
1

Bandwidth-Delay Constrained Path Selection Under
Inaccurate State Information

Turgay Korkmaz and Marwan Krunz

Abstract—One of the key issues in any quality-of-service (QoS) routing
framework is how to compute a path that satisfies given QoS constraints.
In this paper, we focus on the path computation problem subject to the
bandwidth and delay constraints. This problem can be easily solved if the
exactstate information is available to the node performing the path com-
putation function. In practice, however, nodes have only imprecise knowl-
edge of the network state. The reliance on outdated information (and treat-
ing this information as exact) can significantly degrade the effectiveness of
the path selection algorithm. To address this problem, we adopt aprob-
abilistic approachin which the state parameters (available bandwidth and
delay) are characterized by random variables. The goal is then to find the
most-probable bandwidth-delay-constrained path(MP-BDCP). We provide ef-
ficient solutions for the MP-BDCP problem by decomposing it into two sub-
problems: the most-probable delay-constrained path (MP-DCP) problem
and the most-probable bandwidth-constrained path (MP-BCP) problem.
MP-DCP by itself is known to be NP-hard, necessitating the use of approx-
imate solutions. By employing the central limit theorem and Lagrange re-
laxation techniques, we provide two complementary solutions for MP-DCP.
These solutions are found to be highly efficient, requiring on average a few
iterations of Dijkstra’s shortest path algorithm. As for MP-BCP, it can be
easily transformed into a variant of the shortest path problem. Our so-
lutions for MP-DCP and MP-BCP are then combined to address the MP-
BDCP problem by obtaining a set ofnear-nondominatedpaths. Decision
makers can then select one or more of these paths based on a specific utility
function. Extensive simulations are used to demonstrate the efficiency of the
proposed algorithmic solutions and, more generally, to contrast the proba-
bilistic path selection approach with the standard threshold-based triggered
approach.

Keywords—QoS routing, Stochastic shortest path, Lagrange relaxation,
Multi-objective optimization.

I. I NTRODUCTION

Networked multimedia applications are becoming increas-
ingly popular and are making a good case for the deployment of
QoS-based network architectures (e.g., DiffServ, MPLS). One
of the key issues in such architectures is how to determine “ap-
propriate” paths that fulfill the QoS requirements of the trans-
ported traffic. In general, path selection problems subject to
QoS constraints are computationally hard, and can only be dealt
with using heuristics and approximate solutions. Examples of
such solutions are reviewed in [1], [2]. With few exceptions,
previous QoS routing solutions have been developed under the
assumption that theexactstate of the network is known to nodes
performing the route computation. In practice, however, net-
work state is not known for certain due to the followings rea-
sons [3], [4]. First, current link-state routing protocols such
as OSPF [5] flood link values periodically. To limit the over-
head of flooding, long update intervals are used. For exam-
ple, in OSPF a link update is sent every 30 minutes. Periodic
flooding is sufficient for “static” link parameters (e.g., link con-
nectivity), but cannot provide the desired accuracy in the case
of highly dynamic link parameters, such as the available link

T. Korkmaz is with the Dept. of Computer Science, University of Texas at
San Antonio (e-mail: korkmaz@cs.utsa.edu).

M. Krunz is with Dept. of Electrical and Computer Engineering, University
of Arizona (e-mail: krunz@ece.arizona.edu).

bandwidth, where several changes in the parameter value are
likely to occur within two periodic OSPF updates. The reliance
on outdated information and treating this information as exact
can significantly degrade the effectiveness of the path selection
algorithm. Of course, threshold-based (triggered) flooding can
be used to partially address this problem [6], but the associated
overhead can be excessive1. A second source of inaccuracy is
attributed to state aggregation. Most link-state routing proto-
cols (e.g., OSPF [5], PNNI [7]) are hierarchical, whereby the
state of a group of nodes (an OSPF area or a PNNI peer group)
is summarized (aggregated) before being disseminated to other
nodes [8]. While state aggregation is essential to ensuring the
scalability of any QoS-aware routing protocol, it comes at the
expense ofperturbing the true state of the network. Finally,
state inaccuracy can also be attributed to the sampling errors in
computing the values of link parameters and to the latency asso-
ciated with disseminating these values throughout the network
(the so-called protocol “convergence time”).

In this paper, we consider the path selection problem under
both delay and bandwidth constraints. To account for uncertain-
ties in the link-state parameters, we follow aprobabilistic ap-
proach in which these parameters are modelled as random vari-
ables (rvs). Very mild assumptions are made on the probability
density functions (pdfs) of these rvs. In fact, our solutions do
not require the computation and dissemination of pdfs. Instead,
a node (e.g., router) is only required to compute and dissemi-
nate themean and variance(or two related parameters) of the
bandwidth and delay values for the outgoing links. These mo-
ments can be computed simply as follows. Each node maintains
a moving average and corresponding variance for both the avail-
able bandwidth and delay of each outgoing link. The parameters
for the bandwidth are updated whenever there is a change in the
available bandwidth (e.g., flow is added or terminated), while
the ones for the delay are updated whenever a packet leaves the
router. Once the local mean and variance are computed for each
outgoing link, they can be disseminated using QoS-enhanced
versions of OSPF, such as the one described in [9].

One important question here is when and how to advertise
the mean and variance values. A triggered-based approach sim-
ilar to the one in [6] can be used for this purpose, but applied
to the mean and variance values rather than the actual instanta-
neous values of the bandwidth and delay. So, for example, if the
varianceof the packet delay changes byx% from its most re-
cent advertised value, wherex is a control threshold, this could
trigger an update of the variance. The advertisement overhead
depends on the variability of the mean and variance parameters,
which in turn is a function of the fluctuations of the instanta-

1Comparisons between threshold-based updating and the proposed probabilis-
tic path selection approach are given in Section V.

2

neous delay and bandwidth values, the time window over which
these moments are computed, and the triggering thresholds. In
any case, by virtue of being moments of a time series, the (win-
dowed) mean and variance values will exhibit less fluctuations
than the actual instantaneous values. So a considerable reduc-
tion in the advertisement overhead is to be expected when the
advertisement is done only after significant changes in the mean
and variance values take place. Note that as the length of the av-
eraging window increases, a single measurement point will have
less impact on the overall mean and variance. The same can be
said about the values of the triggering thresholds.

Having motivated the feasibility of capturing and disseminat-
ing probabilistic state information, we now address how such
information can be used to compute paths subject to bandwidth
and delay constraints. The problem at hand is algorithmically
stated as follows:

Definition 1 Most-Probable Bandwidth-Delay Constrained
Path (MP-BDCP) Problem: Consider a networkG = (V,E),
whereV is the set of nodes andE is the set of links. Each link
(i, j) ∈ E is associated with an available bandwidth parameter
b(i, j) and a delay parameterd(i, j). We assume that theb(i, j)’s
andd(i, j)’s are independent rvs. For any pathp from the source
nodes to the destination nodet, letb(p) def= min{b(i, j) | (i, j) ∈
p} andd(p) def=

∑
(i,j)∈p d(i, j). Given a bandwidth constraint

B and a delay constraintD, the problem is to find a path that is
most likely to satisfy both constraints. Specifically, the problem
is to find a pathr∗ such that for any other pathp from s to t,

πB(r∗) ≥ πB(p), and (1)

πD(r∗) ≥ πD(p), (2)

whereπB(p) def= Pr[b(p) ≥ B] andπD(p) def= Pr[d(p) ≤ D].

If the b(i, j)’s andd(i, j)’s are constants, the MP-BDCP prob-
lem reduces to the familiar bandwidth-delay constrained path
problem, which can be easily solved in two steps [10]: (i) prune
every link(i, j) for which b(i, j) < B, and (ii) find the shortest
path with respect to (w.r.t.) the delay parameter in the pruned
graph. However, MP-BDCP is, in general, a hard problem; in
fact, even if one only considers the delay constraint, the problem
is still NP-hard [11], necessitating the reliance on approximate
but computationally feasible solutions. Using the central limit
theorem and Lagrange relaxation techniques, we first provide
two complementary solutions for the delay case. These solu-
tions are found to be highly efficient, requiring, on average, a
few iterations of Dijkstra’s shortest path algorithm. The band-
width case is rather simple, and is dealt with by transforming it
into a variant of the shortest path problem. The solutions for the
MP-BCP and MP-DCP problems are then combined to address
the MP-BDCP problem.

MP-BDCP belongs to the class of multi-objective optimiza-
tion problems, for which a solution may not even exist (i.e., the
optimal path w.r.t.πB is not optimal w.r.t.πD, or vice versa).
To eliminate the potential conflict between the two optimization
objectives, one can specify autility function that relatesπB and
πD, and use this function as a basis for optimization. For ex-
ample, one could maximizemin{πB(p), πD(p)} or the product

πB(p)πD(p). Rather than optimizing a specific utility function,
we pursue an approach by which a subset ofnearly nondomi-
nated pathsis computed for the given bandwidth and delay con-
straints. A pathp is said to be nondominated if and only if it is
not possible to find another pathp′ for which πB(p′) ≥ πB(p)
andπD(p′) ≥ πD(p). Given a set of nondominated paths, a de-
cision maker can select one of these paths according to his/her
specific utility function. Unfortunately, finding all nondomi-
nated paths is a hard problem that requires an exponential-time
algorithm [12]. Accordingly, we provide a heuristic solution that
quantizesπB using a predetermined step sizeε, 0 < ε < 1. For
each quantization step, the algorithm attempts to return a path
p that maximizesπD while satisfyingπB(p) > πB(r∗) + ε,
wherer∗ is the returned path from the previous step. The set of
returned paths constitutes a staircase in the(πD, πB) space with
step heights of at leastε. Note that due to its heuristic nature,
our solution does not guarantee finding the optimalπD at every
quantization level. Nonetheless, the returnedπD ’s are reason-
ably close to their optimal values, and hence the returned paths
are nearly nondominated.

The rest of the paper is organized as follows. In the next sec-
tion, we formalize the algorithmic definition of the problem and
discuss some related work. In Section III, we introduce our so-
lution to one component of the MP-BDCP problem, namely, the
one dealing with the delay constraint. The complete solution is
provided in Section IV. Extensive simulations and performance
evaluation are provided in Section V, followed by conclusions
in Section VI.

II. PRELIMINARIES AND RELATED WORK

Objectives (1) and (2) of the MP-BDCP problem are often
considered separately, giving rise to two problems: themost-
probable bandwidth constrained path(MP-BCP) problem and
themost-probable delay constrained path(MP-DCP) problem.

A. MP-BCP Problem

In [13] it was shown that the MP-BCP problem by itself
is easy to solve. Accordingly, the authors in [14] provided
an exact, polynomial-time algorithm for MP-BCP that uses
logarithms. The algorithm associates a probability measure
ρ(i, j) def= Pr[b(i, j) ≥ B] with every link (i, j), so that
πB(p) =

∏
(i,j)∈p ρ(i, j). To find a path that maximizesπB , the

weight (− log ρ(i, j)) is assigned to each link(i, j). The con-
ventional shortest path algorithm is then executed. We now pro-
vide (and later use) another exact, polynomial-time algorithm
for this problem that does not require computing logarithms.
Specifically, we modify Dijkstra’s algorithm as follows. For ev-
ery nodeu, we associate a labelρ[u] that represents the max-
imum probability that a path froms to u will satisfy the con-
straintB. Initially, ρ[s] is set to1 while ρ[v] is set to0 for all
nodesv 6= s. The graph is then explored by extracting from
the heap the next nodeu that has the maximumρ and relaxing
every link (u, v) for which ρ[v] < ρ[u] ∗ ρ(u, v). The latter
step directly finds the optimal value ofπB without computing
logarithms.

In both solutions of MP-BCP, the node that performs the path
computation needs to know the values ofPr[b(i, j) ≥ B] for all
links (i, j) ∈ E. These probabilities can be obtained from the

3

advertised means and variances, assuming some functional form
for the pdf of theb(i, j)’s. Since QoS routing has not yet been
implemented in real networks, we do not know yet what would
be an appropriate pdf for the available bandwidth of a link (the
statistical characteristics ofb(i, j) will depend on how much,
how often, and for how long bandwidth is being requested by
traffic flows). Fortunately, the above MP-BCP solutions still ap-
ply, independent of the form of this pdf. In related studies (e.g.,
[15], [16], [17]), researchers assumed thatb(i, j) is uniformly
distributed over some range[lb, ub]. The same uniform distribu-
tion will be used in our simulations. In this case, thelb andub
values can be advertised in place of the mean and variance.

B. MP-DCP Problem

The MP-DCP problem is known to be NP-hard [11], and can
only be dealt with using heuristics and approximate solutions.
Essentially, MP-DCP is an instance of the stochastic shortest
path problem, which was investigated in the literature (e.g., [18],
[19]). One key issue in stochastic shortest path problems, in
general, is how to define the optimality of a path. Some for-
mulations (e.g., [20], [21], [22], [23]) aim at finding the most
likely shortest path. Others consider the least-expected-delay
paths under interdependent or time-varying probabilistic link
delays (e.g., [24], [25], [26]). In [27] the author investigated
dynamic stochastic shortest path problems in which the proba-
bilistic link weight is “realized” (i.e., becomes exactly known)
once the node is visited. Several studies define path optimality
in terms of maximizing a user-specified objective function (e.g.,
[18], [28], [29], [30], [31]). Our formulation of the MP-DCP
problem belongs to this category, where the objective is to find
a path that is most likely to satisfy the given delay constraint.

In [14] the authors started with the same MP-DCP formu-
lation used in this paper. They acknowledged the problem and
provided solutions for special cases of it. Then they modified the
problem into one in which the goal is to partition the given end-
to-end delay constraint into local link constraints. The optimal
path for the new problem is, in general, different from the one
for the original MP-DCP problem, and its approximate solutions
are computationally more expensive than the MP-DCP solutions
presented in this paper. Note that the work in [14] does not ad-
dress the combined MP-BDCP problem. Due to these differ-
ences, our algorithmic developments take a completely different
path from the one in [14].

To provide an efficient, general solution for the MP-DCP
problem, which can then be integrated into a solution for the
MP-BDCP problem, we assume that for each link(i, j), d(i, j)
is a nonnegative rv with meanµ(i, j) and varianceσ2(i, j), and
that link delays are mutually independent. We make no assump-
tions on the pdf ofd(i, j) except that it is “smooth,” which
means that the pdf is continuous and differentiable over some
domain, say(a, b) [32], [33]. The smoothness assumption, sat-
isfied by many distributions, enables us to apply the central limit
theorem (CLT) approximation (see [34, 376-378]), resulting in a
path delaythat is approximately normally distributed. Note that
cutoffs or truncations do not preclude a pdf from being smooth.
A good example is the uniform distribution, which has two cut-
off points. In [35, 214-215] it is shown that the sum of as small
as three uniform rvs already tends to a normal distribution. The

CLT approximation also applies even when the pdfs of the local
delays are “heavy tailed” (e.g., lognormal, Weibull), provided
that the variances are finite. A recent experimental study [36]
indicated that the round-trip time can be well approximated by
a truncated normal distribution, which further supports our use
of the CLT approximation for the delay case.

Let h(p) be the number of hops of a pathp. According to the
CLT, ash(p) increasesd(p) tends to a normally distributed rv
with mean

µ(p) =
∑

(i,j)∈p

µ(i, j)

and variance
σ2(p) =

∑

(i,j)∈p

σ2(i, j).

With d(p) approximately normal, the objective functionπD

becomes

πD(p) ≈ Φ(
D − µ(p)

σ(p)
),

whereΦ(x) def= 1
2π

∫ x

−∞ e−y2/2dy is the cumulative distribution
function of a standard normal rv. SinceΦ is monotone, maxi-
mizing it with respect top is equivalent to maximizing the argu-
ment(D − µ(p))/σ(p). Hence, the MP-DCP problem reduces
to finding the pathp that maximizes

XD(p) def=
D − µ(p)

σ(p)
(3)

Let P be the set of paths between the source nodes and the
destination nodet. To maximize (3), we consider two cases,
denoted by CASE-I and CASE-II. CASE-I deals with the situ-
ation in which there exists a pathp ∈ P for which µ(p) ≤ D
(hence,XD(p) ≥ 0). In this case, to maximize (3) we seek a
pathr∗ ∈ P that minimizes bothµ andσ2. In contrast, CASE-
II has that∀p ∈ P, µ(p) > D, implying XD(p) < 0. In this
case, we seek a pathr∗ ∈ P that maximizesσ while simultane-
ously minimizingµ.

A number of approximate solutions were previously sug-
gested for CASE-I (see [19] for an extensive survey). The main
idea in these solutions is to find a pathp that minimizes a linear
combination ofµ andσ2, i.e.,αµ+(1−α)σ2, whereα ∈ [0, 1].
For a givenα, the linear combination can be easily minimized
by associating a weightw(i, j) = αµ(i, j) + (1 − α)σ2(i, j)
with every link (i, j) and executing the shortest path algorithm
w.r.t.w(i, j). This technique, often referred to as theline search
method, is used in the next section to devise efficient solutions
for both cases of the MP-DCP problem.

III. PROPOSEDALGORITHMS FOR THEMP-DCP PROBLEM

In this section, we provide efficient solutions to both cases of
the MP-DCP problem. First, we need to decide which case to
consider for a given input (i.e.,G = (V, E), s, t,D). This can
be done using Heuristic-MP-DCP in Figure 1.

Heuristic-MP-DCP starts by computing the shortest pathp∗
w.r.t. µ from s to t. It then checks whetherµ(p∗) ≤ D or not.
If so (CASE-I), Heuristic-MP-DCP computes the shortest path

2We will sometimes writeµ(p) andσ(p) without the argument to simplify
the notation.

4

Heuristic-MP-DCP(G = (V, E), s, t,D)
1. Using Dijkstra’s algorithm findp∗

such that∀p ∈ P, µ(p∗) ≤ µ(p)
2. if µ(p∗) ≤ D then // CASE-I
3. Using Dijkstra’s algorithm findq∗

such that∀p ∈ P, σ2(q∗) ≤ σ2(p)
4. if XD(p∗) ≥ XD(q∗) then
5. Setr∗ = p∗
6. else
7. Setr∗ = q∗
8. end if
9. Executeminµminσ(G = (V,E), s, t, D, p∗, q∗, r∗)
10. else// CASE-II
11. Setr∗ = p∗
12. Executeminµmaxσ(G = (V, E), s, t,D, p∗, r∗)
13. end if

Fig. 1. Main algorithm for the MP-DCP problem.

q∗ w.r.t. the variance (i.e.,σ2(q∗) ≤ σ2(p) ∀p ∈ P), selects the
better ofp∗ or q∗ as its initial best known path (denoted byr∗),
and calls minµminσ. Note thatp∗ andq∗ can be computed at
once for all destinations by executing Dijkstra’s algorithm at a
given source node. If there are more than onep∗ (q∗), the algo-
rithm selects the one with the minimum variance (mean). This
can be easily done by using a hierarchical version of Dijkstra’s
algorithm [37].

If µ(p∗) > D (CASE-II), Heuristic-MP-DCP selectsp∗ as its
initial best known path, again denoted byr∗, and calls algorithm
minµmaxσ. Note that in CASE-II, the optimal path (if found)
will satisfy the delay constraint with a probability less than0.5.
If this probability is too small, then the decision maker can com-
pletely skip the execution of minµmaxσ, avoiding unnecessary
computations.

Both algorithms minµminσ and minµmaxσ consider the ge-
ometry of the feasibility region along with the contours of the
objective function (3) in the(µ, σ2) parameter space. There-
fore, to facilitate the presentation of both algorithms, we will
extensively rely on a two-dimensional (µ, σ2) representation of
the paths betweens andt. An example of this representation is
shown in Figure 2. The four paths froms to t are represented
by the black circles in Figure 2(b). The process of minimizing
µ+βσ2 (which constitutes the basis for the solution of CASE-I)
is also illustrated in the figure by sliding a line of slope of−1/β,
starting at the origin and moving outward in the direction of the
arrow. The first path (i.e., black circle) to be encountered is the
shortest w.r.t.µ + βσ2. In CASE-II, a line search method is
used but with a positive line slopes (the line search is also com-
bined with a modified version of thek-shortest paths algorithm
to yield good results).

A. Algorithm minµminσ for CASE-I

Recall that for CASE-I, it is desired to find a path that mini-
mizes both the mean and the variance so that (3) can be max-
imized. Algorithm minµminσ, depicted in Figure 3, tries to

s t

u

v

1,1

1,3

7,1

2,6

3,2

(a)

µ(p)

σ2(p)

3 5 10

3

6

8
9

p*

q*

0
0

(b)

Fig. 2. Representing the paths froms to t in the (µ, σ2) space: (a) original
network with each link assigned aµ and aσ2 delay parameters; (b) the
corresponding (µ, σ2) representation.

achieve this goal. It starts by checking ifp∗ andq∗ have the
sameµ andσ2. If so, then the currently knownr∗ is the optimal
path, since it has the minimum mean and variance. Otherwise,
minµminσ proceeds to scan the(µ, σ2) space for a betterr∗ us-
ing the linear combinationµ+βσ2 with the objective of finding
a path that maximizesXD. Note thatr∗ represents theso-far
determined optimal path. In each call/step, the algorithm tries to
improve the selection and returns a betterr∗.

In the (µ, σ2) space, the contour of equally probable paths
(ones with the sameXD value) constitutes a parabolic curve of

the formσ2(p) = D2−2Dµ(p)+µ2(p)
X 2

D

. Two such parabolas are

depicted in Figure 4 whenD = 9. Note thatXD(p) (and thus
πD(p)) increases as the contour curve gets closer to the origin.
So, algorithm minµminσ needs to determine a path that lies in
the shaded region of Figure 4 and whose contour curve is clos-
est to the origin. To do this, minµminσ first computes an appro-
priate value forβ. This is done by computing the coordinates
of two points (fictitious paths)p′ andq′ in the (µ, σ2) space at
which the contour curve of the currentr∗ intersects the vertical
and horizontal lines ofp∗ andq∗, respectively (see Figure 5).
Note that in Figure 5p′ = p∗, but that is not always the case.
The pointsp′ andq′ satisfy the following equalities:

XD(r∗) =
D − µ(p′)

σ(p′)
=

D − µ(q′)
σ(q′)

µ(p′) = µ(p∗)
σ(q′) = σ(q∗)

From these equations, we can computeσ(p′) andµ(q′):

σ(p′) =
D − µ(p∗)
XD(r∗)

µ(q′) = D − σ(q∗)XD(r∗)

5

minµminσ(G = (V, E), s, t, D, p∗, q∗, r∗)
1. if µ(p∗) = µ(q∗) and σ2(p∗) = σ2(q∗) then
2. returnr∗ // r∗ is the optimal path
3. end if
4. Compute the mean and variance of the two fictitious

pathsp′ andq′ for whichXD(p′) = XD(q′) = XD(r∗):
4.1 Setµ(p′) = µ(p∗) andσ(q′) = σ(q∗)
4.2 Setσ(p′) =

D−µ(p∗)
XD(r∗) andµ(q′) = D − σ(q∗)XD(r∗)

5. Setβ =
µ(q′)−µ(p′)

σ2(p′)−σ2(q′)
6. Setw(i, j) = µ(i, j) + βσ2(i, j) ∀(i, j) ∈ E
7. Using Dijkstra’s algorithm find the pathr such that

∀p ∈ P, µ(r) + βσ2(r) ≤ µ(p) + βσ2(p)
8. if µ(r) + βσ2(r) ≥ µ(p′) + βσ2(p′) then
9. returnr∗ // r∗ is the optimal path
10.end if
11. if XD(r) > XD(r∗) then
12. Setr∗ = r
13. Recompute the pointsp′ andq′ as in step 4
14.end if
15. Compute the intersection pointsp+ andq+ of the line

µ(r) + βσ2(r) and the contour curve ofr∗:
15.1 Seta = β, b = XD(r∗), andc = D − (µ(r) + βσ2(r))

15.2 Setσ(p+) =
b+
√

b2−4ac
2a

andµ(p+) = D − bσ(p+)

15.3 Setσ(q+) =
b−
√

b2−4ac
2a

andµ(q+) = D − bσ(q+)
16. Compute the upper boundopt on the optimal path:

16.1 Setµ(optp) = µ(p∗) andσ(optp) =

√
µ(r)+βσ2(r)−µ(optp)

β

16.2 Setσ(optq) = σ(q∗) and
Setµ(optq) = µ(r) + βσ2(r)− βσ2(optq)

16.3 SetXD(opt) = max{XD(optp),XD(optq)}
16.4 ifXD(opt) is close enough toXD(r∗), returnr∗
17. if σ(p+) < σ(p′) then
18. Executeminµminσ(G = (V, E), s, t, D, p′, p+, r∗)
19.end if
20. if µ(q+) < µ(q′) then
21. Executeminµminσ(G = (V, E), s, t, D, q+, q′, r∗)
22.end if
23. returnr∗

Fig. 3. Algorithm minµminσ for CASE-I of the MP-DCP problem.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

(p)

σ2(p)

µ(p)
σ

µ

D− =1.63

µ

(p)

σ (p) =2(p)D−

3 5 10

3

6

8
9

q*

0
0

13

p*

D=9

Fig. 4. Equally probable paths in the (µ, σ2) space (the shaded area represents
the region that needs to be searched).

p+

q+

optq µ(p)

σ2(p)

optp

�����
�����
�����
�����

�
�
�
�

�
�
�
� p* = r* = p’

slope = −1/β

q*

r

q’

contour of r*

Fig. 5. Pointsp′, q′, p+, q+, optp, andoptq used in minµminσ. The plot
represents one scenario in whichXD(r) < XD(r∗) andLβ(r) < Lβ(p′)
(the two shaded regions are the areas that still need to be searched; actual
paths are represented by black circles).

For any pointp in the(µ, σ2) plane, letLβ(p) def= µ(p)+βσ2(p).
The initial value ofβ is obtained by solvingLβ(p′) = Lβ(q′)
for β, i.e., β is the inverse of the slope of the line that passes
through bothp′ andq′. Accordingly,

β =
µ(q′)− µ(p′)

σ2(p′)− σ2(q′)
.

By associating the weightw(i, j) def= µ(i, j) + βσ2(i, j)
with every link (i, j) ∈ E and using Dijkstra’s algorithm
w.r.t. w(i, j), minµminσ scans the search space and returns a
pathr. If Lβ(r) ≥ Lβ(p′), then it is easy to see that the current
r∗ must be optimal since the whole space between the origin
and the contour curve ofr∗ has already been scanned, so the
algorithm stops (note thatp′ is not necessarily a real path, so
we could have a scenario in which the strict inequality occurs).
On the other hand, ifLβ(r) < Lβ(p′), the algorithm needs to
scan the space between the lineµ(p) + βσ2(p) = Lβ(r) and
the contour curve of the currentr∗ (i.e., the two shaded re-
gions in Figure 5). To do this, minµminσ first updatesr∗: if
XD(r) > XD(r∗), thenr∗ is set tor. The two pointsp′ andq′

are recomputed as before w.r.t. the newr∗. The algorithm then
finds the two points, indicated byp+ and q+, where the line
Lβ(p) = Lβ(r) intersects the contour ofr∗ (whose equation is
given byXD(p) = XD(r∗)). From the line equation, we have

µ(p) = µ(r) + βσ2(r)− βσ2(p) (4)

From the contour equation, we have

µ(p) = D −XD(r∗)σ(p) (5)

Equating the right hand sides of the last two equations, we end
up with a quadratic polynomial inσ(p):

β︸︷︷︸
a

σ2(p)−XD(r∗)︸ ︷︷ ︸
b

σ(p) + D − (µ(r) + βσ2(r))︸ ︷︷ ︸
c

= 0. (6)

Its roots, denoted byσ(p+) andσ(q+), are:

σ(p+) =
b +

√
b2 − 4ac

2a

σ(q+) =
b−√b2 − 4ac

2a

6

By substitutingσ(p+) and σ(q+) for σ(p) in µ(p) = D −
XD(r∗)σ(p), we can computeµ(p+) andµ(q+):

µ(p+) = D − bσ(p+)
µ(q+) = D − bσ(q+).

After determiningp+ andq+, minµminσ proceeds to scan the
regions between the lineLβ(p) = Lβ(r) and the contour curve
of the currentr∗ (the shaded regions in Figure 5). If a better
path thanr∗ exists, then it must fall in one of these regions.
To scan these regions, minµminσ determines two lines based
on the above fictitious paths. The first line passes throughp′

and p+ while the second one passes throughq+ and q′. If
σ(p+) ≤ σ(p′), minµminσ calls itself usingp′ andp+ as in-
put arguments in place ofp∗ andq∗, respectively (i.e., it scans
using the slope of the first line). Furthermore, ifµ(q+) ≤ µ(q′),
then minµminσ calls itself usingq+ andq′ in place ofp∗ and
q∗, respectively (i.e., it scans using the slope of the second line).

The algorithm can be run recursively until the optimal path is
found. The area in the(µ, σ2) that is yet to be searched shrinks
with each iteration, indicating thatr∗ is getting closer to (if it
is not already) the optimal path. A stopping criterion can be de-
vised by computing, in each iteration, an upper bound on the op-
timal path. If the currentr∗ is close enough to this bound, the al-
gorithm stops and returns the currentr∗ as the solution. This up-
per bound is computed as follows. In each iteration, minµminσ
computes the coordinates of two fictitious paths,optp andoptq,
which can be thought of as candidates for the optimal path. The
manner in which these paths are determined will be described
shortly. Onceoptp andoptq are computed, the “better” of them,
calledopt, is determined according to:

XD(opt) = max{XD(optp),XD(optq)}
From the definition ofoptp and optq, XD(opt) represents an
upper bound onXD of the optimal path. So if in a given itera-
tion XD(r∗) ≈ XD(opt), minµminσ returns the currentr∗ and
stops. Otherwise, it keeps searching.

The fictitious pathsoptp andoptq are defined by the intersec-
tions of the current search line with the vertical and horizontal
lines atp∗ andq∗, respectively. By definition,µ(optp) = µ(p∗)
andσ(optq) = σ(q∗). To computeµ(optp) andµ(optq), we
have

µ(optp) + βσ2(optp) = µ(r) + βσ2(r)
µ(optq) + βσ2(optq) = µ(r) + βσ2(r)

From these equations, we compute:

σ(optp) =

√
µ(r) + βσ2(r)− µ(optp)

β

µ(optq) = µ(r) + βσ2(r)− βσ2(optq)

which completes the determination ofXD(opt).
The complexity of minµminσ is equal to the number of calls

to Dijkstra’s algorithm, i.e., the number of lines that are system-
atically used to estimate the contour curve of the optimal path
that maximizesXD. Even though this number is not theoreti-
cally bounded, it is intuitively clear that one side of a parabolic

curve can be adequately estimated with a few lines. In fact,
simulation results indicate that minµminσ often finds the opti-
mal path within three iterations of Dijkstra’s algorithm (two of
which are used to computep∗ andq∗).

It is worth emphasizing that the line search concept has been
used in previous studies [19], but based on a line adjustment
strategy that is different from the one presented here. More
specifically, in previous studies the line search is performed by
considering only theextremenondominated paths (e.g.,p∗ and
q∗), without exploiting the convexity and structure ofXD. As
a result, the line may unnecessarily scan a vast region in the
parameter space that contains dominated paths. Ultimately, it
returns a dominated path, wasting the computational resources.
In minµminσ, we avoid such a trap by careful selection ofβ that
guarantees that in each iterationthe newly computedr∗ cannot
be worse (in terms ofXD) than the most recentr∗.

B. Algorithm minµmaxσ for CASE-II

For CASE-II (i.e.,∀p ∈ P, µ(p) > D), one has to minimize
the mean and maximize the variance so thatXD can be max-
imized. To achieve this goal, we devise algorithm minµmaxσ,
depicted in Figure 6. As in CASE-I, we use a line search method
but with a positive slope. The contours ofXD are now charac-

terized by a parabola of the formσ2(p) = D2−2Dµ(p)+µ2(p)
X 2

D

. In

contrast to CASE-I, the value ofXD here is always negative, and
it increases as the parabola gets closer to the upper-left corner of
the (µ, σ2) space (see the example in Figure 7). This suggests
that the line search should proceed from the upper-left corner to
the bottom-right corner of the (µ, σ2) space, as shown in Fig-
ure 8. This search can be done by minimizing overp ∈ P the
objective functionLβ(p) def= µ(p)− βσ2(p), whereβ > 0. This
is done by associating a weightw(i, j) def= µ(i, j) − βσ2(i, j)
with every link(i, j) and executing the shortest path algorithim
w.r.t. w. Note thatβ must be chosen so that all link weights are
nonnegative (otherwise, the graph may contain negative cycles).
Algorithm minµmaxσ starts by selectingβ = min{ µ(i,j)

σ2(i,j) :
(i, j) ∈ E}. It then executes Dijkstra’s algorithm, returning a
pathr that minimizesLβ . If XD(r) > XD(r∗), thenr∗ is set
to r (as before,r∗ represents the so-far best path w.r.t.XD; it is
initially set top∗).

In contrast to CASE-I in which the search line faces the outer
(convex) surface of the parabola, in CASE-II the line search
faces the inner (concave) surface of the parabola (see Figure 8).
As a result, the region between the lineLβ(p) = Lβ(r) and the
contour curve of the currentr∗ (i.e., Region A in Figure 8) will
not be scanned during the computation ofr. To scan this region,
the current search line or an adjusted one (see step 7 in Figure 6)
needs to be kept sliding along the arrow. This can be done by
using thek-shortest paths algorithm. However, if the standardk-
shortest paths algorithm (for example, the one provided in [38])
were to be used (i.e., if the line is kept sliding along the arrow),
it will scan both Region A and the region on the right side of the
contour curve ofr∗ (Region B in Figure 8). All paths in Region
B have smallerXD values thanXD(r∗), and hence scanning Re-
gion B is not needed. Unlessk is very large, Region A cannot be
completely scanned since many of the returnedk-shortest paths
will come from Region B. Obviously, a largek renders the algo-

7

minµmaxσ(G = (V, E), s, t, D, p∗, r∗)
1. Setβ = min{ µ(i,j)

σ2(i,j)
| (i, j) ∈ E}

2. Setw(i, j) = µ(i, j)− βσ2(i, j) (i, j) ∈ E

3. LetLβ(p)
def
= µ(p)− βσ2(p) for any pathp. Using Dijkstra’s

algorithm find a pathr such that∀p ∈ P, Lβ(r) ≤ Lβ(p)
4. if XD(r) > XD(r∗) then setr∗ = r
5. Compute the fictitious pathsopt andtg
5.1 if D ≥ Lβ(r) then

5.2 Setµ(opt) = µ(p∗) andσ2(opt) =
µ(opt)−Lβ(r)

β

5.3 else

5.4 Setσ2(opt) =
Lβ(r)−D

β
andµ(opt) = Lβ(r) + βσ2(opt)

5.5 if µ(opt) < µ(p∗) then

5.6 Setµ(opt) = µ(p∗) andσ2(opt) =
µ(p∗)−Lβ(r)

β

5.7 end
5.8 Setσ(tg) =

XD(r∗)
−2β

andµ(tg) = D −XD(r∗)σ(tg)

6. if XD(opt) ≈ XD(r∗) or Lβ(r) ≈ Lβ(tg), then
6.1 returnr∗
7. Adjustβ and recomputew(i, j) if needed

7.1 if XD(r) > XD(p∗) then Setβ = min{β,
µ(r)−µ(p∗)

σ2(r)−σ2(p∗)}
7.2 else ifXD(r) < XD(p∗) then
7.3 Compute the pointr+ whereµ(r)− βσ2(r) and

the contour curve ofr∗ intersect:
7.3.1 Seta = β, b = XD(r∗), andc = −D + µ(r)− βσ2(r))

7.3.2 Setσ(r+) =
−b+

√
b2−4ac

2a
andµ(r+) = D − bσ(r+)

7.4 Setβ = min{β,
µ(r+)−µ(p∗)

σ2(r+)−σ2(p∗)}
7.5 end
7.6 w(i, j) = µ(i, j)− βσ2(i, j) ∀(i, j) ∈ E
8. Using Reverse-Dijkstra’s algorithm find̃rv from every nodev to

nodet such that∀pv ∈ P̃, µ(r̃v)− βσ2(r̃v) ≤ µ(pv)− βσ2(pv)
9. Execute thek-shortest paths algorithm with the following modifications:
9.1 Extract nodeu and indexi, 1 ≤ i ≤ k, from the heap

(i.e.,ri, theith shortest path froms to u)
9.2 if u = d andXD(ri) > XD(r∗) then setr∗ = ri

9.3 Compute the upper boundsopt andtg as in step 5 withr = ri

9.4 if XD(opt) ≤ XD(r∗) or µ(ri)− βσ2(ri) ≥ µ(tg)− βσ2(tg)
then returnr∗ // r∗ is the optimal path

9.5 if the condition in step 6 holds,then returnr∗
9.6 Otherwise, consider each link(u, v) for relaxation
9.6.1 Setµ(tmp) = µ(ri) + µ(u, v)

Setσ2(tmp) = σ2(ri) + σ2(u, v)
9.6.2 if µ(tmp + r̃v)− βσ2(tmp + r̃v) > µ(tg)− βσ2(tg) or

(XD(tmp + r̃v) < XD(r∗) and v = t) or
(XD(tmp) < XD(r∗) and µ(tmp) > µ(tg)) then
do not relax(u, v)

9.6.3 elserelax(u, v) as described in [38]
10. returnr∗

Fig. 6. Algorithm minµmaxσ for CASE-II of the MP-DCP problem.

µ(p)

σ2(p) µ(p)
σ (p)

D− =−1.66

µ(p)
σ (p)

D− =−2.11

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

D=3

p*

Fig. 7. Equally probable paths in CASE-II (the shaded area is the region that
needs to be searched following the computation ofp∗).

µ(p)

σ2(p)

0

13

D=3

���
���
���
���
���

���
���
���
���
���

9

R
eg

io
n

A

0 6 8

2 p*

r=r*

R
eg

io
n

B

�����
�����
�����
�����

�����
�����
�����
�����

Fig. 8. Scanning the(µ, σ2) space in CASE-II.

rithm impractical, given theO(km log(kn) + k2m) complexity
of thek-shortest paths algorithm [38], wheren is the number of
nodes andm is the number of links.

To prevent the algorithm from scanning Region B, we modify
thek-shortest paths algorithm so thatit does not explore or store
dominated paths or sub-paths that lead to dominated paths. By
doing so, the modified algorithm considers more paths from Re-
gion A, which improves the performance using a reasonably
smallk. Our modifications require determining two points (fic-
titious paths) in the(µ, σ2) space, which are denoted byopt and
tg (see Figure 9). Pointopt is used to compute an upper bound
on the optimal path w.r.t.XD, while point tg is used to com-
pute an upper bound on the linear search w.r.t.Lβ

3. These two
points are computed as follows. Suppose that pathsp∗, r, and
r∗ have already been determined. IfLβ(r) ≤ D, thenopt is
the point at which the lineLβ(p) = Lβ(r) intersects the vertical
line atp∗, as shown in Figure 9(a). Thus, the coordinates ofopt

are given byµ(opt) = µ(p∗) andσ2(opt) = µ(opt)−L(r)
β . On

the other hand, ifLβ(r) > D thenopt is the point on the line
Lβ(p) = Lβ(r) that maximizesXD (see Figure 9(b)). In other
words,

d

dσ(p)

(
D − µ(p)

σ(p)

)
|p=opt= 0.

Sinceµ(opt) − βσ2(opt) = Lβ(r), we haveµ(opt) = L(r) +
βσ2(opt) and

d

dσ(p)

(
D − L(r)− βσ2(p)

σ(p)

)
|p=opt

=
−2βσ2(opt)−D + L(r) + βσ2(opt)

σ2(opt)
= 0

from which

σ2(opt) =
L(r)−D

β
and thusµ(opt) = L(r) + βσ2(opt).

If µ(opt) < µ(p∗), thenopt will again be at the point where the
vertical line atp∗ intersects with the lineLβ(p) = Lβ(r), as
described before.

As for tg, it is the point on the contour curve ofr∗ that maxi-
mizesLβ . In other words,

d

dσ(p)
(
µ(p)− βσ2(p)

) |p=tg= 0.

3tg stands for tangent, since the lineLβ(p) = Lβ(tg) is tangent to the
parabola ofr∗.

8

µ(p)

σ2(p)
13

D=3

9

0
0

p*

6 8

2

opt

tg

r=r*

L(r)

(a)

µ(p)

σ2(p)

D=3

L(r)

0
0

13

6

2

opt

p*=r*

tg

r

(b)

Fig. 9. Computing the fictitious pathsopt andtg in CASE-II: (a)Lβ(r) ≤ D,
(b) Lβ(r) > D.

Since

XD(tg) =
D − µ(tg)

σ(tg)
= XD(r∗)

we haveµ(tg) = D −XD(r∗)σ(tg), and thus

d

dσ(p)
(
D −XD(r∗)σ(p)− βσ2(p)

) |p=tg

= −XD(r∗)− 2βσ(tg) = 0

from which

σ(tg) =
−XD(r∗)

2β
and thusµ(tg) = D −XD(r∗)σ(tg).

After determiningopt and tg, we can use them as stop-
ping criteria. More specifically, ifXD(opt) ≈ XD(r∗) or
Lβ(r∗) ≈ Lβ(tg), thenr∗ is sufficiently close to the optimal
path. So minµmaxσ stops and returns the currentr∗ as the so-
lution. Otherwise, it proceeds to scan Region A for a better
(possibly optimal) path. As mentioned before, to achieve this
we use a modifiedk-shortest paths algorithm (discussed next).
Using each shortest pathri, 1 ≤ i ≤ k, we updater∗ and com-
pute the upper boundsopt andtg as described above, but using
ri in place ofr. If Lβ(ri) ≥ Lβ(tg), then the currentr∗ is opti-
mal since the whole shaded region is scanned, so the algorithm
stops. Otherwise, the algorithm proceeds to the nextri, and the
process is repeated.

Modifiedk-shortest Paths Algorithm

Thek-shortest paths algorithm in [38] is similar to Dijkstra’s
algorithm except that it associatesk labels with every node.
At each iteration, the algorithm extracts a nodeu with index
i, 1 ≤ i ≤ k, from the heap (i.e., theith shortest pathri

from s to u) and relaxes every link(u, v). We mainly mod-
ify this relaxation step to improve the performance of this al-
gorithm when used in CASE-II of the MP-DCP problem. Our
modifications are shown in Figure 6 (starting from step 9). Us-
ing Reverse-Dijkstra’s algorithm, we first compute the best path
r̃v from every nodev to the destination nodet w.r.t w(i, j) def=
µ(i, j)− βσ2(i, j). These paths will be used in the modifiedk-
shortest paths algorithm to eliminate sub-paths that lead to paths
dominated byr∗. Assume that nodeu with index i is extracted
from the heap as in the originalk-shortest paths algorithm. If
u = t then ri is a complete path froms to t. We can now
updater∗ and compute the pointsopt andtg as described be-
fore usingr = ri. If Lβ(ri) ≥ Lβ(tg), then the currentr∗
is optimal since all of Region A in Figure 8 is scanned, so the
algorithm stops. Ifu 6= t, thenri is a sub-path froms to u
and needs to be extended towardst by considering (relaxing)
every link(u, v). We first compute a temporary pathtmp from
s to v by adding the mean and variance of the link(u, v) to
the mean and variance ofri, i.e., µ(tmp) = µ(ri) + µ(u, v)
and σ2(tmp) = σ2(ri) + σ2(u, v). If v = t then tmp is a
complete path. In this case, iftmp is dominated byr∗ (i.e., if
XD(tmp) ≤ XD(r∗)), then there is no need to storetmp, so
relaxation does not take place. Ifv 6= t thentmp is a sub-path
that needs to be stored since there is a possibility that extending
it might lead to a better path thanr∗. We now describe two cases
in which tmp can never lead to a better path than the currently
known r∗. By identifying these cases, we can avoid unneces-
sary computations. For the first case, we concatenatetmp and
r̃v. If µ(tmp + r̃v)− βσ2(tmp + r̃v) > µ(tg)− βσ2(tg), then
the best possible extension oftmp will exceed the upper bound
µ(tg) − βσ2(tg) and will fall in Region I in Figure 10. Since

��

��

2(p)

µ(p)

σ

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

D=3

9

0
0

13

6 8

2

p*=r*

tg

R
eg

io
n

II
R

eg
io

n
I

Fig. 10. Relaxing the link(u, v) in CASE-II.

every path in Region I is dominated byr∗, there is no need to
relax (u, v). For the second case, we considertmp itself. If
XD(tmp) < XD(r∗) andµ(tmp) > µ(tg) (i.e., tmp falls in
Region II in Figure 10), then extendingtmp will lead to a path
that lies to the upper-right oftmp in the (µ, σ2) space. Since
all the paths in such a region are dominated byr∗, there is no
need to relax(u, v). With these modifications, minµmaxσ can
achieve good performance using a small value ofk.

9

IV. COMPUTING A SET OF NONDOMINATED PATHS FOR

THE MP-BDCP PROBLEM

As stated in Definition 1, the MP-BDCP problem aims at
maximizing bothπB andπD. If there is a path that maximizes
both functions, then this path is the optimal solution. Other-
wise, there is no solution, i.e., the optimal path w.r.t.πB is not
optimal w.r.t.πD, or vice versa. In the latter case, a decision
maker can specify autility function that relatesπB andπD, and
try to find a path that optimizes this utility function. For ex-
ample, one could maximizemin{πB(p), πD(p)} or the prod-
uctπB(p)πD(p). Rather than optimizing a specific utility func-
tion, we focus on how to produce a set ofnondominated paths,
from which a solution can be selected according to a given util-
ity function. Unfortunately, finding all nondominated paths is
a hard problem, requiring an exponential-time algorithm [12].
Accordingly, we provide a heuristic algorithm that aims at iden-
tifying a partial set of nearly nondominated paths.

A pseudo-code of the proposed algorithm, called Approx-
MP-BDCP, is shown in Figure 11. Approx-MP-BDCP starts

Approx-MP-BDCP (G = (V, E), s, t, D, B, ε)
1. Using Heuristic-MP-DCP, findr∗D
2. Using the modified Dijkstra’s algorithm for MP-BCP, findr∗B
3. if r∗D andr∗B are the same,then returnr∗D
4. Setℵ = {r∗D, r∗B}
5. Setr∗ = r∗D
6. Using the modified Dijkstra’s algorithm for MP-BCP in the

reverse direction, find the maximum̃ρ[·], the probability
of satisfyingB, from every nodeu to nodet.

7. While πB(r∗B) > πB(r∗) + ε
8. Using Heuristic-MP-DCP with some modifications,a

find tmp such thatπB(tmp) > πB(r∗) + ε
9. Setr∗ = tmp
10. Setℵ = ℵ ∪ {r∗}
11.end
12. returnℵ

aWhenever link(u, v) is considered for relaxation, check
if ρ[u]∗ρ(u, v)∗ ρ̃[v] > πB(r∗)+ε. If so, do not relax link(u, v).

Fig. 11. Approximate algorithm for finding a subset of the nondominated paths
in the MP-BDCP problem.

by computing two pathsr∗D andr∗B that maximizeπD andπB ,
respectively (note thatr∗D is only an approximation of the most-
probable delay-constrained path). Ifr∗D = r∗B , then this path
is the single optimal solution to the MP-BDCP problem. If
not, Approx-MP-BDCP proceeds to compute a set of nondom-
inated paths. Figure 12 depicts an example of such paths in
the(πD, πB) space (black circles indicate nondominated paths,
while white ones indicate dominated paths). Nondominated
paths form a staircase betweenr∗D andr∗B . Between these two,
there might be several other nondominated paths. Approx-MP-
BDCP tries to compute a subset of these paths by quantizing
πB using a predetermined quantization stepε, 0 < ε < 1.
As a result, all the nondominated pathsp for which πB(p) ≤
πB(r∗) + ε are bypassed, i.e., quantized tor∗. In here,r∗
is used to refer to the most recently found nondominated path
in the previous iteration (initially,r∗ is set tor∗D). Figure 12
also illustrates the quantization process forε = 0.2. The basic
idea here is to iteratively find the next nondominated path (indi-

π (p)
B

π (p)
D

r*
B

D
 r*=r*

1

 100
0.9

0.8

0.3

0.3

0.5

ε
=

0.
2

tmp

Fig. 12. Dominated and nondominated paths in the(πD, πB) space.

cated bytmp) by executing Heuristic-MP-DCP, which attempts
to maximizeπD under the constraintπB(tmp) > πB(r∗) + ε.
The process is repeated iteratively to find other nondominated
paths so long asπB(r∗B) > πB(r∗) + ε. The value ofε controls
the number of nondominated paths that could be returned by the
algorithm, and thus the number of iterations, which is at most
O(1

ε). It also determines the goodness of the nondominated
paths w.r.t.πB , i.e.,πB(any nondominated path in the graph) ≤
πB(one of the returned nondominated paths) + ε. Note that due
to its heuristic nature, Approx-MP-BDCP does not guarantee
that the returned path in each iteration is absolutely nondomi-
nated. Instead, the returned paths are, in general, nearly non-
dominated.

Approx-MP-BDCP combines Heuristic-MP-DCP and the so-
lution of MP-BCP, as follows. For each nodev, let p̃v be
the best path fromv to the destination nodet w.r.t. ρ(i, j) def=
Pr[b(i, j) ≥ B], and letρ̃[v] def=

∏
(i,j)∈p̃v

ρ(i, j). The value of

ρ̃[v], which is used in computing the pathtmp, can be deter-
mined by modifying Reverse-Dijkstra’s algorithm in the same
way we modified Dijkstra’s algorithm for the MP-BCP prob-
lem in Section II. To find the pathtmp that maximizesπD

under the constraintπB(tmp) > πB(r∗) + ε (line 8 in Fig-
ure 11), we execute Heuristic-MP-DCP, but with the follow-
ing modification. We do not relax any link(u, v) for which
ρ[u] ∗ ρ(u, v) ∗ ρ̃[v] > πB(r∗) + ε, whereρ[u] is the proba-
bility of satisfying the bandwidth constraint along the path from
s to u.

V. PERFORMANCEEVALUATION AND DISCUSSION

We conducted extensive simulations to evaluate the perfor-
mance and computational complexity of the aforementioned al-
gorithmic solutions. Our interest is not only to assess the good-
ness of these solutions, but to also demonstrate the potential
benefits of the probabilistic approach, in general, as a means
of reducing the protocol overhead at no loss in the routing per-
formance. Hereafter, we use the term “probabilistic approach”
to refer to the probabilistic modelling of uncertainties in link
bandwidth and delay (as formalized in Definition 1).

In the probabilistic approach, routers are expected to maintain
and advertise two parameters for each QoS measure (e.g., mean
and variance for delay, minimum and maximum for available
bandwidth). As discussed in Section I, these parameters vary at
a much slower pace than the instantaneous delay and bandwidth
values. In our simulations, we assume that these statistical pa-

10

rameters are computed and advertised once at the beginning of
each simulation run. Source nodes then use the one-time adver-
tised information to determine the most-probable path w.r.t. the
delay constraint, the bandwidth constraint, or both. Once this
path is computed, we check its feasibility according to theac-
tual (instantaneous) link values (which are not available to the
path selection algorithm). If the path is feasible according to the
actual values, we call the attempt a ‘success’. The performance
of a path selection algorithm is expressed in terms of thesuc-
cess rate(SR), which is the fraction of returned paths that are
feasible.

To demonstrate the robustness of the probabilistic approach,
we contrast it with thestandardthreshold-based triggered ap-
proach. In the triggered approach, the instantaneous bandwidth
and delay values are advertised once they exceed certain thresh-
olds, indicated by THB and THD, respectively (for simplicity,
we express these thresholds in absolute terms). Consider, for
example, the available bandwidth over a given link. If this band-
width changes (e.g., following the addition of a new flow or the
termination of an existing one) such that the absolute difference
between the new value and the most recently advertised one ex-
ceeds THB , then a new link state advertisement (LSA) is gener-
ated and advertised throughout the domain. Clearly, the smaller
the values of THB and THD, the higher is the SR of the triggered
approach. But this performance gain comes at the expense of
increased advertisement overhead. For the triggered approach,
path selection is performed using the algorithm in [10], which
was briefly described in Section I. Note that this algorithm treats
the available state values as if they were exact. We compare the
probabilistic and triggered approaches in terms of thenormal-
ized SR’s and the communications overhead. To measure the
communications overhead of the triggered approach, we com-
pute the percentage of links whose bandwidth and delay values
changed to the extent of triggering a state update within a given
period of time. Note that in our simulations the probabilistic
approach uses the one-time advertised statistical information.

Our simulations are based on random topologies that obey
the recently observed power laws [39]. These topologies were
generated using the BRITE topology generator [40]. In a given
topology, each link(i, j) is assigned random delay and band-
width parameters, indicated byd(i, j) andb(i, j), respectively.
We assume thatd(i, j) is normally distributed with meanµ(i, j)
and varianceσ2(i, j). To produce heterogeneous link delays,
we also randomize the selection ofµ(i, j) andσ2(i, j) by taking
µ(i, j) ∼ uniform[10, 200] andσ(i, j) ∼ uniform[25, 100].
For the link bandwidthb(i, j), we take it to be uniformly dis-
tributed in the range[lb(i, j), ub(i, j)]. To produce heteroge-
neous link bandwidths, we letlb(i, j) ∼ uniform[10, 150] and
ub(i, j) ∼ lb(i, j) + uniform[20, 50]. In the probabilistic ap-
proach, we assume thatµ(i, j), σ2(i, j), lb(i, j), andub(i, j) are
generated at the beginning of the simulation run and kept fixed
thereafter. In the triggered approach, we sample the current and
most recent delay and bandwidth values for every link(i, j)
using the prespecifiedµ(i, j), σ2(i, j), lb(i, j), and ub(i, j).
Whenever the current and most recent values of a link parameter
differ by more than the threshold, the current value is advertised
to refresh the stale link information. We also experimented with
other link distributions and other ranges forµ(i, j), σ2(i, j),

lb(i, j), andub(i, j) using various network sizes, and reached
similar conclusions to the ones discussed next. For brevity, we
report the results obtained using 100-node random topologies.

A. Performance Evaluation for the MP-DCP Problem

We first asses the performance and computational complex-
ity of the proposed Heuristic-MP-DCP and compare it with the
one in [19]. We then demonstrate the efficiency of the prob-
abilistic approach over the triggered-based approaches under a
delay constraint. Performance evaluations and comparisons are
performed separately for the two cases.

For CASE-I the algorithm in [19] adjusts the search line in
each iteration according to the extreme paths determined from
the previous iteration. We refer to this approach as thebasic line
search. In contrast, our solution takes into account the contours
of previously determined paths, thus avoiding the consideration
of many extreme (and non-useful) paths. The computational
complexity in both approaches can be expressed in the number
of calls to Dijkstra’s algorithm. We select the delay constraint
D as follows:

D = µ(p∗) + xDσ(p∗),
wherexD ∈ {0.5, 1.0, 1.5, 2.0, 2.5} is a constant that reflects
the tightness of the delay constraint relative toµ(p∗) (recall that
p∗ is the shortest path w.r.t. the mean). AsxD increases, so do
D andπD of the returned path. LetNDijkstra be the number of
calls to Dijkstra’s algorithm used by the compared algorithms
in CASE-I, including the two calls that are used to computep∗
andq∗. If no restriction is imposed onNDijkstra, both algo-
rithms are likely to find the optimal path. In this case, simula-
tion results indicate that our line search approach requires, on
average, 3.5 iterations of Dijkstra’s algorithm to find the opti-
mal path, compared to 5.3 iterations in the basic line search ap-
proach (about 51% more than ours). The worst-case complexity
(averaged over several runs) is found to be 7.6 iterations for our
approach, compared to 14.2 iterations for the basic line search
approach (about 87% more than ours).

Instead of letting the algorithm run indefinitely until it finds
the optimal path, one can impose a limit onNDijkstra. If af-
ter NDijkstra iterations, the optimal path is still not found, the
algorithm returns the most recentr∗ and terminates the search.
Simulation results show that the returned paths in this case are
very close to the optimal one even whenNDijkstra ≤ 3. Fig-
ure 13(a) depictsπD versusxD for the optimal path (obtained by
not imposing a limit onNDijkstra), the shortest pathp∗ w.r.t. µ
(obtained in one iteration of Dijkstra’s algorithm), and the paths
returned by the contending algorithms withNDijkstra ≤ 3. The
differences between the returned paths and the optimal one are
barely visible, indicating that line search-based algorithms are
capable of achieving an almost optimal performance using no
more than three executions of Dijkstra’s algorithm. Under the
same limit, our algorithm returns slightly better paths than the
ones returned by the basic line search. As also seen in the fig-
ure, p∗ is as good as the optimal path whenD is close to or
significantly larger thanµ(p∗). In other cases, however, the gap
betweenp∗ and the optimal path can be significant, particularly
when the distribution of paths in the (µ, σ2) space is not uni-
form.

11

0.5 1 1.5 2 2.5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
π D

(r
et

ur
ne

d
pa

th
)

x
D

 used in D=µ(p*)+x
D

σ(p*)

minµminσ (optimal)
minµminσ (N

Dijkstra
 ≤ 3)

Basic line search (N
Dijkstra

 ≤ 3)

p* (One Dijkstra)

(a)

0.511.522.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

π D
(r

et
ur

ne
d

pa
th

)

x
D

 used in D=µ(p*)−x
D

 σ(p*)

upper bound on the optimal path
minµmaxσ (k=2)
Basic k−shortest path (k=2)
p* (One Dijkstra)

(b)
Fig. 13. πD of various paths versusxD : (a) CASE-I withD = µ(p∗) +

xDσ(p∗); (b) CASE-II withD = µ(p∗)− xDσ(p∗).

For CASE-II, the algorithm in [19] uses thek-shortest-paths
algorithm as is. This algorithm simply searches the (µ, σ2)
space using a line parallel to theσ2-axis, returningk-shortest
paths w.r.t.µ. From thesek paths, the one that maximizes the
objective function is selected. In contrast, algorithm minµmaxσ
first determines a search line with a positive slope, and then uses
this line along with the modifiedk-shortest paths algorithm. The
computational complexities of both algorithms is a function of
k. We select the delay constraintD as follows:

D = µ(p∗)− xDσ(p∗),

wherexD ∈ {0.5, 1.0, 1.5, 2.0, 2.5}. As xD increases, bothD
and πD decrease. Recall that minµmaxσ computes an upper
bound on the optimal path. This bound becomes tighter ask in-
creases. Hence, we first run minµmaxσ with a largek (k = 20),
and use the computed upper bound as an approximation of the
optimalπD. Then, we contrast this value with the performance
of the basick-shortest paths algorithm and that of our algorithm
with k = 2. The results, shown in Figure 13(b), suggest that the
performance of our algorithm is near-optimal. They also indi-
cate that our algorithm is better than the basick-shortest paths
algorithm for the same computational complexity. AsD de-
creases, the gap betweenπD(returned path) andπD(p∗) further
widens. The gap narrows asD gets close toµ(p∗).

We now contrast the probabilistic and the standard triggered-

based approaches. Figure 14 depicts the SR as a function of
xD for both approaches. In the probabilistic approach, we use
Heuristic-MP-DCP withNDijkstra ≤ 3 in CASE-I and with
k = 2 in CASE-II. The performance of the triggered-based
approach depends on THD; as THD decreases, the SR perfor-
mance improves at the cost of higher advertisement overhead.
Hence, we show the performance of the triggered-based ap-
proach for three values of THD. For each value of THD, we

0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
R

x
D

Triggered, TH
D
 = 70, advertisement overhead = 39%

Triggered, TH
D
= 90, advertisement overhead = 29%

Triggered, TH
D
=110, advertisement overhead = 20%

Probabilistic approach

Exact

(a)

0.511.522.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
R

x
D

Triggered, TH
D
= 190, advertisement overhead = 4%

Triggered, TH
D
= 70, advertisement overhead = 39%

Triggered, TH
D
= 30, advertisement overhead = 68%

Probabilistic approach

Exact

(b)
Fig. 14. Success rate versusxD for the probabilistic and triggered approaches

subject to a delay constraintD: (a) CASE-I whereD = µ(p∗)+xDσ(p∗);
(b) CASE-II whereD = µ(p∗)− xDσ(p∗).

also show the corresponding percentage of links that resulted in
triggered advertisements. We refer to this percentage as thead-
vertisement overhead. For example, in CASE-I with THD = 70,
39% of links generated triggered updates. As a point of refer-
ence, we also depict the performance of the “exact algorithm,”
in which the exact link values are available to all nodes in the
network (i.e., THD = 0). A ‘failure’ for the exact algorithm
means that there is no path in the network that satisfies the re-
quired delay constraint. As shown in Figure 14(a), in CASE-
I the performance of the probabilistic approach surpasses that
of a triggered approach with THD = 110 (20% advertisement
overhead). In other words, for a given target SR the use of the
probabilistic approach in place of a threshold-based triggered
approach eliminates the need to flood the delay values of 20%
of the network links. This is a significant reduction in the ad-
vertisement overhead. The gain is less pronounced in CASE-II,

12

where the probabilistic approach is shown to have roughly the
same SR performance of a triggered-based approach with 4%
advertised links. The reason is that in CASE-II, the probability
of satisfying the delay constraint is always less than 0.5. So even
if minµmaxσ succeeds in returning the optimal path w.r.t.πD,
this path is often infeasible4.

Ideally, one would expect that for Heuristic-MP-DCP (with
NDijkstra ≤ 3 in CASE-I andk = 2 in CASE-II), πD in
Figure 13 should be the same as the corresponding SR in Fig-
ure 14. But apparently there is a slight difference, which can
be attributed to approximation errors in the normal distribution
and, evidently, the overestimation ofπD. More specifically,πD

in Figure 13 is computed under the assumption that link delays
areexactly normally distributed.On the other hand, in the sim-
ulations used to obtain the SR, link delays are sampled from a
normal distribution, which can have both negative and positive
values. Whenever a negative value is obtained, we ignore it and
repeat the sampling process. In effect, we are using atruncated
normal distribution for simulating the local delays. So the end-
to-end delay is not exactly normal. The same slight discrepancy
is observed when link delays are sampled from other distribu-
tions (e.g., Weibull and lognormal).

Next, we study the impact of the delay variance,σ2(i, j), on
the SR performance. We letσ

def= σ(i, j) for all links (i.e., all
links have the same delay variance). Figure 15 depicts the ratio
SRProb/SRTriggeredversusxD for two values ofσ. When this
ratio is greater than one, the probabilistic approach gives bet-
ter SR performance than the triggered-based approach. As seen
in the figure, whenσ = 25 the probabilistic approach is bet-
ter than a triggered-based approach with at least 15% overhead;
this overhead jumps to 24% whenσ = 75. In conclusion, the
reduction in the advertisement overhead achieved by using the
probabilistic approach increases withσ, indicating that the gain
from the probabilistic approach increases as link parameters be-
come more dynamic.

B. Performance Evaluation for the MP-BCP Problem

Next, we evaluate the SR of the probabilistic and triggered-
based approaches subject to a bandwidth constraint. Recall
from Section II that the optimal solution to the MP-BCP prob-
lem is provided through a modified version of Dijkstra’s al-
gorithm. In here, this solution represents the probabilistic ap-
proach. As indicated earlier, the link bandwidthb(i, j) is uni-
formly distributed in the range[lb(i, j), ub(i, j)], wherelb(i, j)
andub(i, j) are themselves sampled randomlyat the beginning
of the simulation run. We select the value of the bandwidth con-
straintB as follows. Once thelb(i, j)’s andub(i, j)’s are gener-
ated for all links, for the given source and destination nodes we
compute the best paths w.r.t.lb(i, j) andub(i, j), respectively.
Let lbopt andubopt denote the bandwidths of these two paths.
ThenB is set to:

B = lbopt + xB(ubopt − lbopt)/5, xB = 0, 1, . . . , 5

Intuitively, asxB increases the SR decreases. Figure 16 depicts
the SR performance as a function ofxB . The probabilistic ap-

4Note that the optimal path w.r.t.πD is not necessarily the same path returned
by the “exact” (deterministic) algorithm.

1 2 3 4 5
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

S
R

P
ro

b /
S

R
T

rig
ge

re
d

x
D

Triggered, TH
D

= 70, advertisement overhead = 4%

Triggered, TH
D

= 50, advertisement overhead = 15%

Triggered, TH
D

= 30, advertisement overhead = 38%

(a)

1 2 3 4 5
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

S
R

P
ro

b /
S

R
T

rig
ge

re
d

x
D

Triggered, TH
D

= 90, advertisement overhead = 34%

Triggered, TH
D

= 110, advertisement overhead = 24%

Triggered, TH
D

= 130, advertisement overhead = 17%

(b)
Fig. 15. SRProb/SRTriggeredversusxD : (a)σ = 25; (b) σ = 75.

proach is shown to be at least as good as the triggered-based
approach with THB = 20 (18% advertisement overhead), i.e.,
by using the probabilistic approach, one can eliminate 18% of
the link advertisements at no loss in the SR.

C. Performance Evaluation for the MP-BDCP Problem

In this section, we evaluate the performance of the probabilis-
tic approach subject to both bandwidth and delay constraints.
Recall that the approximate solution for the MP-BDCP problem
(Approx-MP-BDCP) uses the solutions for MP-DCP and MP-
BCP to determine a partial set of nearly nondominated paths,
whose number depends on the quantization factorε. We let
ε = 0.1. This results in an average of 3.3 nearly nondominated
paths. If any one of these returned paths is feasible according to
the actual link values, we count it a ‘success’. The constraints
B andD are determined as follows:

B ∼ uniform[lbopt/xDB , (ubopt + lbopt)/xDB]
D ∼ uniform[µ(p∗), µ(p∗) + xDBσ(p∗)/2],

wherexDB = 1, 2, 3, 4, 5. As xDB increases, both constraints
become looser, so more paths become feasible w.r.t. both con-
straints. Figure 17 depicts the performance as a function of
xDB . When the constraints are tight (xDB < 3), the prob-
abilistic approach gives roughly the same SR performance as

13

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
B

S
R

Exact

Triggered, TH
B
= 10, advertisement overhead = 49%

Triggered, TH
B
= 15, advertisement overhead = 30%

Probabilistic approach

Triggered, TH
B
= 20, advertisement overhead = 18%

Fig. 16. SR versusxB subject to a bandwidth constraintB = lbopt +
xB(ubopt − lbopt)/5.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
R

x
DB

Triggered, TH
D

= 90, TH
B

= 10

advertisement overhead = 63%

Triggered, TH
D

= 110, TH
B

= 20

advertisement overhead = 29%

Exact

Probabilistic approach

Fig. 17. SR versusxDB under both bandwidth and delay constraints.

a triggered-based approach with 29% advertisement overhead.
As the constraints get looser, the gain from the probabilistic ap-
proach becomes even more significant (whenxDB is close to 5,
the reduction in the advertisement overhead is more than 50%).
Note that, in general, the reduction in the advertisement over-
head is more pronounced when two constraints are considered
than when only one constraint is considered. This can be at-
tributed to the fact that the overall variance (i.e., uncertainty)
increases with the number of constraints. Recall from Figure 15
that the probabilistic approach is more robust to a higher vari-
ance than the triggered-based approach.

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigated computationally efficient algo-
rithmic solutions for QoS routing subject to both bandwidth and
delay constraints and in the presence of link-state inaccuracies.
We followed a probabilistic approach in which the bandwidth
and delay parameters are modelled as random variables. The
problem was then reduced to that of finding themost proba-
ble path to satisfy given bandwidth and delay constraints; a
multi-objective problem that may not have a unique optimal so-
lution. Accordingly, we took a divide-and-conquer approach,
whereby the MP-BDCP problem was first divided into the MP-
BCP and MP-DCP problems. Exact and approximate solutions

for the two problems were provided and later integrated into
one approximate solution for the complete MP-BDCP problem.
For the MP-BCP problem, an exact polynomial-time solution
is readily available through a modified version of Dijkstra’s al-
gorithm. As for the (NP-hard) MP-DCP problem, we provided
approximate solutions for two different cases of the problem. In
the first case (µ(p∗) ≤ D), our solution is given in algorithm
minµminσ, which attempts to minimize both the mean and vari-
ance of the path delay. Simulations indicate that to find a near-
optimal path, minµminσ requires, on average, three runs of Di-
jkstra’s algorithm. For the second case (µ(p∗) > D), we gave
an approximate solution, called minµmaxσ, which attempts to
minimize the mean while maximizing the variance of the de-
lay of the returned path. Simulations indicate that minµmaxσ
achieves near-optimal performance using onlyk = 2. The pre-
sented solution for the complete MP-BDCP problem iteratively
calls our solutions to MP-DCP while quantizingπB by a fac-
tor ε. This process results is a set of nearly nondominated paths
w.r.t. bothπB andπD. Decision makers can select one of these
paths based on a specific utility function.

Our simulations indicate that for the same SR performance,
the proposed probabilistic approach significantly reduces the ad-
vertisement overhead incurred in the standard triggered-based
advertisement. The eliminated overhead depends on the number
and type of constraints as well as whether CASE-I or CASE-II
of Heuristic-MP-DCP is being executed. It varies from 5% to
about 20% when a single constraint is considered. When two
constraints are considered simultaneously, the advertisement
overhead can even exceed 50%, giving a compelling reason to
adopt the probabilistic approach. We believe that the probabilis-
tic approach can be easily incorporated into the semantics of
the OSPF protocol. Our future work will focus on a prototype
implementation of this approach within an open-source OSPF
implementation (e.g., the implementation at www.zebra.org or
Moy’s implementation in [41]).

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for
their constructive comments. This work was supported by the
National Science Foundation under grants ANI 9733143, CCR
9979310, and ANI 0095626, and by the Center for Low Power
Electronics at the University of Arizona.

REFERENCES

[1] S. Chen and K. Nahrstedt, “An overview of quality-of-service routing for
the next generation high-speed networks: Problems and solutions,”IEEE
Network, vol. 12, no. 6, pp. 64–79, Nov-Dec 1998.

[2] F.A. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem, “A review of
constraint-based routing algorithms,” Tech. Rep., 2002,
http://wwwtvs.et.tudelft.nl/people/fernando/papers/TRreviewqosalg.pdf.

[3] A. Shaikh, J. Rexford, and K.G. Shin, “Evaluating the impact of stale link
state on quality-of-service routing,”IEEE/ACM Transactions on Network-
ing, vol. 9, no. 2, pp. 162–176, April 2001.

[4] D. H. Lorenz and A. Orda, “QoS routing in networks with uncertain pa-
rameters,”IEEE/ACM Transactions on Networking, vol. 6, no. 6, pp. 768
–778, Dec. 1998.

[5] J. Moy, “OSPF version 2,” Standards Track RFC 2328, IETF, April 1998.
[6] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi, “Quality of

service based routing: A performance perspective,” inProceedings of the
ACM SIGCOMM ’98 Conference, Vancouver, British Columbia, Canada,
August-September 1998, pp. 17–28.

[7] The ATM Forum, “Private network-to-network interface specification ver-
sion 1.0 (PNNI 1.0),” March 1996.

14

[8] T. Korkmaz and M. Krunz, “Source-oriented topology aggregation with
multiple QoS parameters in hierarchical networks,”The ACM Transac-
tions on Modeling and Computer Simulation (TOMACS), vol. 10, no. 4,
pp. 295–325, Oct. 2000.

[9] G. Apostolopoulos, D. Williams, S. Kamat, A. Guerin, R. Orda, and
T. Przygienda, “QoS routing mechanisms and OSPF extensions,” RFC
2676, IETF, August 1999.

[10] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting mul-
timedia applications,” IEEE Journal on Selected Areas in Communica-
tions, vol. 14, no. 7, pp. 1228–1234, September 1996.

[11] H. Frank, “Shortest paths in probabilistic graphs,”Oper. Res., vol. 17, pp.
583–599, 1969.

[12] P. Hansen, “Bicriterion path problems,” inMultiple Criteria Decision
Making: Theory and Applications, G. Fandel and T. Gal, Eds., Lec-
tures Notes in Economics and Mathematical Systems 177, pp. 109–127.
Springer, Heidelberg, 1980.

[13] E. L. Lawler, Combinatorial optimization: networks and matroids, New
York: Holt, Rinehart and Winston, 1976.

[14] R. Guerin and A. Orda, “QoS routing in networks with inaccurate infor-
mation: Theory and algorithms,”IEEE/ACM Transactions on Networking,
vol. 7, no. 3, pp. 350 –364, June 1999.

[15] G. Apostolopoulos, R. Guerin, S. Kamat, and S. Tripathi, “Improving QoS
routing performance under inaccurate link state information,” inProceed-
ings of the 16th International Teletraffic Congress (ITC ’16), Edinburgh,
United Kingdom, June 7-11 1999.

[16] Y. Jia, I. Nikolaidis, and P. Gburzynski, “Multiple path routing in networks
with inaccurate link state information,” inProceedings of the IEEE ICC
Conference. IEEE, 2001, vol. 8, pp. 2583–2587.

[17] W. Jianxin, W. Weiping, C. Jianer, and C. Songqiao, “A randomized QoS
routing algorithm on networks with inaccurate link-state information,” in
International Conference on Communication Technology (WCC - ICCT
2000). IEEE, 2000, vol. 2, pp. 1617–1622.

[18] R. P. Loui, “Optimal paths in graphs with stochastic or multidimensional
weights,” Communications of ACM, vol. 26, no. 9, pp. 670–676, 1983.

[19] M. I. Henig, “The shortest path problem with two objective functions,”
European Journal of Operational Research, vol. 25, no. 2, pp. 281–291,
1986.

[20] P. B. Mirchandani, “Shortest distance and reliability of probabilistic net-
works,” Comput. & Ops. Res., vol. 3, pp. 347–355, 1976.

[21] C. E. Sigal, A. A. B. Pritsker, and Solberg. J. J., “Stochastic shortest route
problem,” Operations Research, vol. 28, no. 5, pp. 1122–1129, Sept.-Oct.
1980.

[22] J. Kamburowski, “A note on the stochastic shortest route problem,”Oper-
ations Research, vol. 33, no. 3, pp. 696–698, May-June 1985.

[23] G. H. Polychronopoulos and J. N. Tsitsiklis, “Stochastic shortest path
problems with recourse,”Operations Research Letters, vol. 10, pp. 329–
334, August 1991.

[24] R. A. Sivakumar and R. Batta, “The variance-constrained shortest path
problem,”Transportation Science, vol. 28, no. 4, pp. 309–316, Nov. 1994.

[25] E. D. Miller-Hooks and H. S. Mahmassani, “Least expected time paths in
stochastic, time-varying transportation networks,”Transportation Science,
vol. 34, no. 2, pp. 198–215, May 2000.

[26] S. Sen, R. Pillai, S. Joshi, and A. K. Rathi, “A mean-variance model for
route guidance in advanced traveler information systems,”Transportation
Science, vol. 35, no. 1, pp. 37–49, Feb. 2001.

[27] R. K. Cheung, “Iterative methods for dynamic stochastic shortest path
problems,”Naval Research Logistics, vol. 45, pp. 769–789, 1998.

[28] A. Eiger, P. B. Mirchandani, and H. Soroush, “Path preferences and opti-
mal paths in probabilistic networks,”Transportation Science, vol. 19, no.
1, pp. 75–84, February 1985.

[29] P. B. Mirchandani and H. Soroush, “Optimal paths in probabilistic net-
works: A case with temporal preferences,”Comput. and Operations Re-
search, vol. 12, no. 4, pp. 365–381, 1985.

[30] I. Murthy and S. Sarkar, “Exact algorithms for the stochastic shortest path
problem with a decreasing deadline utility function,”European Journal of
Operational Research, vol. 103, pp. 209–229, 1997.

[31] I. Murthy and S. Sarkar, “Stochastic shortest path problems with
piecewise-linear concave utility functions,”Management Science, vol. 44,
no. 11, pp. S125—S136, Nov. 1998.

[32] “Smooth functions,”
http://www.maths.adelaide.edu.au/pure/mmurray/dghons/node4.html.

[33] “Smooth function,” http://mathworld.wolfram.com/SmoothFunction.html.
[34] D. E. McDysan, QoS & traffic management in IP & ATM networks,

McGraw-Hill, 2000.
[35] A. Papoulis, Probability, random variables, stochastic processes,

McGraw-Hill, third edition, 1991.
[36] T. Elteto and S. Molnar, “On the distribution of round-trip delays in

TCP/IP networks,” inThe Proceedings of the Local Computer Networks
(LCN ’99) Conference. IEEE, 1999, pp. 172–181.

[37] T. Korkmaz, M. Krunz, and S. Tragoudas, “An efficient algorithm for
finding a path subject to two additive constraints,” inProceedings of the
ACM SIGMETRICS ’00 Conference, June 2000, vol. 1, pp. 318–327.

[38] E. I. Chong, S. R. Maddila, and S. T. Morley, “On finding single-source
single-destinationk shortest paths,” inthe Seventh International Confer-
ence on Computing and Information (ICCI ’95), July 5-8, 1995, pp. 40–47.

[39] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “Power-laws of the Inter-
net topology,” inProceedings of the ACM SIGCOMM ’99 Conference,
Cambridge, MA, Sept. 1999, pp. 251–262.

[40] “BRITE: Boston university representative internet topology generator,”
http://www.cs.bu.edu/brite/.

[41] J. T. Moy, OSPF: Complete Implementation (with CD-ROM), Addison
Wesley, 2000.

Turgay Korkmaz (S ’97 M ’01 / ACM M ’02) re-
ceived his Ph.D. degree from Electrical and Computer
Engineering at the University of Arizona in December
2001. He is currently an Assistant Professor in Com-
puter Science at the University of Texas at San Anto-
nio. His research interests include QoS-based routing,
multi-constrained path selection, efficient dissemina-
tion of network-state information, topology aggrega-
tion, and performance evaluation of QoS-based rout-
ing protocols.

Marwan Krunz is an Associate Professor of Elec-
trical and Computer Engineering at the University
of Arizona. His research interests lie in the field
of computer networks, especially in its performance
and traffic control aspects. His recent work has fo-
cused on the provisioning of quality of service (QoS)
over wireless links, QoS routing, traffic modeling,
bandwidth allocation, video-on-demand systems, and
power-aware protocols for ad hoc networks. He has
published more than 50 journal articles and refereed
conference papers. Dr. Krunz is a recipient of the Na-

tional Science Foundation CAREER Award (1998-2002). He currently serves
on the editorial board for the IEEE/ACM Transactions on Networking, the Com-
puter Communications Journal, and the IEEE Communications Interactive Mag-
azine. He was a Guest Co-editor for a Feature Topic on QoS Routing (IEEE
Communications, June 2001) and a Special Issue on Hot Interconnects (IEEE
Micro, Jan. 2002). Dr. Krunz was the Technical Program Co-chair for the
9th Hot Interconnects Symposium (Stanford University, August 2001). He has
served and continues to serve on the executive and technical program commit-
tees of many international conferences. He served as a reviewer and a panelist
for NSF proposals, and is a consultant for several corporations in the telecom-
munications industry.

