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Abstract— One of the challenging issues in exchanging
multimedia information over a network is how to deter-
mine a feasible path that satisfies all the quality-of-service
(QoS) requirements of multimedia applications while main-
taining high utilization of network resources. The latter
objective implies the need to impose an additional optimal-
ity requirement on the feasibility problem. This can be
done through a primary cost function (e.g., administrative
weight, hop-count) according to which the selected feasi-
ble path is optimal. In general, multi-constrained path se-
lection, with or without optimization, is an NP-complete
problem that cannot be exactly solved in polynomial time.
Heuristics and approximation algorithms with polynomial-
and pseudo-polynomial-time complexities are often used to
deal with this problem. However, existing solutions suf-
fer either from excessive computational complexities that
cannot be used for online network operation or from low
performance. Moreover, they only deal with special cases
of the problem (e.g., two constraints without optimization,
one constraint with optimization, etc.). For the feasibil-
ity problem under multiple constraints, some researchers
have recently proposed a nonlinear cost function whose min-
imization provides a continuous spectrum of solutions rang-
ing from a generalized linear approximation (GLA) to an
asymptotically exact solution. In this paper, we propose an
efficient heuristic algorithm for the most general form of the
problem. We first formalize the theoretical properties of the
above nonlinear cost function. We then introduce our heuris-
tic algorithm (H_MCOP), which attempts to minimize both
the nonlinear cost function (for the feasibility part) and the
primary cost function (for the optimality part). We prove
that HMCOP guarantees at least the performance of GLA
and often improves upon it. H_-MCOP has the same order
of complexity as Dijkstra’s algorithm. Using extensive sim-
ulations on random graphs and realistic network topologies
with correlated and uncorrelated link weights from several
distributions including uniform, normal, and exponential,
we show the efficiency of H_MCOP over its (less general)
contenders in terms of finding feasible paths and minimizing
their costs under the same level of computational complex-
ity.
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I. INTRODUCTION

Multimedia systems process and disseminate multiple
time- and quality-dependent media such as video, voice,
and data in three different forms [1]: standalone systems,
systems connected via dedicated links, and systems con-
nected via a wide-area network. While the popularity of
the first two forms is increasing at a rapid rate, the last
form cannot be widely used due to the shortcomings of
the current best-effort Internet technology. However, the
continuous demand for exchanging multimedia information
over the Internet is calling for new networking services
(e.g., Diffserv, Intserv, MPLS, ATM) that are geared to-
wards providing quality-of-service (QoS) guarantees. To
support the expected functionalities of distributed multi-
media applications, multimedia information needs to be
transfered over the network with the guarantee of several
QoS requirements (e.g., bandwidth, delay, jitter, reliabil-
ity). As shown in Figure 1, two multimedia systems can
communicate using one of the several alternative paths in
the network. Since each path can only guarantee a certain
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Fig. 1. Example of a distributed multimedia application.

level of QoS, network operators need to identify a feasible
path that satisfies the QoS requirements of the applica-
tion while simultaneously achieving efficient utilization of
network resources. This problem of finding a feasible, pos-



sibly optimal, path subject to several constraints is known
as QoS (or constraint-based) routing [2], [3], [4], [5], [6],
[7]. QoS routing is the first step that needs to be done
in both reservation-based services (e.g., Intserv, MPLS,
ATM) as well as reservationless services (e.g., Diffserv).
For example, in the ATM PNNI protocol [8], constraint-
based routing is performed by source nodes to determine
suitable paths for connection requests. Similarly, in MPLS,
which is a convergence of several efforts aimed at combin-
ing the best features of IP and ATM [9], a source router se-
lects a path subject to QoS requirements and uses a signal-
ing protocol (e.g., RSVP or CR-LDP) to reserve resources
along that path. For QoS routing, routers need informa-
tion about available network resources [9]. The mechanism
for acquiring such information can be part of the path es-
tablishment protocol, as in the case of PNNI, or it may
be provided via existing routing protocols, as in the case
of MPLS. For example, MPLS relies on protocols such as
OSPF (Open Shortest Path First) [10] to provide the link
state information (e.g., delay, bandwidth, etc.). This re-
quires slight extension of OSPF, as described in [11]. The
type-of-service (TOS) field in OSPF, which has not been
much used in the past, has now been redefined to advertise
multiple link parameters (see [11] for details). In the case
of Diffserv, the constraint-based routes can be requested,
for example, by network administrators for traffic engineer-
ing purposes. Provisioning of such routes can also be used
to guarantee a certain service level agreement (SLA) for
aggregated flows [7].

In general, routing consists of two basic tasks: distribut-
ing the state information of the network and searching
this information for a feasible, possibly optimal path. In
this paper, we focus on the second task and assume that
the true state of the network is available to every node
(e.g., via link-state routing protocols such as OSPF) and
that nodes use this information to determine end-to-end
paths between distributed multimedia systems (see [12]
for QoS routing under inaccurate information). Each link
in the network is associated with multiple QoS parame-
ters which can be roughly classified into additive and non-
additive [13], [14]. For the additive parameters (e.g., de-
lay, jitter, administrative weight), the cost of an end-to-end
path is given by the sum of the individual link values along
that path!. In contrast, the cost of a path with respect to
(w.r.t.) a non-additive parameter, such as bandwidth, is
determined by the value of that constraint at the bottle-
neck link. It is known that constraints associated with
non-additive parameters can be easily dealt with a prepro-
cessing step by pruning all links that do not satisfy these
constraints [15]. Hence, in this paper we will mainly focus
on additive QoS parameters and assume that the optimal-
ity of a path is evaluated based on an additive parameter
(e.g., administrative weight, hop-count). The underlying
problem can be stated as follows.

Definition 1 Multi-Constrained Optimal Path (MCOP)

IMultiplicative constraints, such as link reliability, can be trans-
formed into additive constraints.

Problem: Consider a network that is represented by a di-
rected graph G = (V, E), where V is the set of nodes and
E is the set of links. Each link (i,j) € E is associated
with a primary cost parameter ¢(7, j) and K additive QoS
parameters wy(i,j), k = 1,2,...,K; all parameters are
non-negative. Given K constraints ¢, k =1,2,..., K, the
problem is to find a path p from a source node s to a des-
tination node ¢ such that:

() wi(p) = X jyepwr(isg) <cp for k=1,2,..., K, and
(ii) c(p) = 2 (ij)yep €(é,J) is minimized over all feasible
paths satisfying (i).

For K = 1 the MCOP problem is known as the restricted
shortest path (RSP) problem, which is NP-complete [16].
A slightly different version of the MCOP problem is known
as the multi-constrained path (MCP) problem, which aims
at finding any feasible path w.r.t. multiple constraints (no
path optimization is done). For K > 2 the MCP problem
is also known to be NP-complete [17], [18]. Both the RSP
and MCP problems can be solved via pseudo-polynomial-
time algorithms whose complexities depend on the actual
values of the link weights (e.g., maximum link weight) in
addition to the size of the network [19], [18]. However,
these algorithms are computationally expensive if the val-
ues of the link weights are large. To cope with the NP-
completeness of these problems, researchers have resorted
to several heuristics and approximation algorithms.

For the RSP problem, several different solutions are pro-
posed in the literature. The author in [20] proposed the
Constrained Bellman-Ford (CBF) algorithm. Although
this algorithm exactly solves the RSP problem, its running
time grows exponentially in the worst case. The author
in [19] presented two e-optimal approximation algorithms
with the complexities of O(loglog B(m(n/e)) + loglog B)
and O(m(n?/e€)log(n/e)), where B is an upper bound on
the solution (e.g., the longest path), n is the number of
nodes, m is the number of links, and € shows how far the
solution from the optimal. The basic idea behind these ap-
proximations is to bound input data through rounding and
scaling it and then to use a pseudo-polynomial-time algo-
rithm. In [21] the author provided another e-optimal ap-
proximation with the complexity of O(mn(1+1/€)+n?(1+
1/€)(logn +log(1+1/€))). In [22] the authors considered a
related problem, in which it is needed to find the least-cost
path from a given source to all destinations while satis-
fying the given constraint. For this problem, the authors
provided an e-approximation algorithm with the complex-
ity of O((m +nlogn)D/e€), where D can be at most n — 1.
In [23] the authors proposed the e-optimal approximation
algorithm for a RSP-related problem, in which one link
weight is a function of the other. The above approxima-
tion algorithms provide better performance in minimizing
the cost of returned feasible paths as € goes to zero. How-
ever, small values of ¢ make the computational complexity
of such algorithms prohibitive for online network operation.
Accordingly, the author in [24], [25] modified e-optimal ap-
proximation algorithms in [19] to provide better scalabil-
ity in hierarchical networks. Another approach to the RSP
problem is to find the k-shortest paths w.r.t. a cost function



defined based on the combination of link weights and the
given constraint, hoping that one of these paths is feasible
and near-optimal [26], [27], [28]. The value of k determines
the performance and overhead of this approach; if k is large,
the algorithm has good performance but its computational
cost is expensive. A similar approach to the k-shortest
paths is to implicitly enumerate all feasible paths [29], but
this approach is also computationally expensive. The au-
thors in [30] proposed a distributed heuristic solution for
RSP, called the delay-constrained unicast routing (DCUR)
algorithm. Tts message complexity is O(n?), where n is the
number of nodes. The basic idea is to explore the graph
based on the concatenation of two segments: (1) the so-far
explored path from the source s to a node u; (2) the least-
delay or the least-cost path from the node u to the desti-
nation ¢. In [31] the authors considered the same DCUR
algorithm and provided some improvement over the orig-
inal DCUR by reducing the message complexity to O(n).
In [32] the authors considered a similar algorithm to DCUR
and discussed its use in multipath routing [33]. In [34] the
authors provided a distributed algorithm based on probing
and backtracking. In addition to the delay and cost, this
algorithm considers bandwidth as well. Several researchers
investigated Lagrangian-based search in which the single
link weight (e.g., delay) and the cost are linearly combined
as a single metric, hoping that the shortest path w.r.t. this
single metric is feasible while minimizing the cost. A key
issue here is how to determine the appropriate weights (or
multipliers) while combining the delay and cost. In [35] the
authors proposed a systematic way of searching for appro-
priate weights to combine the delay and the cost as follows.
The algorithm finds the shortest path according to the cur-
rent linear combination of the delay and the cost. Using
this shortest path, it then adjusts the weights of the delay
and the cost in the linear combination and repeats itself to
approach the optimal path. The authors showed that this
search takes finite iterations of Dijkstra’s algorithm assum-
ing that paths are uniformly distributed in the delay-cost
space. The same Lagrangian-based search with some ex-
tensions was also considered by others (e.g., [28], [36], [37]).
For example, the authors in [28] considered the k-shortest
path algorithm to close the gap between the optimal solu-
tion and the returned path based on the linear combination.
Although the computational results indicate order of mag-
nitude savings, the amount of time to determine an optimal
path may be excessive in some cases. In [37], the authors
showed that the worst-case complexity of the above algo-
rithm is O(m?log®(m)), i.e., polynomial time. The above
algorithms are especially proposed for the RSP problem
(i.e., they do not consider multiple constraints) and their
computational complexities are often excessive in the worst
case.

In [18] the author considered the MCP problem under
two constraints and proposed an intuitive approximation
algorithm based on minimizing a linear combination of the
link weights. More specifically, this algorithm returns the

def

shortest path w.r.t. [{€) = aw; (p) + fw2(p) by using Dijk-
stra’s shortest path algorithm, where o, 3 € Z+. The key

issue here is to determine the appropriate « and 3 such that
an optimal path w.r.t. [(e) is likely to satisfy the individual
constraints. Based on minimizing an objective function of
the form f(p) = max{w:(p), c1} + max{wa(p),c2}, the au-
thor in [18] provided two sets of values for o and 3: (a)
a=08=1;(b) a =1and f = \/c1/cs. Using either
one of these sets as a good guess, the algorithm computes
the shortest path w.r.t. the above linear combination. If
the returned path is feasible w.r.t. both constraints, then
the algorithm succeeds in finding a feasible path within
the complexity of Dijkstra’s algorithm. However, if the
returned path is not feasible, then the algorithm cannto
proceed. Actually, the search can continue by using differ-
ent values for a and 3, and can lead to finding a feasible
path. In [38], we invastigated this approach and proposed
an approximation algorithm called Approx 2CP that dy-
namically searches for approapriate values of a and 3 with
the complexity of O(log B(m+nlogn)). Another heuristic
for the MCP problem under two constraints was proposed
in [39]. In this study, the original problem was modified by
scaling down the values of one of the two link weights to
bounded integers. It was shown that the modified problem
can be solved by using Dijkstra’s (or Bellman-Ford) short-
est path algorithm and that the solution to the modified
problem is also a solution to the original one. When Dijk-
stra’s algorithm is used, the computational complexity of
the algorithm is O(z2n?); when Bellman-Ford algorithm is
used, the complexity is O(znm), where z is an adjustable
positive integer whose value determines the performance
and overhead of the algorithm. To achieve a high prob-
ability of finding a feasible path, = needs to be as large
as 10n, resulting in computational complexity of O(n?).
In [40] this heuristic algorithm is generalized to more than
two constraints with the complexity of O(z% - ... 2% _,n?)
or O(xq-...-xg_1nm), where z1,...,xx_1 are adjustable
integers for each constraint. In [41] the authors extended
Bellman-Ford algorithm to address the problem under two
constraints. For finding feasible paths under an arbitrary
number of constraints, we proposed a randomized algo-
rithm (called R-MCP) in [42]. The complexity of R_-MCP
is K + 2 times that of Dijkstra’s algorithm, where K is the
number of additive constraints. The authors in [43] also
addressed the MCP problem under an arbitrary number of
constraints, and provided an algorithm (called TAMCRA)
using the k-shortest path algorithm in [44] along with a
nonlinear cost function. The complexity of TAMCRA is
O(kmlog(kn) + k®>m), where k is the number of shortest
paths. As mentioned above, the performance and overhead
of this algorithm depend on k. However, our simulation re-
sults show that even with small values of &, the algorithm
gives good performance in finding feasible paths. However,
the above algorithms are especially proposed for the MCP
problem (i.e., they do not attempt to optimize the selection
of the feasible path).

Other works in the literature were aimed at address-
ing special yet important cases of the QoS routing prob-
lem. For example, several researchers addressed the QoS
routing in the context of bandwidth and delay param-



eters. Showing that the feasibility problem under this
combination is not NP-complete, the authors in [45] pre-
sented a bandwidth-delay based routing algorithm which
simply prunes all links that do not satisfy the bandwidth
requirement and then finds the shortest path w.r.t. de-
lay in the pruned graph. Several path selection algo-
rithms based on different combinations of bandwidth, de-
lay, and hop-count were discussed in [46], [47] (e.g., widest-
shortest path, shortest-widest path). In addition, new al-
gorithms were proposed to find more than one feasible
path w.r.t. bandwidth and delay (e.g., Maximally Dis-
joint Shortest and Widest Paths) [48]. In [49] the au-
thors proposed bandwidth guaranteed dynamic routing al-
gorithms. In [50] the authors considered pre-computation
of paths with minimum hop-count and bandwidth guaran-
tee. They also provided some approximation algorithms
that takes into account general additive constraints during
the pre-computation. In [51] the authors investigated how
to set link weights based on the previous measurements
so that the shortest paths can provide better load balanc-
ing and can meet the desired QoS requirements. Some
researchers considered the fallback routing approach [52],
[53], in which QoS parameters are ordered and the optimal
path w.r.t. each single parameter in this order is found
until the returned path is feasible w.r.t. all constraints.
Another approach to QoS routing is to exploit the depen-
dencies between the QoS parameters and solve the path
selection problem assuming specific scheduling schemes at
network routers [54], [55]. Specifically, if Weighted Fair
Queueing (WFQ) scheduling [56], [57], [58] is being used
and the constraints are bandwidth, queueing delay, jitter,
and loss, then the problem can be reduced to standard
shortest path problem by representing all the constraints
in terms of bandwidth. Although queueing delay can be
formulated as a function of bandwidth, this is not the case
for the propagation delay, which needs to be taken into
account for QoS routing in high-speed networks [59].

Contributions and Organization of the Paper

As reviewed above, previously proposed algorithms con-
sider only special cases of the MCOP problem (e.g., RSP,
MCP) and suffer from either excessive computational com-
plexities or low performance. In this paper, we provide
an efficient heuristic algorithm to the most general form of
the MCOP problem. By general, we mean that our solu-
tion is applicable to any number of constraints, irrespective
of their nature and interdependence, and the optimization
of the selected feasible path. In Section II, to deal with
multiple constraints, we consider the same nonlinear cost
function provided in [43]. We show that the minimiza-
tion of this cost function, which involves a predetermined
constant A, gives new insights into finding a feasible path
in the MCP problem by offering a continuous spectrum
of solutions ranging from a simple, linear approximation
(A = 1) to an asymptotically optimal solution (A — 00).
Note that the authors in [43] have used the k-shortest path
algorithm to minimize the nonlinear function for the MCP
problem (without path optimization). In Section III, we

introduce a new efficient heuristic algorithm (H-MCOP)
to minimize the nonlinear cost function for finding a fea-
sible path while also incorporating the optimization of the
selected feasible path. We prove that HMCOP guarantees
at least the performance that can be obtained by a gener-
alized linear approximation algorithm and often improves
upon it. The computational complexity of H-MCOP is
two times that of Dijkstra’s algorithm. We note that, like
TAMCRA, H MCOP can also be used with k-shortest path
algorithm to improve performance further. Using extensive
simulations, we compared several algorithms in Section IV.
Simulation results indicate that HMCOP and TAMCRA
gives better performance than other algorithms in finding
feasible paths under the same order of complexity. More-
over, H MCOP significantly improves the optimality of the
obtained feasible paths over TAMCRA.

II. NONLINEAR COST FuNcTION FOR MCP

Consider the following cost function for any path p from
the source to the destination:

oa(p) & (P (22(P)s

+...+(
C1 C2

where A\ > 1. Suppose there is an algorithm X" that returns
a path p by minimizing the cost function (1) for a given
A > 1. Then, the following bounds on the performance of
algorithm X' can be established.

Theorem 1: Consider the MCP problem (i.e., the MCOP
problem without optimizing the selection of a feasible
path). Assume that there is at least one feasible path px
in the network. Let p be a path that minimizes the cost
function gy for a given A > 1. Then, (i) wg(p) < ¢ for at
least one k, and (ii) wy(p) < VKecy, for all other k’s.

Proof: If the returned path p is feasible, then from (1)
the above bounds are correct. Assume that p is not feasible.
Since the algorithm returns the path p (and not the feasible
path px), it must be true that

gx(p) < ga(p*)

In addition, since wy(px) < ¢ for all k’s, we have

a(px) <K

Thus,

) <K (2)

If wg(p) > ¢ for all k’s, then gx(p) > K. Since this
contradicts (2), we must have wy(p) < ¢ for at least one k,
and the bound in part (¢) is correct. Note that if g\ (p) > K,
then it is guaranteed that there is no feasible path px in G
because for at least one k, wi(q) > ¢ for every path q.

To prove part (i7), assume to the contrary that for at
least one constraint ¢; we have w;(p) > VKc;, so that

(ch_gp)),\ > K. It readily follows that gx(p) > (ch_gp)),\ >
K, which contradicts (2). Hence, part (i) is proved. W
Corollary 1: As X increases, the likelihood of finding a

feasible path also increases.



Proof: Follows immediately from Theorem 1
(wi(p) < *WEKep, < VKey, for any § > 0). [ |
Therefore, to increase the probability of finding a fea-
sible path, it makes sense to set A to its largest possible
value, i.e., A = 00. In order to provide a practical compu-
tational model for A — oo, we can replace the cost function
g*(p) = limy_, o gr(p) by another cost function that does
not explicitly involve A but that achieves the same ordering
of candidate paths as g*. More precisely, we consider the
following cost function for a path p [43]:

C1 C2 CK

h(p) = max{

The following theorem establishes the equivalence of g* and
h.

Theorem 2: Let p; and ps be any two paths.
9" (p1) < g (p2) iff h(p1) < h(p2).

Proof: It is obvious that as A — o0, gx(p) is
dominated by the largest term in (1), or equivalently, by
max{ “’zgp), “’ig”) g, e (2)y . A similar argument can be
used to establish the proof in the other direction. |

Figure 2 depicts a pictorial illustration of how algorithm
X finds a feasible path with three different values of .
The shaded area represents the feasibility region in the 2D
parameter space (i.e., two weights are associated with each
link). The black dots represent the normalized costs of
various paths w.r.t. wy and wy. Each contour line in the
figure indicates paths with equal value w.r.t. the given cost
function. Starting at the origin, algorithm X' slides the
fixed-cost contour line outward in the direction of the arrow
until it hits a path (i.e., black dot in the figure). The
returned path has the minimum cost w.r.t. gx. As shown
in the figure, the larger the A value, the closer the shape
of the contour lines to that of the (hypercube) feasibility
region. As A — oo, algorithm X becomes exact, i.e., it is
guaranteed to find a feasible path if one exists.

For A = 1 it is easy to develop a polynomial-time al-
gorithm that minimizes g;(p). This is done by assigning
a combined weight I(e) = wlc—gd + wi—ie) + -+ wf—ée) to
every link e and finding the shortest path w.r.t. [(e) using
Dijkstra’s algorithm. From Theorem 1, when A = 1, the re-
turned path p satisfies the following bounds: (7) wg(p) < ¢
for at least one k, and (i1) wg(p) < Kci for all other k’s.
As a matter of fact, this is a generalized linear approxima-
tion algorithm that applies to any number of constraints.
It includes as special cases the approximation algorithms
developed in [18] (except for the normalization factors).

For A > 1 the nonlinearity of (1) makes it impossible to
provide an exact polynomial-time minimization algorithm.
Hence, one has to rely on heuristics. One such heuristics
(the TAMCRA) was proposed in [43], which aims only at
finding a feasible path based on the k-shortest path algo-
rithm. Since no path optimization is performed, the se-
lected path, albeit feasible, may be undesirable from a cost
standpoint. Our goal is to provide a new heuristic algo-
rithm that addresses both the feasibility aspect as well as
the cost effectiveness of the selected path.

Then

Due to the heuristic nature of our algorithm, its perfor-
mance may not always improve monotonically with A, i.e.,
it is possible that the heuristic search fails to find a feasible
path based on A, which otherwise can be found based on
A1 < A2). However, simulation results show that increasing
A most often results in performance improvement. Hence,
it makes sense to base the design of our heuristic on the
cost function g*, or equivalently h.

III. ProPOSED HEURISTIC FOR MCOP

We now present our heuristic algorithm H_ MCOP, which
attempts to find a feasible path subject to K additive
constraints and, simultaneously, minimize the cost of that
path. For the feasibility part, H-MCOP tries to minimize
the objective function gy for A > 1. In doing so, it first
exactly finds the best path w.r.t. g; from each node u to
t. It then starts from s and discovers each node u based
on the minimization of gx(P), where P is a complete s-t
path passing through node w. This s-t path is heuristi-
cally determined at node u by concatenating the already
traveled segment from s to u and the estimated remain-
ing segment (the above best path w.r.t. ¢g;) from u to t.
Since the algorithm considers complete paths, it can fore-
see several paths before reaching the destination. For the
optimality part, If some of these foreseen paths are feasible,
H_MCOP selects the one that minimizes the primary cost
function rather than the one that minimizes the nonlinear
cost function. Using this preference rule (i.e., minimize the
primary cost function if the foreseen path is feasible; other-
wise, minimize the nonlinear cost function), H-MCOP can
be implemented as simple as single-objective algorithms.

A pseudocode for HMCOP is shown in Figure 3. Its
inputs are a directed graph G = (V, E) in which each link
(4, 7) is associated with a primary cost (4, j) and K weights
wi(i,5), k = 1,2,...,K; a source node s; a destination
node t; and K constraints ¢, £k = 1,2,...,K. For each

H_ MCOP(G =(V,E), s, t,cp, k=1,2,...,K)
Reverse Dijkstra(G = (V, E), t);
if r[s] > K then

return failure // there is no feasible path
end if
Look_Ahead Dijkstra(G = (V, E), s);
ifGplt] <ep VE=1,2,...,K then

return the path // a feasible path is found
end if
return failure

© 00 3O UL ix W N

// a feasible path does not exist
// or HMCOP cannot find it

Fig. 3. The heuristic algorithm H_.MCOP for the MCOP problem.

node u, the algorithm maintains the following labels: r[u],
Rylu], m [u], glu], Gglu], mg4lu], and c[u], k = 1,2,..., K.
Label r[u] represents the cost of the shortest path from
u to t w.r.t. the cost function g; (i.e., gx with A = 1).
Labels Ry[u], k = 1,2,..., K, represent the individually
accumulated link weights along that path. The predecessor
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Fig. 2. Searching for a feasible path that minimizes gy (p).

of u on this optimal path is stored in label 7, [u]. Label g[u]
represents the cost of a foreseen complete path that goes
from s to t via node u w.r.t. the cost function h (or gy,
A > 1). Labels Gilu], k = 1,2,..., K, and c[u] represent
the individually accumulated cost of link weights and the
primary cost along the already traveled segment of this
path from s to u. The predecessor of u on this path is
stored in the label mg[u].

There are two directions in the algorithm: backward
(from ¢ to s) to estimate the cost of the remaining seg-
ment using A = 1 and forward (from s to t) to find the
most promising path in terms of feasibility and optimal-
ity using A > 1. In the backward direction (lines 1-4 in
H_MCOP), the algorithm finds the optimal path from ev-
ery node u to t w.r.t. the cost function g;(-). For that,
it uses Reverse Dijkstra [16] with some modifications to
the relaxation procedure, as shown in Figure 4. Note that

Reverse_Dijkstra_Relax(u,v)
1 ifr[u] > K | Balliws(wy) ¢hen

Ck

2 rfu] = X, et

3 Ry [u] := Ri[v] + wg(u,v) for k=1,2,..., K
4 V] = u

5 end if

Fig. 4. Modified relaxation procedure for Reverse_Dijkstra based on
minimizing g1(-).

H_MCOP does not use 7,.[-], the predecessors of nodes in
the reverse paths from every node to ¢t. They are just in-
cluded for the completeness. Reverse Dijkstra initially sets
r[u] = oo and m,[u] = NIL for every node u. It then starts
at node t by setting r[t] and Ri[t], k = 1,2,..., K, to ze-
ros. It explores the graph and eventually returns a path
p from s to t. Before proceeding further, the algorithm
checks r[s] > K to determine the possibility of discovering
a feasible path (based on the proof of Theorem 1, r[s] > K
implies necessarily the nonexistence of a feasible path).

If there is a possibility that the network contains
a feasible path, a heuristic search procedure called
Look_Ahead_Dijkstra is executed in the forward direction

(line 5 in H-MCOP). This procedure uses the information
provided by the above Reverse_Dijkstra to identify whether
there is another path ¢ which provably improves the per-
formance over the above returned path p. To implement
Look_Ahead_Dijkstra, we need to slightly modify the re-
laxation process of Dijkstra’s algorithm [60], as shown in
Figure 5.

Look_Ahead_Dijkstra_Relax(u,v)

1 Let tmp be a temporary node

2 c[tmp] := cu] + ¢(u,v)

3a if A < oo then

da gltmp] o= T (el L)Y

5a end if

3b if A = 0o then

4b  g[tmp] := max{ G’“[“Hw’“c(:’”)"'R’“[v] |[1<k<K}
5b end if

6  Gpl[tmp] := Gglu] + wi(u,v) for k=1,2,..., K
7  Ry[tmp] := Rgv] for k=1,2,..., K

8 if Prefer_the_best(tmp,v) = tmp) then

9 cv] := c[tmp]

10 g[v] == g[tmp]

11 Gg[v] :== Ggtmp] for k =1,2,..., K

12 my[v] :=wu

13 end if

Fig. 5. Modified relaxation procedure for Look_Ahead_Dijkstra of
H_MCOP.

Look_Ahead_Dijkstra initially sets g[u] = co and m4[u] =
NIL for every node u. It then starts from node s, setting
g[s], c[s], and Gg[s], k = 1,2,..., K, to zeros. It explores
the graph by choosing the next node based on the prefer-
ence rule in Figure 6. This rule takes as input two nodes
and their labels. It then selects one of these nodes such
that the selected one minimizes the primary cost function if
foreseen s-t paths passing through these nodes are feasible;
otherwise, it selects the one that minimizes the objective
function gj.

Eventually, HMCOP returns a path ¢ from s to ¢ using
A > 1. The following theorem guarantees that ¢ cannot be



Prefer_the best(a,b)

1 if ca] < ¢[b] and Vk Gila] + Rila] < ¢k then
2 return(a)

3 end if

4 if c[a] > c[b] and Vk Gj[b] + R[b] < cx then
5 return(b)

6 end if

7 if gla] < g[b] then return(a)

8 return(b)

Fig. 6. Preference rule used in H.MCOP to choose between two
nodes a and b.

worse than the path p found using A = 1, i.e., ¢ has either
less primary cost than p if p is feasible, or it has more
chance of being feasible than p if p is not feasible. This
theorem also states that H MCOP guarantees at least the
performance of the linear approximation algorithm with
A =1 and often improves upon it.

Theorem 3: Suppose that H-MCOP algorithm returns
the path p by searching backward from ¢ to s (using \; = 1)
and, subsequently, returns the path ¢ by searching forward
from s to t (using gx, () with A2 > 1). Then, (i) if p is fea-
sible, ¢ is feasible and ¢(q) < ¢(p); (ii) if p is not feasible,
92 (2) < 9. (P)-

Proof: Assume that p consists of | nodes
(vo,v1,v2,...,v;) where v9 = s and v; = ¢. In the for-
ward direction, H_ MCOP initially extracts s from heap and
discovers its neighbors including v, and inserts them into
the heap. H.MCOP then extracts the next node (say u)
from the heap based on the preference rule given by the
procedure Prefer_the_best. Actually this works as follows.
Assume that we have hy + h; nodes in the heap, where
hy is the number of nodes at which the foreseen paths are
feasible (i.e., Vi Gi[-]+ Ri[] < cx) and h; is the number of
nodes at which the foreseen paths are infeasible. If Ay > 0,
then the next node is the one with minimum ¢[-] among
these hy nodes. Otherwise (i.e., hy = 0), the next node is
the one with minimum g[-].

Now first assume that p is feasible. In other words,
hy > 0 since at least the foreseen path at v; is feasible.
If there is no other foreseen feasible path, then H MCOP
extracts v; and continue to explore the graph by visiting
nodes vo,v3,...,v;. If there are some other nodes at which
the foreseen paths are feasible, then H MCOP extracts one
of them with minimum ¢[-] and explores the graph through
this node. Asaresult, H MCOP returns either p or another
feasible path ¢ with less cost. Thus, part (i) is correct.

If all foreseen paths are infeasible, then the algorithm
explores the graph based on the minimum g[.]. Again the
algorithm considers v; at the first time. If g[vq] is mini-
mum, then the algorithm will explore the graph from v
and continue to visit vs, v, ..., v; as long as they have the
minimum g[-]. Otherwise, the algorithm will explore an-
other node whose g[-] value is less than g[v1]. As a result,
H_MCOP returns either p or another path ¢ with less g(-).

Thus, part (i7) is also correct. Therefore, the returned path
q will be either better than p or at least as good as p in
terms of both feasibility and optimality. |

The computational and space complexities of the result-
ing HMCOP algorithm are equal to that of Dijkstra’s,
since at most two modified versions of Dijkstra’s algo-
rithm. To improve the performance, the forward direction
of HMCOP can be used with the k-shortest path imple-
mentation of Dijkstra’s algorithm presented in [44]. In ad-
dition, as in TAMCRA, dominated paths can be eliminated
to improve the performance. In this case, HMCOP has
the same worst-case complexity of TAMCRA in the for-
ward direction. Our simulation results (shown in the next
section) indicate that for the small values of kK HMCOP
gives slightly better performance than TAMCRA in terms
of finding feasible paths. Furthermore, due to the addi-
tional path optimization feature of H- MCOP, its returned
paths are much more resource efficient than their TAM-
CRA counterparts.

FEzxample

The following example illustrates the operation of
H_MCOP under the nonlinear cost function h. For sim-
plicity, we exclude path optimization from this example.
Consider the network in Figure 7(a). For simplicity, assume
that each link has two weights wy and ws and that links
are symmetric (note that H-MCOP can run on asymmet-
ric links with multiple real-valued weights). Suppose that
a path is to be found from s to ¢ which satisfies the con-
straints ¢; = 10 and ¢ = 10. Figure 7 describes the steps
taken by HMCOP to discover such a path. In the back-
ward direction (Figures 7(a)-(c)), Reverse Dijkstra finds a
path from every node to the destination node ¢. Since
the returned path (s,u,v,t) is not feasible and the value
of the cost function (r[s] = 1.6) is less than K = 2, the
algorithm proceeds to search for a feasible path in the
forward direction using Look_Ahead_Dijkstra. Although
Reverse Dijkstra cannot find a feasible path in this ex-
ample, it provides useful information (labels Rj[u]) for
Look_Ahead_Dijkstra, enabling it to find a feasible path.
Figures 7(d)-(e) show the state of the algorithm during
the execution of Look Ahead Dijkstra based on the cost
function h. The algorithm starts from s and discovers its
neighbors u and v by relaxing links (s,u) and (s,v). The
process of relaxing a link (7, j) consists of testing whether
the cost of the foreseen path that goes through j can be
improved by going through i to j and, if so, of updating
the new values of the cost function and the predecessor of
node j [60]. The algorithm then selects node v at which
the value of the cost function is minimum and tries to dis-
cover its neighbors. Since the value of the cost function
at node t decreases if link (v,t) is used, the algorithm re-
laxes this link. However, it cannot relax link (v,u) since
the value of the cost function at node u does not decrease
if this link is used. Now there are two nodes u and ¢ to
explore the graph. Since the value of the cost function at ¢
is minimum, the algorithm selects it but cannot relax any
more links. Finally, the algorithm selects v and relaxes
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Fig. 7. Example that illustrates the operation of H_.MCP. Shaded edges indicate the selected path. In (a)-(c) Reverse_Dijkstra returns an
infeasible path. In (d)-(e) a feasible path is discovered using Look_Ahead_Dijkstra.

only the link (u,t) since the value of the cost function at ¢
is decreased through this relaxation. Finally, the algorithm
returns the feasible path (s,u,t).

IV. PERFORMANCE EVALUATION

In this section, we contrast the performance of HMCOP
with Jaffe’s two approximation algorithms [18] (one with
a = f =1 while the other with & =1 and 8 = y/c1/¢2)),
Chen’s heuristic algorithm [39], TAMCRA [43] and our
other algorithms Approx_2CP in [38], R-MCP and its de-
terministic version ER_MCP_D in [42]. Note that our three
algorithms have been designed with an increasing level of
generality while improving the performance and the com-
putational complexity. As a result of this effort, H MCOP
gives better performance than the others under the same
order of computational complexity. In addition, HMCOP
tries to optimize the cost of the selected feasible paths. So
we mainly focus on HMCOP and compare it with various
algorithms. In our simulations, several random network
topologies have been studied and similar trends have been
observed across these topologies.

A. Simulation Model and Performance Measures

In our simulations, we use the random graph generator
package described in [61] to generate 50-, 100-, and 200-
node random topologies based on Waxman’s model [62].
In addition, we use two realistic topologies, shown in Fig-

ure 14. We associate two randomly generated weights (e.g.,
delay and delay-jitter) with each link (4,j). As shown
in Table I, the two weights are sampled from two differ-
ent uniform distributions with three levels of correlations
(positively correlated, no correlation, and negatively corre-
lated link weights). Positive correlation means that both
weights have small means or large means. Negative corre-
lation means that one of weights is selected from a uniform
distribution with a small mean while the other is selected
from another uniform distribution with a large mean. No
correlation means that both weights are independently se-
lected from uniform distributions. The primary cost of a
link (4, j) is taken as ¢(i, j) ~ uniform[1,200]. In addition
to uniform distribution, we experiment with other distri-
butions, including normal and exponential distributions.

To test the algorithms in the critical cases, the source and
destination of a request are randomly generated such that
the minimum hop-count between them is at least three.
Note that one or two hop paths are easy to deal with since
all such paths can be enumerated using a simple algorithm
with at most the complexity of O(n?). The constraints are
also randomly generated, but their ranges are determined
based on the best paths w.r.t. wy and w,, as follows. Let p;
and ps be two shortest paths from s to t w.r.t. w; and ws,
respectively. We take ¢; ~ uniform[0.8w(p2), 1.2w; (p2)]
and ¢y ~ uniform[0.8wa(p1),1.2w2(p1)]. The shaded box
in Figure 8 represents the region from which the constraints



Link Positive No Negative

weight correlation correlation correlation

wi(4,§) | ~ uniform[1,50] ~ uniform[1,100] | ~ uniform|1,50]

wa(i,j) | ~ uniform[1,100] ~ uniform[1,200] | ~ uniform[100,200]
OR OR

wi(4,J) | ~ uniform[50,100] ~ uni form[50,100]

wa(i,j) | ~ uniform[100,200] ~ uni form[1,100]

TABLE 1
RANGES OF LINK WEIGHTS AND THE CORRELATION BETWEEN THEM.

w2

o

wil

Fig. 8. The selection of constraints.

are selected. We extended this region in several directions
(up, down, left, right). Although the absolute values of
performance measures can change, the relative differences
in the performance of compared algorithms do not change.

We contrast the performance of various path selection
algorithms using two measures: (i) the success ratio (SR),
which refers to the fraction of connection requests for which
feasible paths are found by given algorithm, and (ii) the
average value of the primary cost function per routed con-
nection (AvgCost), where a routed connection request is
one for which the given path selection algorithm returns a
feasible path. AvgCost shows how costly a feasible path is,
on average. The results reported in the subsequent sections
are averaged over several runs and the 95% confidence in-
tervals are computed. In each run, ten random graphs are
generated. For each instance of a random graph, ten in-
dependent realizations of link weights are generated using
different random seeds. Finally, for each instance of a ran-
dom graph with given link weights (there are a total of 100
of such instances per experiment), about 2000, 2500, and
3000 connection requests are generated for graphs with 50,
100, and 200 nodes, respectively.

B. Performance of H MCOP for Different Values of A

From Corollary 1, it is expected that the performance
of HMCOP improves with A\. However, since HMCOP is
only an approximation of a nonexistent algorithm A" that
minimizes gy, our first goal is to verify that increasing A
will almost always improve the SR of H-MCOP, which gives
the justification for using g* (equivalently, h) in the design
of HMCOP. Figure 9 shows the average SR of HMCOP
versus A for random graphs with 50, 100, and 200 nodes
and with positively correlated, uncorrelated, and nega-
tively correlated link weights. In particular, the difference

in performance between the case of A = 1 and A = oo is
quite significant. Due to the heuristic nature of the algo-
rithm, one can expect few anomalies in the general trend.
However, these deviations are observed to be negligible in
magnitude and frequency.

C. Performance Comparison of Path Selection Algorithms

We now contrast the performance of HMCOP (based on
the cost function h) with other path selection algorithms.
Figure 10 shows the SRs of various algorithms. When the
link weights are positively correlated, the path weights also
become positively correlated, and thus linear approxima-
tion algorithms have a good chance of finding feasible paths
by minimizing the linear combination of link weights. How-
ever, if the link weights are negatively correlated, there will
be more paths in the network for which w; (p) > w(p), or
vice versa. This degrades the performance of Jaffe’s linear
approximation algorithms, which work best when the two
link weights are positively correlated. In fact, by chang-
ing the slope of the search line (i.e., @ and ) as done in
Approx_2CP, the performance can be improved at the ex-
pense of more iterations of Dijkstra’s algorithm. Although
the worst-case complexity of Approx 2CP is log B times
that of Dijkstra’s algorithm, the actual number of calls to
Dijkstra’s algorithm varies in the range [1,log B], where B
is the upper bound on the longest path w.r.t. one of the
link weights. It should be noted that Approx_2CP runs at
its worst-case complexity only if it is deemed to fail, i.e.,
if the algorithm succeeds in finding a path, it will do so
with much fewer Dijkstra’s iterations than log B. A more
detailed comparison of Approx 2CP with other algorithms
is presented in [38]. To avoid the shortcomings of linear
approximation algorithms, R_-MCP and H. MCOP search
for a feasible path using nonlinear cost functions and pro-
vide better SR than linear approximation algorithms. Note
that H MCOP requires at most two iterations of Dijkstra’s
algorithm and gives almost the same SR that of R_.MCP
and ER_MCP_D, both of which require K + 2 iterations
of Dijkstra’s algorithm. A more detailed study of R_.MCP
and its enhanced version is presented in [42]. To compare
H_MCOP with Chen’s heuristic, we need to properly set
the value of z of the latter algorithm. As z goes to infinity,
the SR of Chen’s heuristic approaches that of the optimal
exponential-time algorithm. But given its O(z2n2) com-
plexity, a large = clearly makes the algorithm impractical.
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Fig. 10. SR of various algorithms used on random graphs with 50, 100, and 200 nodes.

To get as close as possible to achieving the same compu-
tational complexity of H-MCOP, z must be set to two.
However, since in our simulations we consider paths with a
minimum of three hops and Chen’s algorithm finds paths
with at most & hops, we set z to three. Even with z = 3,
the SR of this algorithm still lags significantly behind oth-
ers (its SR, which is not shown in the figure, is around 0.2).
Note that with z = 3, Chen’s algorithm requires nine iter-
ations of Dijkstra, i.e., at least four times the running time
of HMCOP.

To compare H-MCOP with TAMCRA, we need to prop-
erly set the value of k£ in the latter algorithm. As k goes
to infinity, the performance of TAMCRA approaches that
of the exact exponential-time algorithm. But given its
O(kmlog(kn) + k*m) complexity, a large k clearly makes
the algorithm impractical. To get as close as possible to
achieving the same computational complexity of HMCOP,

k must be set to one or two. Note that H MCOP uses
two iterations of the Dijkstra’s algorithm to minimize the
same nonlinear cost function that is used in TAMCRA,
but TAMCRA uses a different heuristic based on k-shortest
path algorithm. Figure 10 shows that H-MCOP has almost
the same SR that of TAMCRA with k£ = 2 while the worst-
case complexity of TAMCRA with k& = 2 is slightly higher
than that of H MCOP. However, since both TAMCRA and
H_MCOP can be used with k-shortest path algorithm and
give better performance than other algorithms when k is
increased, we single them out and contrast their perfor-
mances in more detail in the next section. Although both
algorithm gives the similar SR performance under compa-
rable computational complexities, H- MCOP significantly
reduces the cost of a selected feasible path over TAMCRA.
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Fig. 11. SRs of HMCOP and TAMCRA with k-shortest paths and with uniformly distributed link parameters: (a) 50 nodes; (b) 100 nodes;
(c) 200 nodes.
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Fig. 12. SRs of HMCOP and TAMCRA under normally distributed link parameters.
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Fig. 15. SRs of HMCOP and TAMCRA when ANSNET topologies are used with: (a) 110 links (b) 182 links.

D. Detailed Performance Comparison of H MCOP and dom topologies used before. In addition to the uniform
TAMCRA distribution, we also consider normal and exponential dis-
tributions for link parameters. Figure 11 shows the SRs

In this section, we compare HMCOP and TAMCRA in  of both algorithms versus k& when the link parameters are
more detail, using both algorithms with k-shortest paths generated from the uniform distributions described in Sec-
along with the eliminating dominated paths. We study tion IV-A. Figure 12 shows the SRs of both algorithms
several factors that impact the performance, including the when the link parameters are generated from normal distri-
number of nodes, the number of edges, the distribution butions with the following means and standard deviations:

of the link weights, the correlation between link weights, w,(i,j) ~ normal(250,80), wx(i,j) ~ normal(150,50),
and the selection of constraints. We first consider the ran-



and ¢(i,j) ~ normal(100,30). Figure 13 shows the SRs
of both algorithms when the link parameters are gen-
erated from exponential distributions with the following
means: wy(i,j) ~ exp(200), wa(i,j) ~ exp(150), and
c(i,7) ~ exp(200). In addition to random topologies, we
consider two realistic topologies, shown in Figure 14. Both
topologies have been modified from ANSNET [63] by in-
serting additional links. Figure 15 shows the SRs of both
algorithms for these topologies with uniformly distributed
link weights (similar trends have also been observed for
other link-parameter distributions).

As shown in Figures 11 through 15, in general, H MCOP
gives slightly better SR than TAMCRA at the same val-
ues of k. The SR of both algorithm increases with k& and
finally converges to the SR of the exact, exponential-time
algorithm (which, of course, cannot be obtained in prac-
tice as it requires enumerating all paths in the network).
The same trend in SR performance is observed for various
network sizes, distributions of link weights, and degrees of
correlations between link weights. In Figures 11 through
15, we observe that the SR of HMCOP (and of TAM-
CRA) for k > 2 is always high (e.g., larger than 0.92)
and quite insensitive to the aforementioned factors. This
is mainly attributed to the choices of the constraint values
in the given graph (see Figure 8 and the explanations in
Section IV-A). If the region from which the constraint val-
ues are selected is moved closer to or away from the origin
of the 2-dimensional parameter space, the SR of the exact
algorithm, and thus the SR of any heuristic algorithm, gets
smaller or larger, respectively. The reason why we select
the constraints in this fashion is that we needed to compare
the contending algorithms in the (nontrivial) critical sce-
narios while still maintaining reasonable simulation times.
Other, independently selected parameters (e.g., the size of
the network, the distribution of link weights, and the cor-
relation between link weights) cause some fluctuations in
the SR, since they affect the distribution of paths in the
2-dimensional search space and also the size of the region
from which the constraint values are sampled.

While the above comparisons demonstrate that H-MCOP
and TAMCRA achieve the similar SR performance un-
der comparable computational complexities (note that
H MCOP requires one additional iteration of Dijkstra’s
algorithm in the backward direction), the real advantage
of HMCOP is in terms of minimizing the cost of the re-
turned feasible path (i.e., selecting a resource-efficient fea-
sible path). This is demonstrated in Table II, which shows
the percentage reduction in the AvgCost when H MCOP
is used instead of TAMCRA. Since TAMCRA does not
perform path-cost optimization, it is unlikely that a path
selected by TAMCRA will be cost effective. However,
H_MCOP optimizes the cost parameter and achieves a sig-
nificant cost reduction over TAMCRA, particularly when
there are several feasible paths to consider. For example,
adding more links to a topology increases the number of
feasible paths. For example, reduction in AvgCost for the
ANSNET topology with 182 links is larger than that for
the ANSNET topology with 110 links. Another factor that
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affects the number of feasible paths is the correlation be-
tween link weights. For example, when link weights are
positively correlated, the path weights are also positively
correlated, and the best paths p; and p2 get closer to each
other. Consequently, the constraints are selected from a
narrow region that does not contain many feasible paths.
As a result, under positive correlation the cost reduction is
less than the ones obtained under uncorrelated and nega-
tively correlated link parameters. As path weights become
less correlated, more feasible paths are added to the re-
gion from which the constraint values are selected, making
the cost reduction achieved by HMCOP quite significant.
Again several factors including the size of the network, the
correlation and distribution of link weights, and the se-
lection of constraints affect the AvgCost of any algorithm
since the optimal AvgCost differs depending on the vari-
ations in the above factors. However, simulation results
indicate that H-MCOP always achieves a cost reduction
ranging from 3.7% to 58.6% over TAMCRA. The results
also show that using the k-shortest path algorithm in con-
junction with H- MCOP does not significantly change the
cost reduction. The reason is that most of the feasible
paths are already found when k& = 1, and thus increasing
k makes the algorithm consider a few more feasible paths.
But this is not sufficient to significantly change the Avg-
Cost reduction.

V. CONCLUSIONS

Optimal path selection subject to multiple constraints
is an NP-complete problem, which can only be addressed
through heuristics and approximation algorithms. Previ-
ously proposed algorithms suffer from excessive computa-
tional complexities and/or low performance. Moreover,
most of them are only applicable to special cases of the
problem. In this paper, we investigated the general multi-
constrained optimal path (MCOP) problem with the goal
of developing highly efficient heuristics in terms of compu-
tational time, performance, and resource utilization. First,
we investigated the theoretical properties of a nonlinear
cost function, gy, that can be used as the basis for efficient
heuristic solutions to the MCOP problem. We showed that
as the nonlinearity parameter A\ increases to infinity, the
minimization of g, provides a better approximation to the
MCP problem (the MCOP problem without path optimiza-
tion). We demonstrated that a generalized linear approx-
imation algorithm can be easily developed for A = 1. For
A > 1, the nonlinearity of g, does not allow for an exactly
polynomial path selection algorithm. Although finding a
solution to the new minimization problem is left open, we
provided an efficient heuristic algorithm (H-MCOP) that
tries to approximate the minimization of g3 = limy oo -
To optimize the use of resources while searching for a fea-
sible path, HMCOP also attempts to minimize a primary
cost function. We proved that H_MCOP guarantees at
least the same performance provided by a linear approx-
imation algorithm, and most often provides significant im-
provements upon it. H-MCOP has the same order of com-
plexity as Dijkstra’s shortest path algorithm. For further
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topology distribution k (the number of shortest paths)
of link weights 1 2 3 4

ANSNET with | uniform ‘4 7.4% 8.3% 8.4% 8.4%
110 links uniform ‘0] 13.7% | 14.4% | 14.6% | 14.8%
uniform ‘—116.2% | 16.9% | 17.3% | 17.4%

ANSNET with | uniform ‘40| 17.9% | 18.7% | 19.1% | 19.3%
187 links uniform ‘0 | 33.6% | 34.4% | 34.7% | 35.0%
uniform ‘—136.5% | 37.2% | 37.7% | 37.9%

uniform +7 1 6.8% | T4% | 7.5% 7.5%

Random with | uniform ‘0 121% | 13.1% | 13.4% | 13.5%
50 nodes uniform ‘—114.9% | 15.7% | 16.1% | 16.3%
normal ‘0 37% | 3.9% | 4.0% 4.0%

exponential ‘0’ | 29.0% | 29.8% | 30.1% | 30.3%

uniform ‘| 18.4% | 19.2% | 19.5% | 19.6%

Random with | uniform ‘0| 34.6% | 35.2% | 35.5% | 35.7%
100 nodes uniform ‘—7 | 38.0% | 38.4% | 38.6% | 38.7%
normal ‘0 85% | 88% | 89% 8.9%

exponential ‘0’ | 57.9% | 58.3% | 58.5% | 58.6%

uniform ‘+7 | 14.0% | 14.7% | 14.9% | 15.0%

Random with | uniform ‘01 25.7% | 26.3% | 26.7% | 27.1%
200 nodes uniform ‘— 1 27.9% | 28.4% | 28.7% | 28.8%
normal ‘0] 6.0%]| 63% | 6.4% 6.4%

exponential ‘0’ | 48.9% | 49.2% | 49.4% | 49.6%

TABLE I1
PERCENTAGE REDUCTION IN AvGCoOST WHEN H_MCOP 1S USED INSTEAD OF TAMCRA. THE LABELS ‘+’, ‘—’, AND ‘0’ INDICATE POSITIVE,

NEGATIVE, AND NO CORRELATION BETWEEN LINK WEIGHTS, RESPECTIVELY.

performance improvement, HMCOP can also be used in
conjunction with the k-shortest path algorithm.

Using extensive simulations, we first verified that the
performance of HMCOP generally improves with A, with
few anomalies that are negligible in magnitude and fre-
quency. We then contrasted H MCOP with other contend-
ing algorithms. Our results show that at a fixed compu-
tational complexity, HMCOP outperforms existing algo-
rithms in terms of the SR, followed by TAMCRA (which
also uses g} as a basis for path selection). Consequently,
we compared H MCOP with TAMCRA in more detail us-
ing the k-shortest paths in both and link weights generated
from different distributions including uniform, normal, and
exponential. The results indicate that a much larger value
of k (i.e., more computational time) is needed in TAM-
CRA to produce the same SR obtained through H MCOP
regardless of network size, correlation and distribution of
link weights. Furthermore, H MCOP reduces the AvgCost
of the returned feasible paths over TAMCRA, thus pro-
viding more efficient use of network resources. The Avg-
Cost reduction is significant when the network contains a
large number of feasible paths. We also investigated the
impact of correlated and uncorrelated link weights on the
path selection algorithms. We observed that when the path
weights are negatively correlated, i.e., wy(p) > wa(p), or
vice versa, linear approximation algorithms often return
such paths that satisfy one constraint but violets the other.
When link weights are positively correlated, linear approxi-

mation algorithms are more likely to succeed in finding fea-
sible paths. The simulation results verified that when the
link weights are positively correlated, the path weights also
become positively correlated and thus the linear approxi-
mation algorithms often succeeds in finding feasible paths.
However, when link weights are negatively correlated, the
path weights tend to also be negatively correlated, degrad-
ing the performance of linear approximation algorithms.
In all cases, HMCOP was shown to provide better perfor-
mance than linear approximation algorithms. When nega-
tive or no correlations are present between link weights,
H MCOP provides significant performance improvement
upon linear approximation algorithms than when positive
correlation exists.

H_MCOP performs well when the true state of the net-
work is given. However, the true state may not be available
to every node at all times due to network dynamics, aggre-
gation of state information, and latencies in state dissemi-
nation. As a future work, we will investigate how H MCOP
performs in the presence of inaccurate state information
and what modifications need to be done.
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