
���	� � 
�	�

�
�

�
���� � 
��	��	�� (3)

where 
��	� � �
� is defined as the equivalent circuit
power consumption. For � active sensor nodes, the to-
tal energy consumption is

��
��� �

��
���

�� �
�

�

��
���

���� � 
��	��	�� (4)

3 Problem Formulation and Numerical So-
lution

The primary objective of our work is to find the optimal
transmission power � 
�� and transmission time 	 
� for each
sensor node � such that the total energy consumption for
transmitting

��
��� �� bits is minimized while the QoS re-

quirement of each transmission is satisfied. Formally, this
is expressed as�������
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��
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��
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�
�
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	 � 	� � 	 ������ � � � �� � � � � �
	 � ��� � ����� � � �� � � � � �

(5)



where ��
def
� ����� � � � � ��� � is the transmit power vector,
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where �� � ��
��

is the transmission rate under the assump-
tion of BPSK modulation and Æ is the orthogonality fac-
tor, representing multiple access interference (MAI) from
the imperfect-orthogonal spreading codes and the asyn-
chronous chips across simultaneous transmitting nodes.
Typical values for Æ are 	

�
and 1 for a chip of rectangu-

lar or sinoide shape, respectively. The second and third
constraints in (5) come from the delay and transmit power
upper bounds.

Because of the cross-product of �� and � in the ob-

jective function and in the
�
��
��

�
�

constraint, (5) is not a

convex optimization problem. Hence, there is no guar-
antee that a locally optimal solution will indeed be glob-
ally optimal. We proceed to show that (5) can be put in a
more standard form that reveals its special structure, for
which an efficient numerical algorithm (geometric pro-
gramming) is available. Moreover, as we show later, an
approximate closed-form analytical solution is also possi-
ble due to the fact that the optimization problem can be
solved sequentially, first with respect to power and then
with respect to time.
Proposition 1: The problem formulation in (5) is a ge-
ometric programming, which can be transformed into a
convex optimization problem of the so-called log-sum-
exponential form so that the globally optimal solution can
be efficiently derived by any numerical algorithm for con-
vex optimization.

Proof : After some simple algebraic manipulations, (5)
can be expressed as
�������������
������������
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(8)

The objective function and all of the left-hand sides of
the constraints in (8) are sums of monomials in (� ���)

with non-negative coefficients. These are known as
posynomials1, and (8) can be solved using geometric pro-
gramming [23]. The above form is still not a convex op-
timization problem. However, with a transformation of
variables, (8) can be converted into an equivalent convex
optimization problem. Let �� � 
���� and �� � 
�	�.
Taking the logarithms of both the objective function and
constraints, (8) is transformed into the following equiva-
lent problem:
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(9)
The log-sum-exponential function ���� �

�� �

��
��� �

���, where � � ���� � � � � ��� � ��, is
a convex function [23]. This implies that the affine
mapping ���� � ���� � �� preserves the convexity of
����. Hence, the objective function and all the constraints
presented in (9) are convex, and so (9) is a convex
optimization problem whose locally optimal solution
(	
�

) is also globally optimal. Taking advantage of this
useful property, efficient numerical algorithms for convex
optimization problem, such as the primal-dual interior
point method [23], can be used to solve for (	 
�

).
The globally optimal solution of (5) is simply given by
� 
�� � �����
� � and 	 
� � �����
� �, for � � �� � � � � � .
Thus, Proposition 1 follows.

Note that the transformation from the posynomial-form
geometric program (8) to the convex-form problem (9)
does not involve any computation; and the parameters for
the two problems are the same. Therefore, the computa-
tional complexity is not increased by taking this transfor-
mation; it simply changes the form of the objective and
constraint functions.

4 Closed-Form Analytical Results

The transformation of the optimization problem in (5) into
(9) facilitates an accurate and very efficient numerical so-
lution for finding the globally optimal transmission power
and time for all active nodes in the system. In this section,
we derive a closed-form analytical solution that may be
viewed, in general, as a tight approximation of the exact
solution. For all practical purposes, this analytical solu-
tion is indistinguishable from the numerical solution. The

1A posynomial in the variable � � ���� � � � � ��� � �� is a linear
combination of monomials with nonnegative coefficients. Formally, it is

defined as ���� �
��

���
���

���
� �

���
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��	
� , where �� � � and

��� � �, � � �� �� � � � � �.



closed form of this solution makes it quite attractive for
any real time transmit control operation.

The analytical solution is obtained by transforming the
joint optimization problem in transmission power and
time into two sequential sub-problems. This is achieved
by first obtaining the optimal transmission power as an
explicit function of the transmission time �, for all fea-
sible transmission times. Then, the optimal value of � is
derived. Mathematically, this decoupling is described in
the following section.

4.1 Sub-Problem 1: Parametric Solution for Opti-
mal Transmission Power

Treating the transmission time vector� as a given system
parameter with 	� � 	 ������ , problem (5) is equivalent to
the following linear programming problem:
�������
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�
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� � Æ����

���

�

���� � Æ����

���

��
��� 
���� � ������

��
�

� � �� � � � � �
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(10)
Regarding the optimal solution to (10), we have the fol-

lowing proposition.
Proposition 2: If the optimal solution to (10) exists, i.e.,
the feasible set depicted by the constraints in (10) is not
empty, then this optimal solution is the solution to the fol-
lowing set of linear equations
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Proof : Let ������
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partial derivations are
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and
���
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�	�

� � 	� for � �� �� (13)

The derivations indicate that ������ is a strict mono-
increasing function of ��� and a strict mono-decreasing
function of ��� , � �� �.

Let the optimal solution to (10) be �
� �
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�� �. Then it follows that
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tor �� � ����� � � � � ��� �. Suppose for some node
�� � � � � � , ����
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node, there must be some increment ���� � 	 such
that replacing � 
�� by � 
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ing the transmit power of other nodes intact results in
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fore, �
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� is also a feasible solution to problem (10).
However, it is easy to show that
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�

�� 	� is strictly
smaller than

��
��� �



��	� by����	�, leading to a conflict

with the supposition that �
� is the optimal solution that
minimizes the objective function

��
��� ���	�. Therefore,

there can not be any node � that does not meet the
equality in the first constraint in (10). Then Proposition 2
follows.

After some mathematical manipulations of (11), we ar-
rive at
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Define the power index of node � as:
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�
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� (15)

Equation (14) can be rewritten as
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Summing over � leads to
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where �

def
�
��
��� ��. Therefore, the solution to (11), and

also the optimal solution to problem (10) if it exists, is
simply given by

��� �
Æ��
��� ��

�� �

���� (18)

Assuming ��� � �, i.e., normalizing ��� by the back-
ground AWGN, (18) is further simplified to
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Given any feasible transmission time vector �, (19)
presents the optimal transmit power vector in terms of �
if such optimal solution exists. Regarding the second con-
straint in (10), a necessary condition for the existence of
the optimal solution is given by

��� �
Æ��
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The inequality (21) depicts a polyhedron in ��
� within

which a feasible solution to (10) exists (thus, the optimal
solution exists). Summing over � in (21), we have

�
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where 


def
�
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��� 
�. To provide a tractable closed-form

solution, we relax (21) into

�� � Æ
������ � � �� � � � � �� (23)

Note that this relaxation may result in transmission pow-
ers for some sensor nodes that exceed the upper bound
���� if the received signal quality constraints are to be
satisfied for all nodes. However, for a typical CDMA-
based WSN application, which is characterized by low
data transmission rates, large spread spectrum bandwidth,
and a relatively small SINR requirement, the ��’s are very
small and �
 	 �. Consequently, the expansion of the
feasible set through (23) will result in a tight approxima-
tion to the original polyhedron in (21), as will be demon-
strated later in Section 6.

To summarize the results of this section, for any given
feasible transmission time �, the parametric optimal
transmit power is given by (19). In order to guarantee
the existence of this optimal power allocation, (23) and
(22) must be satisfied, where �� is defined in (15) and
�
 �

��
��� ��.

4.2 Sub-Problem 2: Optimization of Transmission
Time

From (15), it is clear that for given ��� ���� , and Æ, the
power index �� and the transmission time 	� are equivalent
measures in the sense that there is a one-to-one mapping
between �� and 	�:
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In the following optimization, it is more mathematically
convenient to work with ��. Let �

def
� ���� � � � � ���. The

problem of determining the optimal value of � is formu-
lated by substituting (24), (19), and the constraints (23)
and (22) into the original optimization problem (5). This
results in���������
��������

������
���
�
�
�

���� � � � � ���

def
�
��
���

�
Æ�����

�
��

���� � 
��	�

�

 Æ����
���

��� ���
�

����
Æ����

Æ�������
�����
�

� �� � Æ
������ � � �� � � � � ���
��� �� � Æ������

��Æ������
(25)

where the lower bound on �� in the first constraint comes
from the delay bound requirement 	 �. In most cases,
(25) is a well-formulated problem, meaning that the upper
bound requirement on �� is larger than its lower bound, so
the feasible solution set to (25) is not empty. However, in
the case when both 
� and ���� are extremely small to the
extent that the upper bound on � � is smaller than its lower
bound, the feasible set to (25) is null, and no solution ex-
ists to problem (5).

Rewriting the objective function 
���� � � � � ��� in (25)
by expanding the products results in
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As stated in the formulation of sub-problem 1, for a typ-
ical WSN application, �� 	 �. Therefore, (26) is tightly
approximated by


���� � � � � ��� �
��
��� 


��
� ����

��� �
��
�

��
���


��	�Æ����

���

�
��
���


�Æ����

�

�
�

�� �

�

��
���


��	���

��
�

��
���


��	����(27)

where ��
def
� Æ����

�
is a node-dependent constant and �

def
���

��� Æ
��
��� �� is a system-dependent constant.

Proposition 3: The function 
���� � � � � �� � in (27) is
strictly convex.
Proof : The first-order partial derivative of 
���� � � � � ���
with respect to ��, � � �� � � � � � , is given by

�


���
�

�

��� �
�	
� 
��	���

�	�
� (28)

The second-order partial deviation is given by

�	


��	�
�

��

��� �
��
�

�
��	���
���

� (29)

and for � �� �

�	


������
�

��

��� �
��
� (30)

Therefore, the Heissian of 
���� � � � � �� � is given by2

�	
���� � � � � �� � �
��

��� �
��
��
� (31)

2The element ��� of the Heissian of a multi-variable function

����� � � � � ��� is defined as ��� �
���

�	��	�
, for 	� � � �� � � � � �.



where � is an � 
 � matrix with all elements equal to
1 and 
 is an � 
 � diagonal matrix whose �th di-
agonal element is 	���
�

��
�

. For any non-zero vector � �

� �� � � � �  � � � �� , it is easy to show that

� 
 � 
 �� �

��
���

��
���

 � �

� � � � � � ��  � �
	 � 	� (32)

and

� 

 
 �� �

��
���

�
��	���
���

 	� � 	� (33)

Therefore, �	
���� � � � � �� � is positive definite, and
thus 
���� � � � � �� � is a strictly convex function of
���� � � � � ���.

Replacing 
���� � � � � ��� in the objective function in
(25) by its approximation in (27), we arrive at the follow-
ing convex optimization problem
�����
����

������
���
�
�
�

���� �
��
���

���
���
��

���
��� 
��	���

����
Æ����

Æ�������
�����
�

� �� � Æ
������ � � �� � � � � ���
��� �� � Æ������

��Æ������
�

(34)
Since (27) is a tight approximation, we can also expect
that the optimal solution to (34) will be a tight approxima-
tion to the optimal solution of (25).

The optimal solution ��
� � � � � � �


�� to the constrained

problem (34) is related to the solution of the uncon-
strained minimization of 
���. Being strictly convex,

���� � � � � �� � must have only one unconstrained mini-
mum solution, which can be derived by solving the fol-
lowing equation set:

�


���
�

�

��� �
�	
� 
��	���

�	�
� 	� � � �� � � � � �� (35)

Through some mathematical manipulations, it can
be shown that the unconstrained optimum solution
��
��� � � � � �



�� � to 
���� � � � � ��� is given by

�
�� �

�

��	����

� �
��
���

�

��	���

� � � �� � � � � �� (36)

Because of the convexity of 
���, if any of the � 
�� in
(36) violates the upper or the lower bound on � � in (34),
then the corresponding constrained optimal solution � 
�
must itself be the upper or the lower bound, depending
on which bound is being violated. Accordingly, the op-
timal solution to the constrained problem is given in the
following proposition.
Proposition 4: Let ��
� � � � � � �



�� denote the optimal so-

lution to (34). Let �����

def
� Æ
����� and ��
 �

def
�

Æ����
Æ�������

�����
�

be the upper and lower bounds on � �, re-

spectively. Let � denote the set of all active nodes, and
let � denote the set of active nodes for which � 
� � �

���
�

or �
� � ��
 � . Define ��
def
� � � �

��� �
� and �	
def
�

Æ������
��Æ������

����� �
� . Then for � � �� � � � � � ,

1. If
��
��� �



� � Æ������

��Æ������
, then �
� ��

�
���
� � ��

�
�����

��
�

�����

�
����

� ��
 �

�
.

2. If
��
��� �



� � Æ������

��Æ������
, then �
� ��

�
���
� � ��

�
�����

�����

�
����

� ��
 �

�
.

Note: In either of these two cases, at least one �
� will
equal the intermediate value.
Proof : The proof actually provides a recursive algorithm
for solving for �
� .

Case 1: First, we consider the case when
��
��� �



� �

Æ������
��Æ������

. Let� be initially empty. Because of the strict
convexity of 
���, if for some �, the unconstrained opti-
mal solution �
�� exceeds its upper bound, i.e., �
�� � �

���
� ,

then the constrained optimal solution must be � 
� � �
���
� .

Similarly, if �
�� � ��
 � , then �
� � ��
 � . Such nodes,
whose unconstrained optimal solutions exceed their upper
or lower bounds are added to the set �. With the knowl-
edge of �
� for � � �, the objective function in (34) is
equivalent to the following function


��� ��� �
�

�� � ��



�
�

�����


��	���

��
�
�
���


��	���

�
�

�
��
���


��	���� (37)

where ��

def
�
�
����� ��. Because �
� is known for any

� � �, replacing the objective function in (34) by (37)
leads to an inherited problem that is of the same form as
(34) except that the number of variables is reduced from
��� to �� ���. With some mathematical manipulations,
it can be shown that the unconstrained optimal solution to
(37) is given by

�

�

�� �
��
�

��	����

� �
�
�����

�

��	���

� � � � �� (38)

which is a recurrent version of (36) in terms of �� and �.
The above process is repeated and the values of �� and
� are updated based on the newly computed values of � 
�
until all remaining unconstrained solutions � 
��, � � � �
�, of the inherited problem meet their respective upper
and lower bounds. In the last iteration, the remaining � 
� ’s,
� � � ��, are equal to their unconstrained counterparts
given by (38).



Once all the �
� have been computed, it should be ver-
ified that

��
��� �



� � Æ������

��Æ������
. If this is not the case,

then the solution of �
� falls into the next case.
Case 2: Consider the case when

��
��� �



� �

Æ������
��Æ������

. In this case, the objective function in (34)
degenerates into the following function


	���
def
� ���� Æ����

��

��
���


��	���

��
�

��
���


��	����

(39)
Accordingly, (34) is equivalent to the following problem
�����
����

������
���
�
�
��
���

���
���
��

������
��� �� �

Æ������
��Æ������

�
Æ����

Æ�������
�����
�

� �� � Æ
������ � � �� � � � � ��

(40)
In this case, it is easy to show that

�	
	���� � � � � �� � � diag�
�
��	���

��	
� � � � �

�
��	���

���
��

(41)
which is a positive definite matrix. Therefore, 
	��� is a
strictly convex function. Under the condition

��
��� �



� �

Æ������
��Æ������

, the optimal unbounded (i.e., ignoring the up-
per and lower bounds on ��) solution to 
	��� is given by

�
�� �
Æ������

��Æ������

�

��	�����

���

�

��	���

� (42)

Accounting for the upper- and lower-bound constraints
of �� and following a similar process to case 1, it can be
found that �
� is equal to �

���
� , ��
 � , or

�
� �
�	
�

��	����

�����
�


��	���
� � � � ��� (43)

If in one of the computational cycles � 
� is found to be
equal to Æ
����� or Æ����

Æ�������
�
�����

for all � � �� � � � � � ,

then there is no feasible solution to (34) because the con-
straint

��
��� �



� �

Æ������
��Æ������

can not be satisfied.
The above proof actually describes the “mechanics” for

computing the optimal solution to (34). A pseudo-code
representation of the computational algorithm is outlined
in Table 1. The following example further illustrates the
operation of this algorithm.
Example: Let � � �, � � ���, 
��	� � � � � � 
��	� �
�, �� � �	 � �� � �, �� � �, �� � �. The upper
bounds are set to �

���
� � 	��� 	��� 	�	��� 	�	�� 	�� for � �

�� � � � � �, respectively. Let ��
 � � 	�	� for all nodes, and
let Æ������

��Æ������
� 	��. To determine �
� for � � �� � � � � �,

we first assume that
��

��� �


� � 	�� and consider case 1

of Proposition 4 (once the �
� ’s have been computed, we

Initialization:For � � �� � � � � � , �� �
Æ
���
�

, �
��� � Æ������,
and ����� � Æ
���

Æ
������ �����
�

	 �
��

���
Æ������ ��, 
� � �, 
� �

Æ������
��Æ������

� � ��� � � � � ��,� � �,
and flag-continue = TRUE
For all � � ���
�
��	
� �
���� �

��

�
�����

��
�

�����

�
����

,

�
��	
� �
���� �

��

�
�����

�����

�
����

End for
� � � // start with case 1

Iteration: While flag-continue = TRUE, do
flag-continue = FALSE
For all � � ���, set ��
� � �

��	
� �
����

For all � � ���, do
If ��
� 
 �


��
� ,

Set ��� � �
���

� � � � ���
flag-continue = TRUE

Else if ��
� � ����� ,
Set ��� � ����� ,� � � � ���,
and flag-continue = TRUE

End if-else
End for
Update 
�:

If � � �, 
� � ���
��� ���

Else, 
� �
Æ������

��Æ������
��

��� ���

Update � ��	
� �
���� as in the initialization step

End while

If� � �, exit // no feasible solution
Else for all � � ���, set ��� � ��
�
If (� �� � ��

��

���
��� �

Æ������
��Æ������

) or

(� �� � ��
��

���
��� �

Æ������
��Æ������

)
output ���� � � � � � �

�
� � and exit

Else // case 2
Set� � �, flag-continue = TRUE, � � �,
and go to Iteration

Table 1: Pseudo-code for computing the optimal solution
for transmit power and time.
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Figure 2: Sensing field used in the numerical examples.

can verify whether or not case 1 is the appropriate case).
we initially set � � � and �� � �.

In the first iteration, according to (38), we have � 
�� �
�
�	 � �
�� � 	�	�, �
�� � 	��, and �
�� � 	���.
Comparing these values with their respective upper and
lower bounds, we find that �
�� and �
�� violate their up-
per bounds. Therefore, we set �
� � �

���
� � 	�	� and

�
� � ����� � 	�� as their final values. Updating� and ��,
we have � � ��� �� and �� � 	���.

In the second iteration, we have �
�� � �
�	 � �
�� �
	�	����. Comparing these values with their respective
upper and lower bounds, we notice that � 
�� violates its
upper bound. Therefore, � 
� � �

���
� � 	�	��. Updating

� and ��, we have � � ��� �� �� and �� � 	����.
Finally, in the third iteration, we have �
�� � �
�	 �

	�	���. Since both of these values are compliant with
their upper and lower bounds, � 
� � �
�� � 	�	��� and
�
	 � �
�	 � 	�	���. After verifying that

��

��� �


� � 	��,

the algorithm terminates.
Once the �
� ’s have been computed, the optimal transmit

power and transmission time are obtained by combining
(19), (24), and Proposition 4:

� 
�� �
Æ��
��� �
�
�� �





� (44)

	 
� �
Æ����

��
�
��� �
� �� � � �� � � � � � (45)

where �


def
�
��
��� �



� .

5 Numerical Investigations

In this section, we verify the accuracy of our analysis by
comparing the analytical results obtained in Section IV
with those of the numerical algorithm presented in Section
III. The effect of relaxing the constraints and that of other
approximations made in our analysis are also investigated.

5.1 System Settings

We consider a �	!
 �	! square sensing field, as shown
in Figure 2, over which � homogeneous sensors are dis-
tributed uniformly. The sink node is located at �"� 	�. For

each sensor node, the power amplifier energy efficiency is
set to � � 	��. The network is clock-driven and in every
cycle of 1 second, all � sensors transmit their data simul-
taneously using DS-CDMA. A rectangular spreading chip
is assumed, i.e. Æ � 	

�
. The threshold of the received

SINR is 4 for all nodes. Each transmission must be com-
pleted within 	 ������ � � second. The spread spectrum
bandwidth is � � � MHz and the single-sided power
spectrum density of AWGN is �� � �	��� W/Hz. For
sensor node �, the channel gain is given by


� � #�$��

	
$�

$�


�!
%�
�
&	
�� �&	

"�



� (46)

where #�$�� � #�#
$
�

�
%�&�
�

is the path loss of the close-in dis-

tance $�, '� and '	 are the antenna gains of the transmit-
ter and the receiver, respectively, and ( is the wavelength
of the carrier. We take $� � �	 meters and '�'	 � �.
We also set the carrier frequency to ��� GHz. Let $� be the
distance between node � and the sink. The parameters % �,
� � �� � � � � � , are i.i.d. lognormally distributed random
variables with standard deviation 7dB. They account for
the effect of shadowing. Moreover, &�� and &"� are the
real and the imaginary parts of a Rayleigh fading chan-
nel gain, which follows a Gaussian distribution of mean
zero and variance �

	
. Finally, ) is the path loss exponent

and is assumed to be 2 in our system, i.e., we consider a
free-space loss model.

5.2 Numerical Results

In Figures 3-8, we examine the accuracy of our analysis by
comparing the results obtained from the GP-based numer-
ical algorithm and from the analytical algorithm proposed
in Sections III and 4 under various network scales. For a
given cycle, the channel gain of each node is generated ac-
cording to (46). Both numerical and analytical algorithms
are applied to calculate the optimal transmit power and
transmission time for each node. The traffic generated by
different nodes in each cycle is i.i.d. with a Poisson dis-
tribution of mean �		 bits. Although other, more realis-
tic traffic models can be used in the simulations, this will
have no impact on the qualitative (relative) performance
of various optimization approaches. To illustrate the ben-
efits of jointly optimizing transmit power and time, we
also include in Figures 3, 5 and 7 the performance of a
“fixed-transmission-time” strategy [3], whereby the trans-
mission time for each sensor is set to the delay constraint
(��) and the transmit power is determined using (19). It
can be observed that despite the approximate nature of our
closed-form solution, this solution is almost indistinguish-
able from the GP-based numerical solution. This accuracy
can be explained by noting that for a typical CDMA-based
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Figure 3: Trace of energy consumption per bit for ten suc-
cessive cycles (� � �	).

WSN with a low data transmission rate, large spread spec-
trum bandwidth, and a small received SINR requirement,
�� 	 �.

It should be noted, however, that the relaxation of the
constraint on �� from (21) into (23) may result in some
nodes having optimal transmit powers greater than ����.
Such nodes will obviously have to use ���� as their trans-
mit power. Fortunately, this capping of power will only
impact the the signal quality of such nodes (the SINR of
other nodes will actually improve).

In Figures 7 and 8, we study the severity of violating
the ���� constraint as a function of ����. We use two
metrics for this purpose: violation rate and violation de-
gree. The violation rate is defined as the average percent-
age of sensors in a cycle whose optimal transmit powers
exceed ����. The violation degree is defined as the aver-
age power surplus over ���� required by those violating
sensors. This value is normalized by ����. It is observed
that for a wide range of � values (20 to 100), even under a
tight power constraint of �	 mW, only a small percentage
of sensors (� ��) violate the ���� constraint to a de-
gree of ���. Effectively, this says that in each transmis-
sion cycle, about �� of the information bits are received
at the sink below their SINR threshold with a normalized
deficit of 	���. Taking advantage of the rich data redun-
dancy possessed by a WSN, the �� data loss can be easily
compensated for by other data transmitted from neighbor-
ing nodes. Using a more practical value for ���� � �		
mW [13], the violation rate and degree are reduced to be-
low 	��� and �	�, respectively (over various values of
� ).
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Figure 4: Trace of average sensor transmission time in ten
successive cycles (� � �	). 
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Figure 5: Trace of energy consumption per bit for ten suc-
cessive cycles (� � �	). 
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Figure 6: Trace of average sensor transmission time in ten
successive cycles (� � �	).
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Figure 7: Trace of energy consumption per bit for ten suc-
cessive cycles (� � �		). 
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Figure 8: Trace of average sensor transmission time in ten
successive cycles (� � �		). 
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Figure 9: Violation rate of transmission power constraint
vs. ����.
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Figure 10: Violation degree of transmission power con-
straint vs. ����.

6 Summary

In this paper, we studied the problem of jointly optimiz-
ing the transmission powers and times of sensor nodes
in a DS-CDMA WSN. The optimization was carried out
for the purpose of minimizing the total energy consump-
tion in the network. A comprehensive energy model was
used, which accounts for both the transmit power con-
sumption and the circuit energy consumption. The prob-
lem was formulated as a non-convex geometric program.
In general, the non-convexity of the objective function and
the constraints in such problems makes it quite challeng-
ing to obtain closed-form solutions. We first showed that
the formulation can be transformed into a convex geo-
metric program for which fast computational algorithms,
such as the Interior Point Method, are applicable. Then,
by exploiting the special structure of the underlying for-
mulation, we derived a closed-form tight approximation
for the optimal transmit powers and transmission times.
Our closed-form solution is based on decoupling the op-
timization problem into two sequential sub-problems: a
parametric linear program of the transmit power while
transmission time serving as the parameter, and then an
approximated convex program of the transmission time.
The goodness of our solutions were verified through com-
parisons with simulation-based numerical results. These
comparisons indicate that the closed-form expressions are
extremely accurate, and can therefore be used as a ba-
sis for on-line real-time determining the optimal transmit
power and times in a WSN.
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