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Abstract—One of the key issues in any quality-of-service (QoS) routing bandwidth, where several changes in the parameter value are
fran;]ework is howfto computﬁ a pa:]h that satisfies givgln QoSbconstraiT]ts. likely to occur within two periodic OSPF updates. The reliance
In this paper, we focus on the path computation problem subject to the . . . . .
bandwidth and delay constraints. This problem can be easily solved if the on Ou_tda.t?d information and treatnjng this information as exapt
exactstate information is available to the node performing the path com- can significantly degrade the effectiveness of the path selection
putation function. In practice, however, nodes have only imprecise knowl- algorithm. Of course, threshold-based (triggered) flooding can
edge of the network state. The reliance on outdated information (and treat- be used to partially address this problem [6], but the associated
ing this information as exact) can significantly degrade the effectiveness of ] T .
the path selection algorithm. To address this problem, we adopt prob- Overhead can be excessiveA second source of inaccuracy is
abilistic approachin which the state parameters (available bandwidth and  attributed to state aggregation. Most link-state routing proto-
delay) are characterized by random variables. The goal is then to find the i i
most-probable bandwidth-delay-constrained p@tiP-BDCP). We provide ef- cols (e];g" OSPF f[5], dPNNl [7(]))Sapl’le: hlerarchlcgkll\vnhereby the
ficient solutions for the MP-BDCP problem by decomposing it into two sub- .State ora QfOUP of nodes (an ar?a Or_a ) peer group)
problems: the most-probable delay-constrained path (MP-DCP) problem iS summarized (aggregated) before being disseminated to other
and the most-probable bandwidth-constrained path (MP-BCP) problem. nodes [8]. While state aggregation is essential to ensuring the

MP-DCP by itself is known to be NP-hard, necessitating the use of approx- g . : :
imate solutions. By employing the central limit theorem and Lagrange re- Scalablhty of any QoS-aware routing protocol, it comes at the

laxation techniques, we provide two complementary solutions for MP-DCP. €Xpense ofperturbing the true state of the network. Finally,

These solutions are found to be highly efficient, requiring on average a few state inaccuracy can also be attributed to the sampling errors in
iterations of Dijkstra’s shortest path algorithm. As for MP-BCP, it can be computing the values of link parameters and to the Iatency asso-
easily transformed into a variant of the shortest path problem. Our so- . . . . .

lutions for MP-DCP and MP-BCP are then combined to address the Mp-  ciated with disseminating these values throughout the network

BDCP problem by obtaining a set ofnear-nondominateghaths. Decision (the so-called protocol “convergence time”).
makers can then select one or more of these paths based on a specific utility In this paper. we consider the path selection problem under
function. Extensive simulations are used to demonstrate the efficiency of the paper, . p P .
proposed algorithmic solutions and, more generally, to contrast the proba- POth delay and bandwidth constraints. To account for uncertain-
bilistic path selection approach with the standard threshold-based triggered  ties in the link-state parameters, we followpebabilistic ap-
approach. _ _ ~ proach in which these parameters are modelled as random vari-

Keywords—QoS routing, Stochastic shortest path, Lagrange relaxation, 5p|ag (rvs). Very mild assumptions are made on the probability
Multi-objective optimization. . . .

density functions (pdfs) of these rvs. In fact, our solutions do

not require the computation and dissemination of pdfs. Instead,
a node (e.g., router) is only required to compute and dissemi-

Networked multimedia applications are becoming increasate themean and variancéor two related parameters) of the
ingly popular and are making a good case for the deploymentlzndwidth and delay values for the outgoing links. These mo-
QoS-based network architectures (e.g., DiffServ, MPLS). Ongents can be computed simply as follows. Each node maintains
of the key issues in such architectures is how to determine “amoving average and corresponding variance for both the avail-
propriate” paths that fulfill the QoS requirements of the tranable bandwidth and delay of each outgoing link. The parameters
ported traffic. In general, path selection problems subject fir the bandwidth are updated whenever there is a change in the
QoS constraints are computationally hard, and can only be desdailable bandwidth (e.g., flow is added or terminated), while
with using heuristics and approximate solutions. Examples thie ones for the delay are updated whenever a packet leaves the
such solutions are reviewed in [1], [2]. With few exceptionsputer. Once the local mean and variance are computed for each
previous QoS routing solutions have been developed under thegoing link, they can be disseminated using QoS-enhanced
assumption that thexactstate of the network is known to nodesversions of OSPF, such as the one described in [9].
performing the route computation. In practice, however, net-One important question here is when and how to advertise
work state is not known for certain due to the followings reahe mean and variance values. A triggered-based approach sim-
sons [3], [4]. First, current link-state routing protocols suchiar to the one in [6] can be used for this purpose, but applied
as OSPF [5] flood link values periodically. To limit the overto the mean and variance values rather than the actual instanta-
head of flooding, long update intervals are used. For exaneous values of the bandwidth and delay. So, for example, if the
ple, in OSPF a link update is sent every 30 minutes. Periodigrianceof the packet delay changes b6 from its most re-
flooding is sufficient for “static” link parameters (€.g., link concent advertised value, whersis a control threshold, this could
nectivity), but cannot provide the desired accuracy in the casgyger an update of the variance. The advertisement overhead
of highly dynamic link parameters, such as the available lirdepends on the variability of the mean and variance parameters,

o i o which in turn is a function of the fluctuations of the instanta-
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neous delay and bandwidth values, the time window over whietx (p)7p(p). Rather than optimizing a specific utility function,
these moments are computed, and the triggering thresholdswkpursue an approach by which a subsenedirly nondomi-
any case, by virtue of being moments of a time series, the (wimated pathss computed for the given bandwidth and delay con-
dowed) mean and variance values will exhibit less fluctuatiossaints. A patlp is said to be nondominated if and only if it is
than the actual instantaneous values. So a considerable redotpossible to find another paghfor which 7z (p') > 75(p)
tion in the advertisement overhead is to be expected when #m@rp(p') > 7p(p). Given a set of nondominated paths, a de-
advertisement is done only after significant changes in the medsion maker can select one of these paths according to his/her
and variance values take place. Note that as the length of thespecific utility function. Unfortunately, finding all nondomi-
eraging window increases, a single measurement point will havated paths is a hard problem that requires an exponential-time
less impact on the overall mean and variance. The same caralgerithm [12]. Accordingly, we provide a heuristic solution that
said about the values of the triggering thresholds. guantizesrp using a predetermined step sizé < ¢ < 1. For
Having motivated the feasibility of capturing and disseminagach quantization step, the algorithm attempts to return a path
ing probabilistic state information, we now address how sughthat maximizesrp while satisfyingzmg(p) > wp(rx) + ¢,
information can be used to compute paths subject to bandwidthererx is the returned path from the previous step. The set of
and delay constraints. The problem at hand is algorithmicaligturned paths constitutes a staircase in(thg, 75 ) space with
stated as follows: step heights of at least Note that due to its heuristic nature,
our solution does not guarantee finding the optimalat every
Definition 1 Most-Probable Bandwidth-Delay Constrainedquantization level. Nonetheless, the returnggs are reason-
Path (MP-BDCP) Problem Consider a network; = (V, E), ably close to their optimal values, and hence the returned paths
whereV is the set of nodes andl is the set of links. Each link are nearly nondominated.
(i,j) € E is associated with an available bandwidth parameterThe rest of the paper is organized as follows. In the next sec-
b(i, j) and a delay parameté(i, j). We assume that thi€i, j)'s  tion, we formalize the algorithmic definition of the problem and
andd(i, 7)'s are independent rvs. For any patfrom the source discuss some related work. In Section Ill, we introduce our so-
nodes to the destination nodgletb(p) gef min{b(i, ) | (i,7) € lution to one Cgmponent of the MP-_BDCP problem, nameI)_/, thg
p} andd(p) def Z(i hew d(i, 7). Given a bandwidth constraint©ne Qeall_ng Wlth_ the delay con_stral_nt. Th_e complete solution is
B and a delay constrain®, the problem is to find a path that isprowdeq in Sect|on.IV. Extensye simulations and performance
most likely to satisfy both constraints. Specifically, the problefaluation are provided in Section V, followed by conclusions

is to find a pathr* such that for any other paghfrom s to ¢, in Section VI.
mp(r+) > 7p(p), and ) II. PRELIMINARIES AND RELATED WORK
) ; o (p) ) Objectives (1) and (2) of the MP-BDCP problem are often

considered separately, giving rise to two problems: rtrest-

wherer s (p) def Pr[b(p) > B] andrp(p) def Pr[d(p) < DJ. probable bandwidth constrained_ pafMP-BCP) problem and
themost-probable delay constrained pdtiP-DCP) problem.

If the b(, j)'s andd(i, j)'s are constants, the MP-BDCP prob-
lem reduces to the familiar bandwidth-delay constrained patt
problem, which can be easily solved in two steps [10]: (i) prune In [13] it was shown that the MP-BCP problem by itself
every link (i, j) for which b(i, j) < B, and (ii) find the shortest iS €asy to solve. Accordingly, the authors in [14] provided
path with respect to (w.r.t.) the delay parameter in the prun@f €xact, polynomial-time algorithm for MP-BCP that uses
graph. However, MP-BDCP is, in general, a hard problem; |poarithms. The algorithm associates a probability measure
fact, even if one only considers the delay constraint, the problexi, ) = Prlb(i,j) > B] with every link (i,j), so that
is still NP-hard [11], necessitating the reliance on approximates () = []; ; e, (i, 7). To find a path that maximizes, the
but computationally feasible solutions. Using the central limiteight (— log p(i, j)) is assigned to each link, j). The con-
theorem and Lagrange relaxation techniques, we first providentional shortest path algorithm is then executed. We now pro-
two complementary solutions for the delay case. These solide (and later use) another exact, polynomial-time algorithm
tions are found to be highly efficient, requiring, on average,far this problem that does not require computing logarithms.
few iterations of Dijkstra’s shortest path algorithm. The bandpecifically, we modify Dijkstra’s algorithm as follows. For ev-
width case is rather simple, and is dealt with by transformingety nodeu, we associate a labelu] that represents the max-
into a variant of the shortest path problem. The solutions for timum probability that a path from to « will satisfy the con-
MP-BCP and MP-DCP problems are then combined to addresssint B. Initially, p[s] is set tol while p[v] is set to0 for all
the MP-BDCP problem. nodesv # s. The graph is then explored by extracting from
MP-BDCP belongs to the class of multi-objective optimizathe heap the next nodethat has the maximurm and relaxing
tion problems, for which a solution may not even exist (i.e., trevery link (u,v) for which plv] < p[u] * p(u,v). The latter
optimal path w.r.tzrg is not optimal w.r.t.rp, or vice versa). step directly finds the optimal value afz without computing
To eliminate the potential conflict between the two optimizatidiogarithms.
objectives, one can specifyuility functionthat relatesrg and In both solutions of MP-BCP, the node that performs the path
mp, and use this function as a basis for optimization. For egemputation needs to know the valuefb(i, j) > B] for all
ample, one could maximizein{7g(p), 7p(p)} or the product links (i,j) € E. These probabilities can be obtained from the

MP-BCP Problem



advertised means and variances, assuming some functional f@im approximation also applies even when the pdfs of the local
for the pdf of theb(i, j)'s. Since QoS routing has not yet beemlelays are “heavy tailed” (e.g., lognormal, Weibull), provided
implemented in real networks, we do not know yet what woulthat the variances are finite. A recent experimental study [36]
be an appropriate pdf for the available bandwidth of a link (thiedicated that the round-trip time can be well approximated by
statistical characteristics {3, j) will depend on how much, a truncated normal distribution, which further supports our use
how often, and for how long bandwidth is being requested lof the CLT approximation for the delay case.

traffic flows). Fortunately, the above MP-BCP solutions still ap- Let h(p) be the number of hops of a pgthAccording to the
ply, independent of the form of this pdf. In related studies (e.gLT, ash(p) increasesi(p) tends to a normally distributed rv
[15], [16], [17]), researchers assumed thét j) is uniformly  with mean

distributed over some rangdi, ub]. The same uniform distribu- u(p) = Z (i, j)

tion will be used in our simulations. In this case, theandub (4,5)€P

values can be advertised in place of the mean and variance. and variance

2 _ 20, &
B. MP-DCP Problem o*(p) = Z o”(i, 7).
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The MP-DCP problem is known to be NP-hard [11], and can 7
only be dealt with using heuristics and approximate solutions.
Essentially, MP-DCP is an instance of the stochastic Shor{b&comes D — ulp)
path problem, which was investigated in the literature (e.g., [18], mp(p) ~ q’(T
[19]). One key issue in stochastic shortest path problems, in o\p
general, is how to define the optimality of a path. Some fowhere®(x) « i ffoo e—yQ/Qdy is the cumulative distribution
mulations (e.g., [20], [21], [22], [23]) aim at finding the mosfunction of a standard normal rv. Sindeis monotone, maxi-
likely shortest path. Others consider the least-expected-defazing it with respect tg is equivalent to maximizing the argu-
paths under interdependent or time-varying probabilistic linkent(D — u(p))/o(p). Hence, the MP-DCP problem reduces
delays (e.g., [24], [25], [26]). In [27] the author investigatedb finding the pathp that maximizes
dynamic stochastic shortest path problems in which the proba-
bilistic link weight is “realized” (i.e., becomes exactly known) Xo(p) & D — p(p) 3)
once the node is visited. Several studies define path optimality o(p)
in terms of maximizing a user-specified objective function (e.g.,
[18], [28], [29], [30], [31]). Our formulation of the MP-DCP Let P be the set of paths between the source nodad the

; o -destination node. To maximize (3), we consider two cases,
problem belongs to this category, where the objective is to ﬁH'&S . )
a path that is most likely to satisfy the given delay constraint. denoted by CASE-I and CASE-Il. CASE- deals with the situ-

In [14] the authors started with the same MP-DCP form ttion in which there exists_ a pathe P for.which pp) < D
nce,Xp(p) > 0). In this case, to maximize (3) we seek a

lation used in this paper. They acknowledged the problem a hr+ € P that minimizes both: ando?. In contrast, CASE-

. : . . o t

provided solutions for special cases of it. Then they modified tj X . .
problem into one in which the goal is to partition the given en _ghas thatvp ke P’mf;‘(p) P>tf?t |mply|n.g XD(pg.f O Ir:tthls
to-end delay constraint into local link constraints. The optim Psle, we Sseek a pata € at maximizesr while simultane-
path for the new problem is, in general, different from the orf!Sy miNIMIzing.

for the original MP-DCP problem, and its approximate solutionsA humber of approximate solutions were previously sug-

are computationally more expensive than the MP-DCP solutio; %sted for CASE-| (see [19] for an extensive survey). The main

presented in this paper. Note that the work in [14] does not d -eat';‘ tht_ese soluhgni 'S to find alp@tlthagmlrrl]lmlzes a(imlear
dress the combined MP-BDCP problem. Due to these diﬁ%{gm ination of ando*, i.e.,au + (1 —a)o*, wherea € [0, 1].

With d(p) approximately normal, the objective functiar

)7

ences, our algorithmic developments take a completely differ & givena, the Ilngar cpmbmauon can be easily ”;'”,'”f"zed
y associating a weighv (i, 7) = au(i,j) + (1 — a)o?(3,7)

path from the one in [14], IWith every link (¢, j) and executing the shortest path algorithm

To provide an efficient, general solution for the MP-DC i . .
problem, which can then be integrated into a solution for tﬁ%r't'w(l’])' This technique, often referred to as tme search

MP-BDCP problem, we assume that for each ljnkj), d(i, j) ][gretbh(;ﬂ fal;zidolfrlgzeMnFi)gggC“;nbIt:r:ev'se efficient solutions
is @ nonnegative rv with mean(s, j) and variancer2(i, j), and P '

that link delays are mutually independent. We make no assump- propoSEDALGORITHMS FOR THEMP-DCP PROBLEM
tions on the pdf ofd(i, j) except that it is “smooth,” which

means that the pdf is continuous and differentiable over somdn this section, we provide efficient solutions to both cases of

domain, say(a, b) [32], [33]. The smoothness assumption, sathe MP-DCP problem. First, we need to decide which case to

isfied by many distributions, enables us to apply the central linfensider for a given input (i.eG: = (V, E), s, ¢, D). This can
theorem (CLT) approximation (see [34, 376-378]), resulting in2f done using Heuristic-MP-DCP in Figure 1.

path delaythat is approximately normally distributed. Note that Heuristic-MP-DCP starts by computing the shortest path
cutoffs or truncations do not preclude a pdf from being smootff:"-t: # from s to . It then checks whethgr(px) < D or not.

A good example is the uniform distribution, which has two cuff S0 (CASE-I), Heuristic-MP-DCP computes the shortest path
off points. In [35, 214-215] it is shown that the sum of as small2yyg i sometimes writeu(p)

. e ando(p) without the argument to simplify
as three uniform rvs already tends to a normal distribution. The notation.



Heuristic-MP-DCP(G = (V, E), s, t, D) 13 2,6
1. Using Dijkstra’s algorithm fingh«
such that'p € P, pu(px) < u(p) 11

2. if u(px) < D then// CASE-I

3. Using Dijkstra’s algorithm find =
such that'p € P, 02(qx) < o?(p)
5. Setrx = px
6. else
7. Setrx = gx
8. end if
9. Executeminumino (G = (V, E), s,t, D, px, g%, %)
10. else// CASE-II p T
11. Setrx = px g
12. Executaminumaxo(G = (V, E), s,t, D, px, rx)
13. end if 0 P 0 H(P)
Fig. 1. Main algorithm for the MP-DCP problem. (b)

Fig. 2. Representing the paths frasrto ¢ in the (i, o2) space: (a) original
network with each link assigned ja and ac? delay parameters; (b) the

. . 9 9 correspondingy(, o2) representation.
q* W.r.t. the variance (i.eq?(qx) < o?(p) Vp € P), selects the

better ofpx or ¢« as its initial best known path (denoted by),
and calls mipmino. Note thatp+ andg+ can be computed at
once for all destinations by executing Dijkstra’s algorithm at
given source node. If there are more than prégx), the algo-

achieve this goal. It starts by checkingpi and g« have the
samey, ando?. If so, then the currently known is the optimal

rithm selects the one with the minimum variance (mean). TH&th. since it has the minimum mean and variance. Otherwise,
can be easily done by using a hierarchical version of Dijkstrd®&n#mino proceeds to scan ﬂ(@;’ o) space for a betters us-
algorithm [37]. ing the linear combinatiop + G0~ with the objective of finding

It u(p) > D (CASE-1I), Heuristic-MP-DCP selects: asits & path .tha(; ma?“m'lzegﬁ' N°teghat|7|"/* reprehsenlts th‘r’]o'faf
initial best known path, again denotedy; and calls algorithm . etermine optlma_ path. In each call/step, the algorithm tries to
minumaxo. Note that in CASE-II, the optimal path (if found)Imlorove the sgelectlon and returns a better
will satisfy the delay constraint with a probability less thah. In the. (,0”) space, the contour. of equally propable paths
If this probability is too small, then the decision maker can confon€S With the sam&’p, value) constitutes a parabolic curve of
pletely skip the execution of mirmax>, avoiding unnecessary the forma?(p) = %}?ﬂ(m- Two such parabolas are
computations. depicted in Figure 4 whe®» = 9. Note thatXp(p) (and thus
Both algorithms mipmino and minumaxs consider the ge- 7mp(p)) increases as the contour curve gets closer to the origin.
ometry of the feasibility region along with the contours of th&o, algorithm mipmino needs to determine a path that lies in
objective function (3) in theu, 0?) parameter space. Therethe shaded region of Figure 4 and whose contour curve is clos-
fore, to facilitate the presentation of both algorithms, we wist to the origin. To do this, mimine first computes an appro-
extensively rely on a two-dimensional,(c?) representation of priate value for3. This is done by computing the coordinates
the paths betweenandt. An example of this representation isof two points (fictitious paths)’ andq’ in the (u, o2) space at
shown in Figure 2. The four paths fromto ¢ are represented which the contour curve of the current intersects the vertical
by the black circles in Figure 2(b). The process of minimizingnd horizontal lines of+ and ¢, respectively (see Figure 5).
1+ Bo? (which constitutes the basis for the solution of CASE-INote that in Figure 3’ = p«, but that is not always the case.
is also illustrated in the figure by sliding a line of slope-of/3, The pointsy’ andq’ satisfy the following equalities:
starting at the origin and moving outward in the direction of the

arrow. The first path (i.e., black circle) to be encountered is the Xp(rs) — D—p@) _ D—pld)
shortest w.r.t. i + Bo2. In CASE-Il, a line search method is o(p) o(q")
used but with a positive line slopes (the line search is also com- w(p) = plp*)

bined with a modified version of thie-shortest paths algorithm old) = olg)

to yield good results).

From these equations, we can com /) andu(q'):
A. Algorithm minumino for CASE-I a pute’) )

Recall that for CASE-|, it is desired to find a path that mini- o(p) = D — p(px)
mizes both the mean and the variance so that (3) can be max- Xp(r*)
imized. Algorithm minumine, depicted in Figure 3, tries to w(@) = D —o(qgx)Xp(rx)



minumino (G = (V, E), s,t, D, px, ¢*, %)

if u(px) = p(g*) and o2 (p*) = o2 (g*) then

2 returnrs // rx is the optimal path

3. endif

4. Compute the mean and variance of the two fictitious
pathsp’ andq’ for which Xp (p’) = Xp(q') = Xp (r=):

4.1 Setu(p’) = pu(px) ando(q’) = o(g*)

42 sew(p') = B2 andu(q’) = D — o(qx)Xp (r+)

_ _u@)=p@)
S Sel = - @)
6. Setw(i,j) = u(4,j) + B0°(4, ) V(i,j) € E
7. Using Dijkstra’s algorithm find the pathsuch that
Vp € P, p(r) + Bo?(r) < p(p) + Bo?(p)
8. if u(r) 4+ Bo*(r) > u(p') + Bo(p') then
9 returnrx // r« is the optimal path
10.end if
11.if Xp(r) > Xp(r«+) then
12. Setrx=r
13. Recompute the pointg andq’ as in step 4
14.end if
15. Compute the intersection points andg™ of the line
u(r) + Ba?(r) and the contour curve of«:
15.1 Setn = B,b = Xp(rx),andc = D — (u(r) + Bo?(r))

15.2 Setr(pT) = btybe—dac “22_4“ andu(p™) = D — bo(p™)

15.3 Setr(q™) = L=VE =49 andp(q) = D — bo(q™)
16. Compute the upper bouwngt on the optimal path:

L

16.1 Setu(optp) = pu(px) ando(opty) = \/“(T)+Bd2(g)7“(optp)
16.2 Set(optq) = o(g*) and

Setyu(opty) = u(r) + Bo?(r) — Bo? (opty)
16.3 Set¥p(opt) = max{Xp (optp), Xp(optq)}
16.4 if Xp(opt) is close enough t&'p (r*), returnrs
17.if o(pT) < o(p’) then
18. Executeminuming(G = (V, E), s, t, D,p’,pT, rx)
19.end if
20.if u(q™) < p(q’) then
21. Executeminumino(G = (V, E), s,t,D,q",q’, %)
22.end if
23. returnrs

Fig. 3. Algorithm minumino for CASE-I of the MP-DCP problem.
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Fig. 4. Equally probable paths in the,(c2) space (the shaded area represents

the region that needs to be searched).
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Fig. 5. Pointsp’, ¢/, p*, g, optp, andopt, used in mimmine. The plot
represents one scenario in whigfp (r) < Xp(r) andLg(r) < Lg(p’)
(the two shaded regions are the areas that still need to be searched; actual
paths are represented by black circles).

For any poinp in the (u, 02) plane, letL3(p) = u(p)+ 802 (p).
The initial value ofg is obtained by solvind.z(p') = Ls(¢)

for 3, i.e., B is the inverse of the slope of the line that passes
through bothy’ andq’. Accordingly,

5= w(q') = @)
o?(p') —o(q)

By associating the weight(i,5) < u(i,j) + Bo2(i,5)
with every link (i,7) € FE and using Dijkstra’s algorithm
w.r.t. w(i, j), minumino scans the search space and returns a
pathr. If Lg(r) > Lg(p'), then it is easy to see that the current
r+ must be optimal since the whole space between the origin
and the contour curve ofx has already been scanned, so the
algorithm stops (note that' is not necessarily a real path, so
we could have a scenario in which the strict inequality occurs).
On the other hand, iLg(r) < Lg(p'), the algorithm needs to
scan the space between the lip@) + B0%(p) = Ls(r) and
the contour curve of the curremt (i.e., the two shaded re-
gions in Figure 5). To do this, mimmino first updates-x: if
Xp(r) > Xp(rx), thenrx is set tor. The two pointg’ andq’
are recomputed as before w.r.t. the new The algorithm then
finds the two points, indicated by"™ and g™, where the line
Ls(p) = La(r) intersects the contour of (whose equation is
given by Xp (p) = Xp(rx)). From the line equation, we have

p(p) = p(r) + Bo*(r) — fo*(p) (4)
From the contour equation, we have
u(p) = D — Xp(r«)o(p) (5)

Equating the right hand sides of the last two equations, we end
up with a quadratic polynomial ia(p):

B o2(p) — Xp(r)o(p) + D — (u(r) + Bo>(r)) = 0. (6)
v N—_——

a b c

Its roots, denoted by (p™) ando(¢™), are:

b+ Vb% — dac

2a
. b—Vb? —4dac
2a



By substitutinge(p*) and o(q™) for o(p) in u(p) = D — curve can be adequately estimated with a few lines. In fact,

Xp(r*)o(p), we can comput@(p™) andu(g™): simulation results indicate that mimino often finds the opti-
mal path within three iterations of Dijkstra’s algorithm (two of
pp™) = D—ba(p?) which are used to compuge andgs).
wlgt) = D —bo(gh). It is worth emphasizing that the line search concept has been

o ) _ used in previous studies [19], but based on a line adjustment
After determiningp™ andq ", minuming proceeds to scan thegyrategy that is different from the one presented here. More
regions between the links(p) = L;(r) and the contour curve gpecifically, in previous studies the line search is performed by
of the currentrx (the shaded regions in Figure 5). If a betteéonsidering only thextremenondominated paths (e.g+ and
path thanrx exists,. then it. must fall in one of thgse regionsq*), without exploiting the convexity and structure &f,. As
To scan these regions, mimino determines two lines based; regylt, the line may unnecessarily scan a vast region in the
on the above fictitious paths. The first line passes thrqiighparameter space that contains dominated paths. Ultimately, it
and p* while the second one passes throughand¢’. If retyrns a dominated path, wasting the computational resources.
a(p™) < a(p'), minumino calls itself usingy” andp™ as in-  |n minumine, we avoid such a trap by careful selectiondahat
put arguments in place gk andgx, respectively (i.e., it SCans g arantees that in each iteratitre newly computegs cannot

using the slope of the first line). Furthermoreyi;*) < 1(¢'), pe worse (in terms otp) than the most recents.
then minumino calls itself usingg™ and¢’ in place ofpx and

qx, respectively (i.e., it scans using the slope of the second ling). Algorithm minmaxe for CASE-I
The algorithm can be run recursively until the optimal path is

found. The area in théu, o2) that is yet to be searched shrinks For CASE-Il (i.e.,_Vp_ €P, “(p)_> D), one has to minimize
with each iteration, indicating that is getting closer to (if it th€ méan and maximize the variance so thiat can be max-
nized. To achieve this goal, we devise algorithm primaxs,

is not already) the optimal path. A stopping criterion can be el

vised by computing, in each iteration, an upper bound on the c%—z_picted in Figure 6. As in CASE-I, we use a line search method

timal path. If the currents is close enough to this bound, the aPut With @ positive slope. The contours &, are now charac-
gorithm stops and returns the currentas the solution. This up- terized by a parabola of the forat (p) = %W- In
per bound is computed as follows. In each iteration,mino  contrast to CASE-I, the value & here is always negative, and
computes the coordinates of two fictitious pais,, andopt,, itincreases as the parabola gets closer to the upper-left corner of
which can be thought of as candidates for the optimal path. Tthe (1, o2) space (see the example in Figure 7). This suggests
manner in which these paths are determined will be descrikxdat the line search should proceed from the upper-left corner to
shortly. Oncevpt,, andopt, are computed, the “better” of them,the bottom-right corner of theu( o) space, as shown in Fig-
calledopt, is determined according to: ure 8. This search can be done by minimizing owvex P the
objective functionZs(p) = u(p) — Bo?(p), wheres3 > 0. This

Ap (opt) = max{Ap (opty), p (opty)} is done by associating a weight(i, j) < u(i,j) — Bo2(i, )
From the definition ofopt, and opt,, Xp(opt) represents an with every link (7, j) and executing the shortest path algorithim
upper bound ont’;, of the optimal path. So if in a given itera-W.I.t. w. Note that3 must be chosen so that all link weights are
tion Xp (%) &~ Xp(opt), minumino returns the current« and honnegative (otherwise, the graph may contain negative cycles).
stops. Otherwise, it keeps searching. Algorithm minumaxs starts by selectingg = min{ ;;(('Lﬁj?) :

The fictitious pathspt, andopt, are defined by the intersec-(i, j) € E}. It then executes Dijkstra’s algorithm, returning a
tions of the current search line with the vertical and horizontghthr that minimizesLs. If Xp(r) > Xp(rx), thenrx is set
lines atp+ andgx, respectively. By definitiony(opt,) = u(px) tor (as beforers represents the so-far best path wkp; it is
ando(opty) = o(gqx). To computeu(opt,) and u(opt,), we initially set topx).

have In contrast to CASE-I in which the search line faces the outer
5 5 (convex) surface of the parabola, in CASE-Il the line search
wlopty) + Bo~(opty) = u(r) + Bo”(r) faces the inner (concave) surface of the parabola (see Figure 8).
p(opty) + Bo*(opty) = p(r) + Bo(r) As a result, the region between the lihg(p) = Ls(r) and the

contour curve of the curremt (i.e., Region A in Figure 8) will

From these equations, we compute: not be scanned during the computation oo scan this region,

2 the current search line or an adjusted one (see step 7 in Figure 6)
o(opt,) = \//‘(’") + Bo?(r) — ploptp) needs to be kept sliding along the arrow. This can be done by
B using thek-shortest paths algorithm. However, if the standard
plopty) = u(r) + Bo’(r) — Bo>(opty) shortest paths algorithm (for example, the one provided in [38])
were to be used (i.e., if the line is kept sliding along the arrow),
which completes the determination & (opt). it will scan both Region A and the region on the right side of the

The complexity of mimmine is equal to the number of calls contour curve of« (Region B in Figure 8). All paths in Region
to Dijkstra’s algorithm, i.e., the number of lines that are systerB-have smalleft, values tharX, (r«), and hence scanning Re-
atically used to estimate the contour curve of the optimal pagion B is not needed. Unlegss very large, Region A cannot be
that maximizes¥p. Even though this number is not theoreticompletely scanned since many of the returheshortest paths
cally bounded, it is intuitively clear that one side of a paraboliwill come from Region B. Obviously, a largerenders the algo-



minpmaxo (G = (V, E), s,t, D, px, %)

1. Setd = min{ 4715 | (i,j) € B}

2. Setw(i, j) = u(i,j) — Bo2(i,j) (i,j) € E

3. LetLg(p) d:efu(p) — Bo?(p) for any pathp. Using Dijkstra’s
algorithm find a pathr such thatw'p € P, Lg(r) < Lg(p)

4. if Xp(r) > Xp(r«) thensetrs =r

5. Compute the fictitious pathst andtg

5.1 if D> Lg(r) then
5.2 Setu(opt) = p(p*) ando? (opt) = w
53 else
2 Lg(r)—-D 2
54 Setr?(opt) = ==5—— andu(opt) = Lg(r) + B0 (opt)
5.5 if u(opt) < p(px) then
5.6 Setu(opt) = p(px) ando?(opt) = M
5.7 end
5.8 Setr(tg) = X?;TB*> andu(tg) = D — Xp(r*)o(tg)

6. if XD(Opt) ~ XD(’!‘*) or Lﬂ('f‘) ~ Lﬁ(tg), then
6.1 returnrx

7. Adjustg and recomputev(s, j) if needed
7.1 if Xp(r) > Xp(p*) then Set3 = min{g,
7.2 elseifXp(r) < Xp(p*)then

p(r)—p(p*) }

()=o)

7.3 Compute the pointt wherepu(r) — Bo2(r) and
the contour curve of* intersect:
7.3.1 Set = B,b = Xp(r+),andc = —D + pu(r) — Bo?(r))
732 Set(rt) = VP24 ang(rt) = D — bo(rt)
— i w(r)—p(px)
7.4 Sets = min{g, 02<T+)702(p*>}
75 end

76 w(i,j) = p(i,j) — Bo2(i,j) V(i,j) € B

8. Using Reverse-Dijkstra’s algorithm find from every node to

nodet such thatp, € P, u(ry) — Bo?(ry) < p(pw) — Ba(py)
9.1 Extract node: and index;, 1 < ¢ < k, from the heap
(i.e.,7;, theith shortest path froma to u)
if u=dandXp(r;) > Xp(r+) thensetrx =r;
Compute the upper boundst andtg as in step 5 withr = r;
if Xp(opt) < Xp(r*)or u(ri) — Bo(ri) > u(tg) — o (tg)
thenreturnrx // v« is the optimal path
if the condition in step 6 holdghen returnrx
Otherwise, consider each lifk, v) for relaxation
Sepu(tmp) = u(ri) + p(u,v)
Seto?(tmp) = o2(r;) + o2 (u,v)
if p(tmp +70) — Bo?(tmp +70) > ultg) — Bo(tg) or
(Xp(tmp + 1) < Xp(r+) andv = t) or
(Xp(tmp) < Xp(rx) and u(tmp) > u(tg)) then
do not relax(u, v)
9.6.3 elserelax(u, v) as described in [38]
10. returnrx

9.2
9.3
9.4

9.5
9.6
9.6.1

9.6.2

Fig. 6. Algorithm minumaxo for CASE-II of the MP-DCP problem.

a(p) -

S

H(p)

Fig. 7. Equally probable paths in CASE-II (the shaded area is the region that

needs to be searched following the computatiopsQf

9. Execute thé-shortest paths algorithm with the following modifications:

2]

a2(p)
13 %
g
9 &
0 K(p)
0

Fig. 8. Scanning théu, o2) space in CASE-II.

rithm impractical, given th€ (km log(kn) + k*m) complexity
of the k-shortest paths algorithm [38], whergs the number of
nodes andn is the number of links.

To prevent the algorithm from scanning Region B, we modify
thek-shortest paths algorithm so thitloes not explore or store
dominated paths or sub-paths that lead to dominated p&ks
doing so, the modified algorithm considers more paths from Re-
gion A, which improves the performance using a reasonably
small k. Our modifications require determining two points (fic-
titious paths) in thé, 2) space, which are denoted byt and
tg (see Figure 9). Poindpt is used to compute an upper bound
on the optimal path w.r.tXp, while pointtg is used to com-
pute an upper bound on the linear search wirg3. These two
points are computed as follows. Suppose that paths, and
r+ have already been determined. I (r) < D, thenopt is
the point at which the liné g(p) = Ls(r) intersects the vertical
line atpx, as shown in Figure 9(a). Thus, the coordinatespof
are given byu(opt) = p(px) ando?(opt) = % Oon
the other hand, iLg(r) > D thenopt is the point on the line
Ls(p) = Lg(r) that maximizest, (see Figure 9(b)). In other

words, -
d _(D—pp _
do(p) ( a(p) > lp=op=0-
Sinceu(opt) — Bo?(opt) = Lg(r), we haveu(opt) = L(r) +
Bo?(opt) and

d_(D—L(r) - Bo*(p)
do(p) < a(p) ) lp=or:
_ —2B0%(opt) — D+ L(r) + Bo*(opt) _
o?(opt)
from which
o?(opt) = L(T)B_D and thus i (opt) = L(r) 4 Bo?(opt).

If u(opt) < u(px), thenopt will again be at the point where the
vertical line atpx intersects with the lind g(p) = Lg(r), as
described before.

As for tg, it is the point on the contour curve of that maxi-
mizesLg. In other words,

d
io) (1(p) = Bo*(p)) |p=tg= 0.

3tg stands for tangent, since the lides (p)
parabola of-x.

Lg(tg) is tangent to the



Modifiedk-shortest Paths Algorithm

The k-shortest paths algorithm in [38] is similar to Dijkstra’s
algorithm except that it associatéslabels with every node.
At each iteration, the algorithm extracts a nodevith index
i, 1 < i < k, from the heap (i.e., théth shortest path;
from s to u) and relaxes every linku,v). We mainly mod-
ify this relaxation step to improve the performance of this al-
gorithm when used in CASE-II of the MP-DCP problem. Our
modifications are shown in Figure 6 (starting from step 9). Us-
ing Reverse-Dijkstra’s algorithm, we first compute the best path
7, from every nodev to the destination nodew.r.t w(i, j) =
u(i,7) — Ba(i, 7). These paths will be used in the modified
shortest paths algorithm to eliminate sub-paths that lead to paths
dominated byx. Assume that node with index: is extracted
from the heap as in the origin&tshortest paths algorithm. If
u = t thenr; is a complete path from to ¢. We can now
updaterx and compute the pointgpt andtg as described be-
fore usingr = r;. If Lg(r;) > Lg(tg), then the currentsx
is optimal since all of Region A in Figure 8 is scanned, so the
algorithm stops. Ifu # ¢, thenr; is a sub-path froms to u
and needs to be extended towatdsy considering (relaxing)
every link (u, v). We first compute a temporary pathp from
Hu(p) s to v by adding the mean and variance of the lifk v) to
the mean and variance of, i.e., u(tmp) = u(r;) + p(u,v)

0
o D=3 6

(b)

Fig. 9. Computing the fictitious pathgt andtg in CASE-II: (a) Lg(r) < D,

(b) Ls(r) > D.

ando?(tmp) = o%(r;) + o%(u,v). If v = t thentmp is a
complete path. In this case,tifnp is dominated by (i.e., if
Xp(tmp) < Xp(r«)), then there is no need to starep, so

relaxation does not take place.f#£ t thentmp is a sub-path
that needs to be stored since there is a possibility that extending

Since it might lead to a better path than. We now describe two cases
e D —pltg) Py in which ¢tmp can never lead to a better path than the currently
p(tg) = otg) D(r*) known rx. By identifying these cases, we can avoid unneces-

sary computations. For the first case, we concatenateand
T If u(tmp +7,) — Ba®(tmp +7,) > p(tg) — Bo(tg), then
the best possible extensionfp will exceed the upper bound
u(tg) — Bo?(tg) and will fall in Region I in Figure 10. Since

we haveu(tg) = D — Xp(r«+)o(tg), and thus

B (0= X0 1o) = 57 0) e

= —Xp(rx) —200(tg) =0
from which

—XD(’I"*)

25 and thusu(tg) = D — Xp(r«)o(tg).

o(tg) =

After determiningopt and tg, we can use them as stop-
ping criteria. More specifically, if¥p(opt) ~ Xp(rx) or
Lg(r+) = Lg(tg), thenrx is sufficiently close to the optimal
path. So mipmaxs stops and returns the current as the so-
lution. Otherwise, it proceeds to scan Region A for a better
(possibly optimal) path. As mentioned before, to achieve thésery path in Region | is dominated by, there is no need to
we use a modified-shortest paths algorithm (discussed nextjelax (u,v). For the second case, we considerp itself. If
Using each shortest path, 1 < i < k, we updatex and com- Xp(tmp) < Xp(rx) andu(tmp) > u(tg) (i.e., tmp falls in
pute the upper boundst andtg as described above, but usingregion Il in Figure 10), then extendirtghp will lead to a path
r; in place ofr. If Lg(r;) > Ls(tg), then the currentx is opti- that lies to the upper-right ofinp in the (1, o%) space. Since
mal since the whole shaded region is scanned, so the algorithiirthe paths in such a region are dominatedrkythere is no
stops. Otherwise, the algorithm proceeds to the ngxdnd the need to relaxu, v). With these modifications, mimmaxs can
process is repeated. achieve good performance using a small valug.of

Fig. 10. Relaxing the linKu, v) in CASE-II.



IV. COMPUTING A SET OF NONDOMINATED PATHS FOR T{P)
THE MP-BDCP RROBLEM

1 r*

As stated in Definition 1, the MP-BDCP problem aims at ./B
maximizing bothrg andxp. If there is a path that maximizes 08 o /tmp
both functions, then this path is the optimal solution. Other- o', ® ~
wise, there is no solution, i.e., the optimal path wx . is not 05 e }ﬁ
optimal w.r.t.wp, or vice versa. In the latter case, a decision 03| o . R, J w
maker can specify atility functionthat relatesrz andrp, and r*:r*/
try to find a path that optimizes this utility function. For ex- 0 ° . _1Yp)
ample, one could maximizein{rz(p),7p(p)} or the prod- 0 o3 091

uctwg(p)mp(p). Rather than optimizing a specific utility func-  Fig. 12. Dominated and nondominated paths in(thg , 73 ) space.
tion, we focus on how to produce a setrmfndominated paths
from which a solution can be selected according to a given util-
ity function. Unfortunately, finding all nondominated paths isated bytmp) by executing Heuristic-MP-DCP, which attempts
a hard problem, requiring an exponential-time algorithm [12§o maximizerp under the constraintg (tmp) > wp(r*) + €.
Accordingly, we provide a heuristic algorithm that aims at iderFhe process is repeated iteratively to find other nondominated
tifying a partial set of nearly nondominated paths. paths so long asp(ry) > mp(r*) + €. The value ok controls

A pseudo-code of the proposed algorithm, called Approstie number of nondominated paths that could be returned by the
MP-BDCP, is shown in Figure 11. Approx-MP-BDCP startglgorithm, and thus the number of iterations, which is at most

O(%). It also determines the goodness of the nondominated

paths w.r.tzz, i.e., 7z (any nondominated path in the grgph

Approx-MP-BDCP (G = (V, E), s, t, D, B, ¢) m(one of the returned nondominated paths. Note that due

1. Using Heuristic-MP-DCP, find?, to its heuristic nature, Approx-MP-BDCP does not guarantee
2. Using the modified Dijkstra’s algorithm for MP-BCP, fing that the returned path in each iteration is absolutely nondomi-
i: ';g& a:n?:? irf ;he samdhen retumr, nated. Instead, the returned paths are, in general, nearly non-
5. Setrx =11, dominated.

6. Using the modified Dijkstra’s algorithm for MP-BCP in the Approx-MP-BDCP combines Heuristic-MP-DCP and the so-

reverse direction, find the maximupi ], the probability

of satisfying B, from every node: to nodet.
While 7p(r}) > mp(r*) + ¢

© N

find tmp such thatr g (tmp) > 7w (r) + €
9. Setrx = tmp
10. SetX = XU {r+}
11.end
12. returnX

Using Heuristic-MP-DCP with some modificatiofs,

lution of MP-BCP, as follows. For each node let p, be
the best path from to the destination nodew.r.t. p(i,j) =
Pr[b(i,5) > B, and letpv] & [1i;.jye5, Plisd)- The value of
plv], which is used in computing the pathup, can be deter-
mined by modifying Reverse-Dijkstra’s algorithm in the same
way we modified Dijkstra’s algorithm for the MP-BCP prob-
lem in Section Il. To find the pattimyp that maximizesrp

@Whenever link(u, v) is considered for relaxation, check under the constraint g (tmp) > wp(r*) + € (line 8 in Fig-
if plu]* p(u, v)*plv] > w5 (rx)+e. If so, do not relax linku, v). ure 11), we execute Heuristic-MP-DCP, but with the follow-
Fig. 11. Approximate algorithm for finding a subset of the nondominated pathnfg modification. We do not relax any Im(@ ) for which
in the MP-BDCP problem. | # p(u,v) * p[v] > 7wp(r+) + €, whereplu] is the proba-
bility of satisfying the bandwidth constraint along the path from
s tou.

by computing two paths}, andr}, that maximizerp andnp,
respectively (note thatj, is only an approximation of the most-
probable delay-constrained path). rif, = r%, then this path
is the single optimal solution to the MP-BDCP problem. If We conducted extensive simulations to evaluate the perfor-
not, Approx-MP-BDCP proceeds to compute a set of nondomnance and computational complexity of the aforementioned al-
inated paths. Figure 12 depicts an example of such pathsgprithmic solutions. Our interest is not only to assess the good-
the (7p, 75) space (black circles indicate nondominated pathsgss of these solutions, but to also demonstrate the potential
while white ones indicate dominated paths). Nondominatdenefits of the probabilistic approach, in general, as a means
paths form a staircase betweej andr};. Between these two, of reducing the protocol overhead at no loss in the routing per-
there might be several other nondominated paths. Approx-M@rmance. Hereafter, we use the term “probabilistic approach”
BDCP tries to compute a subset of these paths by quantiziagrefer to the probabilistic modelling of uncertainties in link
mp using a predetermined quantization stef) < ¢ < 1. bandwidth and delay (as formalized in Definition 1).

As a result, all the nondominated pathdor which 75 (p) < In the probabilistic approach, routers are expected to maintain
mp(rx) + € are bypassed, i.e., quantizede. In here,r+« and advertise two parameters for each QoS measure (e.g., mean
is used to refer to the most recently found nondominated pathd variance for delay, minimum and maximum for available

in the previous iteration (initiallyr« is set tor},). Figure 12 bandwidth). As discussed in Section I, these parameters vary at
also illustrates the quantization processdct 0.2. The basic a much slower pace than the instantaneous delay and bandwidth
idea here is to iteratively find the next nondominated path (indialues. In our simulations, we assume that these statistical pa-

V. PERFORMANCEEVALUATION AND DISCUSSION
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rameters are computed and advertised once at the beginningp@f j), andub(i, j) using various network sizes, and reached

each simulation run. Source nodes then use the one-time adsanilar conclusions to the ones discussed next. For brevity, we
tised information to determine the most-probable path w.r.t. theport the results obtained using 100-node random topologies.

delay constraint, the bandwidth constraint, or both. Once this

path is computed, we check its feasibility according toahe A. Performance Evaluation for the MP-DCP Problem

tual (instantaneous) link values (which are not available to the
path selection algorithm). If the path is feasible according to tﬂ

actual values, we call the attempt a ‘success’. The performaqJ

of a path selection algorithm is expressed in terms ofsine

We first asses the performance and computational complex-
of the proposed Heuristic-MP-DCP and compare it with the

in [19]. We then demonstrate the efficiency of the prob-
s ) abilistic approach over the triggered-based approaches under a
cess rateg(SR), which is the fraction of returned paths that argelay constraint. Performance evaluations and comparisons are

feasible. o performed separately for the two cases.
To demonstrate the robustness of the probabilistic approachgs, cASE-| the algorithm in [19] adjusts the search line in

we contrast it with thestandardthreshold-based triggered apach teration according to the extreme paths determined from
proach. In the triggered approach, the instantaneous bandwi¢ifl nrevious iteration. We refer to this approach adtsic line

and delay values are advertised once they exceed certain thregghzch In contrast, our solution takes into account the contours

olds, indicated by TH and THp, respectively (for S|mP“C_'ty, of previously determined paths, thus avoiding the consideration

we express these thresholds in absolute terms). ConsMer,Jp;nany extreme (and non-useful) paths. The computational

example, the available bandwidth over a given link. If this ban%mplexity in both approaches can be expressed in the number

width changes (e.g., following the addition of a new flow or thgs c4is to Dijkstra’s algorithm. We select the delay constraint
termination of an existing one) such that the absolute differengge,s fo1ows:

between the new value and the most recently advertised one ex-
ceeds Th;, then a new link state advertisement (LSA) is gener-
ated and advertised throughout the domain. Clearly, the smailigferez, € {0.5,1.0,1.5,2.0,2.5} is a constant that reflects
the values of Th and THp, the higher is the SR of the triggerecthe tightness of the delay constraint relative.tps) (recall that
approach. But this performance gain comes at the expensgofs the shortest path w.r.t. the mean). As increases, so do
increased advertisement overhead. For the triggered approggtandr, of the returned path. LeVpjstra DE the number of
path selection is performed using the algorithm in [10], whicgalls to Dijkstra’s algorithm used by the compared algorithms
was briefly described in Section I. Note that this algorithm treai$ CASE-I, including the two calls that are used to compuite
the available state values as if they were exact. We compare &gl ¢«. If no restriction is imposed OV i jrstra, bOth algo-
probabilistic and triggered approaches in terms ofrtbemal-  rithms are likely to find the optimal path. In this case, simula-
ized SR’s and the communications overhead. To measure Hih results indicate that our line search approach requires, on
communications overhead of the triggered approach, we coaverage, 3.5 iterations of Dijkstra’s algorithm to find the opti-
pute the percentage of links whose bandwidth and delay valygal path, compared to 5.3 iterations in the basic line search ap-
changed to the extent of triggering a state update within a givgfbach (about 51% more than ours). The worst-case complexity
period of time. Note that in our simulations the probabilisticaveraged over several runs) is found to be 7.6 iterations for our
approach uses the one-time advertised statistical informationapproach, compared to 14.2 iterations for the basic line search
Our simulations are based on random topologies that obgproach (about 87% more than ours).
the recently observed power laws [39]. These topologies werdnstead of letting the algorithm run indefinitely until it finds
generated using the BRITE topology generator [40]. In a givéine optimal path, one can impose a limit &b jrsrq. If af-
topology, each link(z, j) is assigned random delay and bander Np, ;x5 iterations, the optimal path is still not found, the
width parameters, indicated hifi, j) andb(i, 7), respectively. algorithm returns the most recent and terminates the search.
We assume thai(:, 7) is normally distributed with mean(i, j) Simulation results show that the returned paths in this case are
and variancer?(i, j). To produce heterogeneous link delayssery close to the optimal one even Whafb,; jxstra < 3. Fig-
we also randomize the selection(fi, j) ando?(i, j) by taking ure 13(a) depicts p versuse p for the optimal path (obtained by
w(i,j) ~ uniform[10,200] ando (i, j) ~ uniform|[25,100]. notimposing a limit 0NN p;;xstrq), the shortest paths w.r.t. p
For the link bandwidthb(i, j), we take it to be uniformly dis- (obtained in one iteration of Dijkstra’s algorithm), and the paths
tributed in the rangelb(i, j), ub(i, 5)]. To produce heteroge- returned by the contending algorithms withp; jxsire < 3. The
neous link bandwidths, we I&k(i, j) ~ uniform[10,150] and differences between the returned paths and the optimal one are
ub(i,j) ~ 1b(4,j) + uniform|[20,50]. In the probabilistic ap- barely visible, indicating that line search-based algorithms are
proach, we assume thati, 7), o2 (i, j), Ib(i, j), andub(i, j) are capable of achieving an almost optimal performance using no
generated at the beginning of the simulation run and kept fixetre than three executions of Dijkstra’s algorithm. Under the
thereafter. In the triggered approach, we sample the current @adhe limit, our algorithm returns slightly better paths than the
most recent delay and bandwidth values for every ljiikj) ones returned by the basic line search. As also seen in the fig-
using the prespecifieg(i,j), o2(i,7), Ib(i,7), andub(i,j). ure,p* is as good as the optimal path whénis close to or
Whenever the current and most recent values of a link paramesigmificantly larger tham(p=). In other cases, however, the gap
differ by more than the threshold, the current value is advertisedtweerpx and the optimal path can be significant, particularly
to refresh the stale link information. We also experimented witkhen the distribution of paths in the:(0%) space is not uni-
other link distributions and other ranges foti, j), o2(i,j), form.

D = u(px) + xpo(px),
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based approaches. Figure 14 depicts the SR as a function of
1 T T e —— = e .
P xp for both approaches. In the probabilistic approach, we use
0.95 o ] Heuristic-MP-DCP WithNp;jksira < 3 in CASE-I and with
0sl s | k = 2 in CASE-Il. The performance of the triggered-based
= e approach depends on T as THp decreases, the SR perfor-
Zoss /“ mance improves at the cost of higher advertisement overhead.
£ / Hence, we show the performance of the triggered-based ap-
%30‘8’ 7 ] proach for three values of THl For each value of T, we
/ o mingmino (optimal)
0.75r 7, —+ . minpminc (NDiiksUas?,)
// —x— Basic line search (NDUkS”a <3) .
0.7% —— p* (One Dijkstra) .
09 _.- -7
0.65 o -
0.5 1 .15 2 25 08 -7 47
X5 used in D=p(p*)+XD6(p*) -7 g
0L g Exact
(a) 06 - Triggered, TH, =70, advertisement overhead = 39%
0.4 T :
o upper bound on the optimal path Zo5-
0.351] —*+- minpmaxo (k=2) i Triggered, TH = 90, advertisement overhead = 29%
: ~1- Basic k-shortest path (k=2) 04f
—— p* (One Dijkstra)
0.3F 03 Probabilistic approach
E‘:E\ 0.2 X .
_2'0.25 r Triggered, TH =110, advertisement overhead = 20%
g 0.1
£ o2t ‘ ‘ ‘
\':73 %.5 1 15 2 25
0.15f °
(@)
0.1 1 T
09
O‘Og 5 2 1‘5 1 0.5
i XD used in D:'U(P*)_XD a(p*) N 0.8 Exact
(b) o Triggered, THD= 30, advertisement overhead = 68%
Fig. 13. 7p of various paths versusp: (a) CASE-l withD = pu(px) + oer
.Z’DO'(p*); (b) CASE-Il with D = M(p*) _ $DO’(p*). os| Triggered, TH = 70, advertisement overhead = 39%
04 Probabilistic approach
0.3F
For CASE-II, the algorithm in [19] uses theshortest-paths | TMasered: THy= 190, adverisement overhead = 4%
algorithm as is. This algorithm simply searches theof)
space using a line parallel to tla&-axis, returningk-shortest o

~t
l
I
ot

paths w.r.t.;.. From these: paths, the one that maximizes the
objective function is selected. In contrast, algorithm gmraxo (b)
first determines a search line with a positive slope, and then ulg_es14 S . or th babilistic and 1 § o

el . e _ . 1g. . UCCesSs rate versudg 1or the probabllistiC ana triggerea approaches
this line a!ong with the m(?dlflel;i shortest p_aths a_lgorlthm. .The subject to a delay constraift: (a) CASE-1whereD = ju(ps) -+ po (ph):
computational complexities of both algorithms is a function of (n) CASE-Il whereD = u(p*) — zpo(p*).

k. We select the delay constraibtas follows:

D = u(px) — xpo(px), also show the corresponding percentage of links that resulted in
triggered advertisements. We refer to this percentage asdthe
wherezp € {0.5,1.0,1.5,2.0,2.5}. Aszp increases, bot® vertisement overheadror example, in CASE-I with Tij = 70,
and 7p decrease. Recall that mimaxs computes an upper 39% of links generated triggered updates. As a point of refer-
bound on the optimal path. This bound becomes tightérias ence, we also depict the performance of the “exact algorithm,”
creases. Hence, we first run mmaxo with a largek (k = 20), in which the exact link values are available to all nodes in the
and use the computed upper bound as an approximation of tle¢ework (i.e., TH, = 0). A ‘failure’ for the exact algorithm
optimal 7. Then, we contrast this value with the performanc@eans that there is no path in the network that satisfies the re-
of the basid:-shortest paths algorithm and that of our algorithrquired delay constraint. As shown in Figure 14(a), in CASE-
with & = 2. The results, shown in Figure 13(b), suggest that thehe performance of the probabilistic approach surpasses that
performance of our algorithm is near-optimal. They also indof a triggered approach with TH = 110 (20% advertisement
cate that our algorithm is better than the bdsishortest paths overhead). In other words, for a given target SR the use of the
algorithm for the same computational complexity. Asde- probabilistic approach in place of a threshold-based triggered
creases, the gap betweep (returned path) andp (p+) further approach eliminates the need to flood the delay values of 20%
widens. The gap narrows d@sgets close tqu(px). of the network links. This is a significant reduction in the ad-
We now contrast the probabilistic and the standard triggeredkrtisement overhead. The gain is less pronounced in CASE-II,
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where the probabilistic approach is shown to have roughly the
same SR performance of a triggered-based approach with 4% 15
advertised links. The reason is that in CASE-II, the probability sl
of satisfying the delay constraint is always less than 0.5. So even
if minumaxs succeeds in returning the optimal path w.rty,
this path is often infeasible

Ideally, one would expect that for Heuristic-MP-DCP (with

Triggered, TH = 70, advertisement overhead = 4%

D

Triggered, TH,= 50, advertisement overhead = 15%

Npijistra < 3 in CASE-l andk = 2 in CASE-Il), 7p in %
Figure 13 should be the same as the corresponding SR in Fig- ¢
ure 14. But apparently there is a slight difference, which can

be attributed to approximation errors in the normal distribution
and, evidently, the overestimation of,. More specifically;rp

in Figure 13 is computed under the assumption that link delays
areexactly normally distributedOn the other hand, in the sim- : Z 5 s 5
ulations used to obtain the SR, link delays are sampled from a )

normal distribution, which can have both negative and positive
values. Whenever a negative value is obtained, we ignore it and
repeat the sampling process. In effect, we are usimgrecated g
normal distribution for simulating the local delays. So the end-
to-end delay is not exactly normal. The same slight discrepancy
is observed when link delays are sampled from other distribu-

Triggered, TH,= 30, advertisement overhead = 38%

Triggered, TH,= 130, advertisement overhead = 17%

tions (e.g., Weibull and lognormal). LA oo TS 0 atensementovenens =205
Next, we study the impact of the delay varianeé(i, 5), on o5
the SR performance. We let £ o (i, j) for all links (i.e., all g
links have the same delay variance). Figure 15 depicts the ratio oss|
SRprop/ SRTriggeredverSUSr p for two values otz. When this ool P R

ratio is greater than one, the probabilistic approach gives bet-
ter SR performance than the triggered-based approach. As seen ‘ ‘ ‘
in the figure, wherny = 25 the probabilistic approach is bet- h : % ! s
ter than a triggered-based approach with at least 15% overhead; (b)

this overhead jumps to 24% when= 75. In conclusion, the : ) ) _ or. _
reduction in the advertisement overhead achieved by using the F19. 15. Sfrob/ SRrriggeredversusro: ()7 = 25 () = 75
probabilistic approach increases withindicating that the gain
from the probabilistic approach increases as link parameters
come more dynamic.

Bredach is shown to be at least as good as the triggered-based
approach with THh = 20 (18% advertisement overhead), i.e.,

B. Performance Evaluation for the MP-BCP Problem by using the probabilistic approach, one can eliminate 18% of

A . the link advertisements at no loss in the SR.
Next, we evaluate the SR of the probabilistic and trlggere(r-

based approaches subject to a bandwidth constraint. RecallPerformance Evaluation for the MP-BDCP Problem
:‘rom.Sectmp Il that the optimal sglunon tq the MP'..BCP Prob— In this section, we evaluate the performance of the probabilis-
em is provided through a modified version of Dijkstra’s al-. . X .

. X . ... _tic approach subject to both bandwidth and delay constraints.
gorithm.  In _her_e, this soll_mon rep_resents th_e p.ro.be}b|||st_|c Recall that the approximate solution for the MP-BDCP problem
proach. .AS. |nd|cqted earlier, thg I!nk ba.an' i, j) is unt- (Approx-MP-BDCP) uses the solutions for MP-DCP and MP-
formly distributed in the rang@b (i, j), ub(i, j)], wherelb(, j) BCP to determine a partial set of nearly nondominated paths
andub(i, j) are themselves sampled randoratythe beginning 2o '

X . . whose number depends on the quantization faetoiVe let
of the simulation runWe select the value of the bandwidth con-

. S o e = 0.1. This results in an average of 3.3 nearly nondominated
straintB as follows. Once thé(i, j)'s andub(i, j)'s are gener- : . .
; . L aths. If any one of these returned paths is feasible according to
ated for all links, for the given source and destination nodes we : L \ .
the actual link values, we count it a ‘success’. The constraints

compute the best paths w.rik(i, j) andub(i, j), respectively. . )
Let lbo,: andub,,, denote the bandwidths of these two paths? andD are determined as follows:

ThenB is set to: B~ uniform[lbopt/zpB, (UWbopt + lbopt)/TDB]
B —thoy + 2abn I )f5, w5015 D~ wiformlaonaee) + ooy

wherexpp = 1,2,3,4,5. As xzpp increases, both constraints

Intuitively, asz ; increases the SR decreases. Figure 16 depigis;ome looser, so more paths become feasible w.r.t. both con-
the SR performance as a functionaé. The probabilistic ap- graints. Figure 17 depicts the performance as a function of

“Note that the optimal path w.r:p is not necessarily the same path returne&'D_B' _When the co.nstramts are tight g < 3), the prob-
by the “exact” (deterministic) algorithm. abilistic approach gives roughly the same SR performance as
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Fig. 16. SR versusp subject to a bandwidth constrail? = lbop: +

B (ubopt — lbopt) /5.
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for the two problems were provided and later integrated into
one approximate solution for the complete MP-BDCP problem.
For the MP-BCP problem, an exact polynomial-time solution
is readily available through a modified version of Dijkstra’s al-
gorithm. As for the (NP-hard) MP-DCP problem, we provided
approximate solutions for two different cases of the problem. In
the first casey{(p+) < D), our solution is given in algorithm
mingming, which attempts to minimize both the mean and vari-
ance of the path delay. Simulations indicate that to find a near-
optimal path, mipmino requires, on average, three runs of Di-
jkstra’s algorithm. For the second cagéfx) > D), we gave

an approximate solution, called mimax, which attempts to
minimize the mean while maximizing the variance of the de-
lay of the returned path. Simulations indicate that mmrax>
achieves near-optimal performance using dnbg 2. The pre-
sented solution for the complete MP-BDCP problem iteratively
calls our solutions to MP-DCP while quantizing; by a fac-

tor e. This process results is a set of nearly nondominated paths
w.r.t. bothmp andwp. Decision makers can select one of these
paths based on a specific utility function.

Our simulations indicate that for the same SR performance,
the proposed probabilistic approach significantly reduces the ad-
vertisement overhead incurred in the standard triggered-based
advertisement. The eliminated overhead depends on the number
and type of constraints as well as whether CASE-I or CASE-II
of Heuristic-MP-DCP is being executed. It varies from 5% to
about 20% when a single constraint is considered. When two
constraints are considered simultaneously, the advertisement
overhead can even exceed 50%, giving a compelling reason to
adopt the probabilistic approach. We believe that the probabilis-
tic approach can be easily incorporated into the semantics of
the OSPF protocol. Our future work will focus on a prototype
implementation of this approach within an open-source OSPF
implementation (e.g., the implementation at www.zebra.org or

a triggered-based approach with 29% advertisement overhdddy’s implementation in [41]).
As the constraints get looser, the gain from the probabilistic ap-

proach becomes even more significant (whey is close to 5,
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increases with the number of constraints. Recall from Figure 15

that the probabilistic approach is more robust to a higher vari-

ance than the triggered-based approach.

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigated computationally efficient algo-
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