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Abstract—In recent years, wearable devices and Wireless
Body Area Networks have gained momentum as a means to
monitor people’s behavior and simplify their interaction with
the surrounding environment, thus representing a key element
of the Body-to-Body Networking (BBN) paradigm. Within such
paradigm, several transmission technologies like 802.11 and
802.15.4 that share the same unlicensed band (namely the ISM
band) coexist, increasing dramatically the level of interference
and, in turn, negatively affecting network performance. In this
paper, we analyze the Cross Technology Interference (CTI)
caused by the utilization of different transmission technologies
that share the same radio spectrum. We formulate an opti-
mization model that considers internal interference as well as
CTI in order to mitigate the overall level of interference within
the system, taking explicitly into account node mobility. We
further develop three heuristic approaches to efficiently solve the
interference mitigation problem in large-scale network scenarios.
Finally, we propose a protocol to compute the solution that
minimizes CTI in a distributed fashion. Numerical results show
that the proposed heuristics represent efficient and practical
alternatives to the optimal solution for solving the CTI mitigation
problem in large scale BBN scenarios.

Index Terms—Body-to-Body Networks, Cross Technology Inter-
ference, Interference Mitigation, Optimization.

I. INTRODUCTION

The ongoing evolution of wireless technologies has fos-
tered the development of innovative network paradigms like
Wireless Body Area Networks (WBANSs), where the perva-
sive deployment of wireless devices endowed with sensing
capabilities interweaves the physical and digital worlds, thus
enabling the development of enhanced services. Wireless Body
Area Networks, and more specifically Body-to-Body Networks
(BBNs), are emerging solutions for the monitoring of people’s
behavior and their interaction with the surrounding environ-
ment. In its most common configuration, a BBN consists
of several WBAN:Ss, as illustrated in Figure 1. Each WBAN
is composed of wearable sensor nodes, connected through
the 802.15.4 protocol (i.e., ZigBee) to their mobile terminal.
The set of wearable sensors may be used to consistently
monitor people’s vital signs, like blood pressure, heart rate,
skin temperature, or important environmental parameters like
temperature and humidity. Furthermore, wireless headsets can
be used to enable communications among BBN users, while
glasses like those recently proposed by Google and Microsoft
can be connected wirelessly with a smartphone to provide
augmented reality [1].

Mobile terminals are usually equipped with two radio in-
terfaces, implementing the 802.15.4 and the 802.11 protocols.
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These protocols are used, respectively, for coordinating the
activity of wearable sensor nodes and to form the wireless
backhaul infrastructure among the WBANs of the BBN.
Due to the broadcast nature of the wireless medium and
the limited radio spectrum, data transmissions between the
devices involved in BBN communications may interfere, thus
reducing the network performance of the entire system. More
specifically, successful data transmissions over two or more
conflicting wireless links that use the same PHY technology
cannot be simultaneously performed. Furthermore, as illus-
trated in [2], the cross-technology interference (CTI) caused
by frequency overlap across different wireless technologies
like ZigBee and WiFi can highly affect the performance of
WBANS both in terms of achievable throughput and reliability.
In particular, data transmissions within ZigBee networks can
be completely prevented by WiFi communications, which use
10 to 100 times higher transmission powers.

On the other hand, given the scarce availability of the radio
spectrum, many existing wireless technologies are forced to
use the same unlicensed frequency bands. For example, IEEE
802.11 (WiFi), IEEE 802.15.1 (Bluetooth) and IEEE 802.15.4
(ZigBee) all share the same 2.4 GHz ISM band. Hence, inter-
ference across these technologies can lead to loss of reliability
and inefficient use of the radio spectrum. While authors in [3],
[4] have recently proposed to use ultrasonic waves and light
to wirelessly interconnect in/on-body devices, RF systems still
represent the de-facto standard for interconnecting off-the shelf
wearable devices [1].

Our main contributions are as follows:

o We analyze the problem of mutual and cross-technology
interference in a dynamic BBN system, where mobile
devices use simultaneously different access technologies
over the same frequency spectrum.

« We formulate the interference mitigation as an optimiza-
tion problem and an interference graph to model cross-
technology transmission conflicts. We explicitly consider
network dynamics due to nodes mobility by optimizing
the worst interference caused by nodes proximity. Fur-
thermore, we show that the problem is NP-hard.

« We present three heuristic solutions, namely a customized
randomized rounding approach, a tabu-search scheme,
and a sequential fixing algorithm, to efficiently solve the
problem even for large-scale network scenarios. Through-
out our algorithmic design, we assume a common view
of the network topology and its dynamics.

e« We describe a signaling protocol to disseminate and
update the topology information in order to converge to
a common view of the network topology and implement
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Fig. 1: Network scenario: Two BBNs corresponding to two different groups of people (i.e., black and gray) are using the same set of

unlicensed channels.

our CTI mitigation algorithms in a fully distributed fash-
ion.

o We perform thorough numerical evaluation of the pro-
posed mechanisms, considering both static and mobile
network scenarios. Specifically, we calculate the achiev-
able throughput of the system using a TDMA approach
to coordinate the access of BBN transmissions.

Numerical results show that the proposed model and heuristics
significantly reduce the level of interference between different
technologies within a BBN scenario, thus improving the
overall network performance relative to the standard Adaptive
Frequency Hopping (AFH) scheme.

The paper is structured as follows. Section II discusses
related work. Section III introduces the communication model
as well as the assumptions considered in our work. Section IV
formulates the interference mitigation problem as an optimiza-
tion model, while Section V describes the heuristic approaches
designed to efficiently solve this problem. Section VI presents
a distributed protocol to minimize CTI. Section VII illustrates
and analyzes numerical results that show the efficiency and
validity of our approaches. Finally, concluding remarks are
discussed in Section VIII.

II. RELATED WORK

In this section, we discuss the most relevant works that
deal with the problem of interference mitigation between
different technologies (i.e., ZigBee and WiFi) operating over
the same frequency spectrum. The problem of minimizing
802.11 interference on ZigBee medical sensors was addressed
in [5], where the authors proposed a solution that utilizes
hardware consisting of both 802.15.4 and 802.11 transmitters.
The goal is to temporarily block out 802.11 messages for
a time window large enough such that ZigBee devices can
successfully transmit their messages. To do so, the authors
developed two types of solutions: (i) periodically jam 802.11
to fit ZigBee messages into empty time frames, and (ii)
transmit a CTS message directly before a ZigBee message.

Instead of trying to avoid interference from 802.11 traffic,
the authors in [2] focused on improving the coexistence
of 802.15.4 and 802.11 devices that operate in overlapping
frequency channels. More specifically, they presented a MAC
layer solution (called BuzzBuzz) that enables 802.15.4 nodes
to coexist with WiFi networks by using multi-headers and
forward error correction codes to overcome the packet loss
caused by 802.11 interference. A ZigBee frame control proto-
col (WISE) was proposed in [6] to deal with the interference
between ZigBee and WiFi, demonstrating solid performance

gains (19.5% and 42.5%) over B-MAC (the default MAC
protocol in TinyOS) and OppTx [7], [8], respectively. WISE
first predicts the length of white space in WiFi traffic based on
a Pareto model and then adapts the frame size to maximize
the throughput efficiency. In [9], [10] the authors proposed
two mechanisms that enable reliable coexistence of ZigBee
and WiFi networks. The first mechanism includes a frequency
flip scheme and a cooperative carrier signaling that prevent
mutual interference between cooperative ZigBee nodes. In
contrast, the second scheme presents a busy tone scheduler
that minimizes the interference due to WiFi networks.

A tool for understanding 802.11 performance in hetero-
geneous environments without the use of dedicated infras-
tructures was presented in [11]. This tool, called WiMed,
uses 802.11 NICs to produce a time allocation map, showing
how the medium is used. It can detect non-802.11 sources of
interference using NIC registers and bit-error analysis.

In [12], the authors considered a 802.11-based multiradio
mesh network with stationary wireless routers. They addressed
the problem of assigning channels to communication links,
while minimizing the overall mutual interference among wire-
less links that use the same technology. A random coloring
scheme is proposed in [13] both to reduce mutual interference
of nearby WBANSs and achieve high spatial reuse, whereas the
work [14] presents a transmission scheduling scheme to max-
imize resource utilization under SINR constraints. In contrast,
we consider a BBN network, composed of wireless sensors
that are equipped with ZigBee interfaces and mobile terminals
that are equipped with both ZigBee and WiFi interfaces. Our
proposed solutions aim at minimizing both the mutual (i.e.,
WiFi-WiFi and ZigBee-ZigBee) and the cross-technology (i.e.,
WiFi-ZigBee) interference, considering a set of consecutive
time epochs to represent the mobility of WBANS.

In summary, none of the above reviewed works has in-
vestigated an optimization framework to jointly minimize the
mutual and cross technology interferences in a mobile BBN
scenario composed of several WBANS.

III. NETWORK MODEL

This section presents the network model and assumptions
we adopt in the design of our interference mitigation approach.
We consider a BBN system, composed of a set N of wearable
Mobile Terminals (MTs) that use both the 802.15.4 protocol
(i.e., ZigBee) ! to communicate with sensor nodes within a

I'Since we only consider the physical specifications of IEEE 802.15.4 and
ZigBee to model interference, in the paper we interchangeably use these two
terms even if they are not exactly the same.



WBAN and the IEEE 802.11 wireless standard (i.e., WiFi) to
create a backhaul infrastructure for inter-WBANs’ communi-
cations, as illustrated in Figure 1. The two sets /C,, and /C,
identify the (potentially overlapping) radio channels defined by
the WiFi and ZigBee technologies, respectively. In particular,
according to the standards, IC,, € [1 — 11] and K, € [11 — 26].

The operating time of the system is divided into a set
T of consecutive epochs. We assume that during each
epoch the network topology does not change. Specifically,
let L, (t) represent the set of WiFi links established by
mobile terminals during epoch t € 7T. L,(t) may vary
between two consecutive epochs due to WBAN mobility.
This set contains the triplet (¢,7,¢) if at time epoch ¢,
nodes ¢ and j can establish a communication link, i.e.,
Ly(t) ={(i,75,t):i€N,jeN, and SINR(i,j,t) > 04},
namely if the SINR is higher than a threshold o, opportunely
set according to the WiFi technology. In contrast, the set
L., which contains the ZigBee links used for intra-WBAN
communication, does not change during the entire operating
time of the system. Note that £, contains only the mobile
terminal identifier that represents the worst link established by
the mobile terminal with the ZigBee nodes within the WBAN
that it coordinates. Indeed, a time-slotted access scheme is
used by the mobile terminal to coordinate intra-WBAN com-
munications.

To model the different types of interference caused by
different wireless technologies, we propose a cross-technology
weighted conflict graph for representing pairs of interfering
wireless links. Specifically, we introduce the concept of cross-
conflict edges to model the Cross Technology Interference
(CTI). Such an edge connects two vertices that represent
two interfering links that use different technologies (i.e.,
WiFi and ZigBee). Therefore, the weighted conflict graph
G.(Ve(t),E.(t)) is defined over the vertex set V.(t) =
Ly(t) U L., which contains all wireless links established
by mobile terminals (either WiFi or ZigBee). The set £.(t)
includes edges that model interfering links of the same radio
technology as well as cross-technology edges. For the sake
of clarity, we explicitly define the three subsets that compose
Ec(t): EX(t) and EZ(t) contain respectively edges that model
interfering WiFi and ZigBee links, whereas £**(t) includes
cross-technology edges. Since WiFi channels may overlap, the
weight of the edge connecting two interfering WiFi links is
proportional to the intersection area between the spectrum of
the two signals [15].

Conversely, when two vertices in V,(t) represent wireless
links that operate using different radio technologies, a cross-
technology edge is used to indicate that the two links interfere
if they use overlapping channels, like, for example, by tuning
e1 € Ly(t) on WiFi channel 1 and e; € L£.(t) on ZigBee
channel 12.

Figure 2 shows the cross-technology conflict graph of the
network scenario in Figure 1, where solid lines are used
to represent the conflict edges that model the interference
between links of the same technology, whereas dashed lines
correspond to cross-conflict edges. Note that we consider only
one ZigBee link for any WBAN in the set £,. Therefore,
the cross-technology conflict graph accounts for four 802.11

Fig. 2: Cross-technology conflict graph representing interfering
wireless links of the scenario illustrated in Figure 1. Small gray dots
represent ZigBee sensors.

and six 802.15.4 vertices to represent, respectively, four WiFi
links and six ZigBee WBANSs of Figure 1. We observe that
mobile terminals can obtain a good estimation of the conflict
graph G. using historical measurements that they can collect
during their daily activities. Indeed, transmission conflicts can
be reasonably predicted from such measurements, since human
mobility patterns are highly repetitive [16].

Formally, we represent the mutual interference caused by
using two overlapping WiFi channels by the |[Cp| X |ICy
matrix C, whose element cx;, € [0, 1] has a value that is pro-
portional to the overlapping spectrum of the two signals [15].
Similarly, we model the Cross Technology Interference be-
tween two overlapping channels using a |/C,,| X |K.| binary
matrix A, whose element ay;, = 1 states that WiFi channel
k € K, interferes with ZigBee channel h € K,. In contrast,
two different ZigBee channels do not interfere between each
other, since all channels defined by the IEEE 802.15.4 standard
are orthogonal.

The connectivity among the mobile terminals that belong to
the same BBN and through which the sensor nodes of different
WBANSs can communicate, is defined using the |L,,| X |Ly]
binary matrix B, whose element b,,, = 1 indicates that WiFi
links v and v belong to the same BBN.

Finally, regarding the underlying traffic model, we design
our interference mitigation mechanism assuming uniform traf-
fic. However, we emphasize that the proposed model and
algorithms can be extended to other traffic models [17].

IV. OPTIMAL CROSS-TECHNOLOGY INTERFERENCE
MITIGATION (CTIM) PROBLEM

To mitigate the cross-technology interference caused by the
utilization of different transmission technologies on the same
unlicensed spectrum, we propose to jointly assign 802.11b/g
and 802.15.4 frequencies to device interfaces in order to
minimize the maximum number of interfering links using
overlapping wireless channels. In fact, the minimization of the
worst case guarantees a minimum level of service in terms
of achievable performance while simplifying the distributed
computation of the solution, as we will illustrate in Section VI.
In the following, we formalize the Integer Linear Programming
(ILP) model for solving the Cross Technology Interference



Mitigation (CTIM) problem. We first introduce the decision
variables used in our model and then provide the ILP descrip-
tion of the problem.

Binary variables {z!, : u € L,(t),k € Ky,t € T}
represent the temporal assignment of WiFi channels to wireless
links established among the mobile terminals of a BBN using
their WiFi interfaces. Specifically, !, = 1 indicates that
channel & € K, is assigned to wireless link u € L,
throughout epoch ¢ € 7. Similarly, the set of binary variables
{yt, :v e L, hek,,te T} represents the ZigBee channels
assigned to all communication links used by the wearable
sensors of WBAN v. As discussed in the previous section,
we consider only one representative link of the WBAN, since
we are assuming that all the sensors of a WBAN operate on
the same channel.

Let I,/,(t) represent the worst mutual interference in

epoch ¢ caused by data transmissions over two conflicting
links v and v that use WiFi protocol. Such interference,
YVt € T,Y(u,v) € EX(t), varies as a function of the binary

decision variables zf, and 2!, as follows:

0<I¥,(t) < sup {cgn - (zhy + by, — 1)} 0

k,heKqw

where the right hand side of the double inequality (or the upper
bound on I, (t)) represents the supremum of all possible
mutual WiFi interference values. Note that when 2, = 2!, =
1, with cgp = 0 (v and v are assigned 2 orthogonal channels),
the interference is null, I, (¢) = 0. In contrast, when zf, =
at, =1, and cgp > 0 (u and v are assigned the same channel
or two overlapping channels), IV, (t) accounts for the amount
of wasted spectrum of two overlapping channels.

Similarly, let I7 ,(t) represent the worst mutual interference
in epoch ¢ between conflicting links (v and v) that use ZigBee

protocol. Such interference, Vt € T,V(u,v) € EZ(t), varies as
follows:

0<17,(t) < sup {yhy +vbp — 1} )
keK,

Conversely, 7 (t) represents the worst amount of cross tech-
nology interference in epoch ¢ due to simultaneous transmis-
sions on interfering links (u and v) established using different
protocols. I,/ (), Vt € T,V(u,v) € EX*(t), depends on the
binary decision variables z!, and y!,, and is given by:

0< 15 (1) <

sup  {apn - (@l + b, — 1} 3)

keKw,hek,

Hence, the total temporal cross-technology interference (CTI)
is defined as follows:

I(t) =a- Z

(u,v)EEX (L)

tye Y

(u,v)€EX(1)

I(u'iu,v)(t) +B- Z

(u,v)€EZ ()

I, () @)

Ty D+

and it represents the weighted sum of the three contributions
to CTL. The parameters «, 3 and v permit to weight differently
the three types of interference. Our objective is to minimize
the maximum cross-technology interference generated by data
transmissions using different technologies on the same avail-
able spectrum throughout all epochs. Therefore we define a
new variable u that represents the bound on the interference
minimized in our model:

u>1(t),vteT. ©)

To force the assignment of a single WiFi channel to any
wireless link established between two mobile terminals, and
the utilization of a single ZigBee channel within a WBAN,

we introduce the following constraints:

Dol =1Vte T, Vue Ly(t) (6)
ke w
o oyh,=1Vte T, VueL.. @)
hek,

Indeed, this set of constraints prevents the assignment of
multiple channels to a single WiFi or ZigBee interface.

Furthermore, to obtain channel assignments xfm and yfm
that minimize the worst interference generated by simultane-
ous transmissions throughout all epochs, we define the two
following sets of constraints that force the utilization of only
one channel for WiFi and ZigBee links in all time epochs:

aly = el TVt € T/, Vu € L(t),Vk € Ku ®)
vl =yt vt e T/ Vu e L., Vh € K.. )

For the sake of constraints’ consistency, in the set 7’ we omit
the last epoch of 7. We observe that by neglecting these two
sets of constraints, we can easily model the Channel Switching
(CS) to account for devices that can select different frequen-
cies between consecutive time epochs. Indeed, constraints (8)
and (9) allow us to significantly reduce the signaling overhead
caused by switching channels from one time epoch to another
and coordinating mobile devices. Such overhead can become
critical and substantial in a dynamic environment, like BBNs.

In this work, since we are assuming that mobile terminals
are equipped with only one WiFi interface, we must assign
the same wireless channel to all WiFi links established within
the same BBN in order to create a multi-hop topology that

uarantees the connectivity between any pair of devices.
herefore, we explicitly model connectivity among devices
that belong to the same BBN using a set of constraints that
forces the utilization of the same channel for any pair of WiFi
links that belong to the same BBN:
—al,) =0,Yt € T,Yu,v € L(t),Vk € K.

buw ($Fuk (10)

It is easy to verify that by, =1 = 3k € K, : 2!, =2, = 1.

Given the above definitions and notations, the optimal Cross
Technology Interference Mitigation (CTIM) problem can be
stated as follows:

min u
S.t.
u>1(t) vteT
dooal,=1 Vt € T,Vu € Lu(t)
ke w

Vte T,
Vu,v € L(t),Vk € Ky

Vte T,Vu € L,

heK
xfm = J:itl vte T,
Yu € L(t),Vk € K
1
yfm = yqtjz vieT,

Yu € L.,Vh e K,
vt € T,V (u,v) € EX (1),
Vk,h € Kw



Vi € T,Vk € K,

V(u,v) € EZ(t)

vt € T,Y(u,v) € EL*(t),
Vk € Kw,Vh € K.

15, (0) >yl +yb, — 1

I (1) > apn - (@l + by — 1)

zt, €{0,1} Vit € T,Vu € Lw(t),
Vk € Ky
yt, €{0,1} vte T,Yv € L,Vh € K,. (11)

V. HEURISTIC SOLUTIONS FOR THE CTIM PROBLEM

The CTIM problem is NP-hard. Indeed, it can be demon-
strated that the Maximum K-Cut problem can be reduced in
polynomial-time to the CTIM problem [18]. Finding the opti-
mal solution is thus extremely time consuming, especially in
large-scale, real network scenarios composed of several BBNs,
as those analyzed in our numerical evaluation. Motivated by
this observation, we now present three heuristic approaches to
efficiently solve (i.e., in polynomial time) the CTIM problem.

We set out by presenting the first algorithm based on a mod-
ified version of the Randomized Rounding (RR) technique.
Then, we illustrate the Tabu-Search (TS) solution, and finally
we describe the Sequential Fixing (SF) algorithm.

A. RR-CTIM: Randomized Rounding Algorithm

Algorithm 1 illustrates the main steps of the first heuristic
solution, which is based on a modified version of the ran-
domized rounding approach. The algorithm receives as input
the parameters that describe the network topology, the conflict
graph, and the available wireless channels. It produces as
output the channel assignment for all BBNs’ communication
links, which are based either on WiFi or ZigBee technologies.

The algorithm proceeds in three steps. Step 1 solves a con-
tinuous relaxation of the CTIM problem, where the integrality
constraints of (11) are replaced with their corresponding
continuous relaxations. Let & and g be the optimal relaxed
solutions. Steps 2 and 3 perform the randomized rounding on
assignment variables & and g, respectively.

Specifically, for WiFi links (step 2), we consider the set that
contains all variables #!, corresponding to possible channels
assigned to all links of the same BBN (i.e., the set B,). From
this set, we select the variable with the highest value xf: I
We then compare such variable with a random value p that is
uniformly distributed in [0, 1]: if xﬁ:ﬁkm < p, all links using the
WiFi technology within the same BBN are tuned to the same
channel k,, throughout all time epochs, by forcing all variables
xt, =1,Yv € B,,Vt € T (the remaining variables are set
to zero, i.e., f, = 0,Yv € B,,Vt € T,k € Ko, k # k).

Regarding the ZigBee channel assigned to the representative
link of a WBAN in step 3, we adopt a similar approach,
considering the most likely assignment of a ZigBee channel to
a WBAN obtained from the relaxed CTIM problem. However,
in this latter case, we can perform the randomized rounding of
each variable g, by forcing only the utilization of the same
channel within a WBAN throughout all epochs, since each
element u € £, corresponds to an independent WBAN.

Finally, in steps 4 and 5, we verify the feasibility of the
solution (x,y) provided by the previous operations, ensuring
that only one channel is assigned to any wireless link (i.e.,

Algorithm 1: RR-CTIM

Input : N= GC(VC(t)v gc(t))v ’C’UMICZa 37 C
Output: =,y
1 (&,9) < Solve the LP relaxation of the model (11);
p < rand(0, 1);
2 foreach u € L4 (t) do
By <= {v € Ly(t) : buy =1}
a;:;':km < max{t!, :ve By,k€Ku,t €T}
if :ct’”k < p then
foreeich v € By,t €T do
<1

t
| ok
end

end

end

p <= rand(0,1);

3 foreach u € £, do

yfﬁc‘ “= max{gjfdC tkeK,,teTh
if yur]gm < p then

foreach t € T do

‘ yikm <= 1;
end

end

end
4 x < FeasWiFiSol(&,x, Gc(Vc(t), Ec(t

), Kw,B,C) :
5 y < FeasZigBeeSol(§,y, Ge(Vce(t),Ec(t)),K2) ;

N

constraints (6) and (7)) and that all WiFi links of the same
BBN use the same channel (i.e., constraints (10)).

B. TS-CTIM: Tabu-Search Algorithm

To solve the CTIM problem, we develop an efficient heuris-
tic (named TS-CTIM) that uses the tabu-search approach [19]
along with polynomial size neighborhoods.

Given a feasible solution f to (11) (i.e., a solution that
satisfies all its constraints), the neighborhood is generated
by applying the procedure move that proceeds as follows:
let h denote the (WiFi or ZigBee) channel assigned to a
wireless link « in the current solution f (i.e., x;h = 1), move
will assign a new channel k£ to u such that k is different
from h (ie., z%;, = 1). More specifically, we develop two
different versions of TS-CTIM (TS-CTIM-1 and TS-CTIM-
2), which correspond to two different ways of generating and
searching the neighborhood of an intermediate solution. Their
corresponding neighborhoods are denoted by Neighborhood-1
and Neighborhood-2.

TS-CTIM takes as input parameters the set of mobile
terminals A/, the conflict graph G.(V.(t),E.(t)), an initial
solution fy = (=0, ¥yo), the maximum number of iterations
nb_iter_max, the size of the tabu list L, the number r of
neighboring solutions, and the version (v) of the algorithm
used to generate the neighborhood. Based on our tests, we fix
the L = 100 and nb_iter_max = 20, since they provide
the best trade-off in terms of optimality gap and computational
time. The TS-CTIM algorithm produces as output the best
solution fpes; that has been found among those analyzed. To
this end, the algorithm starts from a random initial solution
fo = (x0,y0), wherein each wireless (WiFi and ZigBee) link
is assigned a channel. The two vectors o and y, represent,
respectively, the initial WiFi link-channel assignment and
ZigBee link-channel assignment variables’ values. The current
solution f; is set to fy.



The first version of the tabu-search algorithm, TS-CTIM-
1, generates at each iteration a sequence of 72 4 r solutions
according to the following procedure. Given the current so-
lution f; = (x;,y;), the function Neighborhood-1(f;) first
executes one time the move operation on z; to obtain a
neighboring solution (7, y;). Then, it performs move on y;,
generating r neighboring solutions (z;,y;). Among all these
r 4 1 solutions, the algorithm selects the one with the lowest
interference as the new solution (z},y}). This is repeated
r times (step 3). Among all 72 + r solutions (z},y.), we
use the one with the minimum interference as a starting
solution for the successive iteration of the TS-CTIM algorithm,
fi = (2}, y}), with ¢ updated to 1. The algorithm stops after
nb_iter_max consecutive iterations without improvement on
CTL

Conversely, the second version of the tabu-search (i.e., TS-
CTIM-2), executes the following procedure. First, it applies
the move operation on the set of variables representing ZigBee
links, y;, producing a new solution (x;,y;) in which only one
channel of a randomly selected ZigBee link is modified. Then,
the move operation is applied r times on the set of WiFi
links, x;, to generate r nearby solutions (x},y!). In order to
modify the assigned channel of r ZigBee links, the previous
procedure is executed r times, resulting in a set of 72 + r
solutions explored at each iteration.

Both alternative versions of the TS-CTIM algorithm termi-
nate after nb_iter_max consecutive iterations that result in
no improvement in the CTI. Indeed, every time a solution f;
produces a lower cross-technology interference CTI(f;), the
iterations counter ¢ is reset to avoid local minima (step 4). A
formal description of the TS-CTIM algorithm (i.e., TS-CTIM-
1 and TS-CTIM-2) is provided in Algorithm 2.

Algorithm 2: TS-CTIM

N,Gc(Ve(t), Ec(t)), fo = (x0,yq), nb_iter_maxz,
L,r,v
Output: Tpest; Yvest
1 Start with an initial solution fo = (x0,y0);
1=0,k=0, foest = f0, Ipest = CTI(fO)’
2 while 7 < nb_iter_max do
3 while k£ < r do
F; <Neighborhood-v( f;);
fi <= argming, I(t);
Add move(f;) to the tabu list;
k<k+1;

Input :

end

4 if (CTI(fi) < Ipest) then
fbest <~ fi;

Tpest <= CTI(fi);

i <= 0;

else
\ 1<<=14+1;
end

end
5 Return fbesi = (wbesty ybest)§

C. LPSF-CTIM: Linear Programming with Sequential Fixing
Algorithm

We exploit the structure of our problem to develop a
polynomial-time approximate algorithm, called Linear Pro-
gramming with Sequential Fixing Cross-Technology Interfer-

ence Mitigation (LPSF-CTIM) algorithm. In Theorem V.1, we
show that LPSF-CTIM always converges to an integer solu-
tion. The technique of Sequential Fixing (SF) has been proven
to be very efficient in solving classical channel assignment
problems [20], [21], and hence this technique is extended to
our CTIM problem, and applied to WiFi channel assignment
variables, and then to ZigBee variables.

The LPSF-CTIM algorithm, listed as Algorithm 3, proceeds
as follows. In step 1, we relax the binary variables z!, and
y!,, of the Integer Programming CTIM problem to obtain the
LP relaxed version (denoted as LP-CTIM), whose optimal
solution can be computed in polynomial-time. Then, in step 2,
we solve LP-CTIM to obtain such an optimal real-valued
solution 2, and ¢f,. The third step of LPSF-CTIM aims
at choosing among all Zf, the one with the largest real
value, denoted hereafter by xi’; k- and setting its value to
1. Once xf;jn ko is determined, step 3 performs the following
operations:

 Set all variables xtu”; i to zero, where k # k,, (since
wireless link u,,, must be assigned a single WiFi channel
according to constraints (6)).

o Set all xfmm to 1 if link u belongs to the same BBN
of u,,. As a consequence, v and w,, must be assigned
the same channel to ensure WiFi connectivity between
WBANSs of the same BBN (constraints (10)).

After identifying the WiFi variable xf;:l k,,» We reformulate
the problem LP-CTIM®! forcing :L'f;:l ko 'equal to 1 and
all other variables modified as described in previous steps
(step 4). If the LP-CTIM?®'! problem is feasible, we redefine
LP-CTIM equal to LP-CTIM®!. Otherwise, we reformulate
another LP problem, LP-CTIM?°, by fixing ,TZ k,, and all the
variables xzk (where u belongs to the same BBN of u,,) to
zero. Then, we redefine LP-CTIM equal to LP-CTIM*°, The
algorithm iterates through steps 2 to 5 until all WiFi channel
assignment variables, x, are fixed.

In a similar way, we apply the above procedure to the
variables representing the ZigBee channel assignment, yf .
Specifically, we formulate the problem LP-CTIMY:! by fixing
y;", =1 in LP-CTIM (step 8), and we set all variables
yf)z n» Vh # hp, equal to O, since only one channel must
be assigned to any wireless link v,,. If LP-CTIMY! results
in an infeasible solution, we switch the value assigned to
the variable yfj’; n,,» defining the corresponding problem as
LP-CTIMY:°. At this point, we either have a feasible LP-
CTIMY! or a feasible LP-CTIMY:°. Hence, the algorithm
iterates again through steps 7 and 9 until all ZigBee channel
assignment variables, yf]h, are fixed. Finally, the LPSF-CTIM
algorithm terminates and returns the solution of WiFi and
ZigBee channel assignments.

In the following, we prove by induction that the LPSF-
CTIM algorithm converges in polynomial time to an integer
solution.

Theorem V.1. For each time epoch t € T, the LPSF-CTIM
algorithm can determine the values of all binary variables x
and y in no more than |L,||Ky| + |L.||K,| iterations.

Proof: The proof of Theorem V.1 is based on the following



Algorithm 3: LPSF-CTIM

Input : N, Gc(Ve(t),Ec(t)), Kw,Kz, B,C
Output: =,y
1 LP CTIM < LP version of (11), ! ! €10,1] and
yh, €0,1],Vt € T, u € Lu(t), VE Lok € Kuyh € K.
while not all x are fixed do
2 (&,9) < Solve LP-CTIM;

3 Z:Lkm <= max{z!, :u € Ly(t),k € Kuy,t € T}h
z" _1andmmk_0 Vk € Kw,k # km;
Tk = 1,Vu € Buy,,:

4 LP-CTIM®:! «< LP-CTIM with gcfm "k, = land Vzandy

already fixed in step 3;

5 if LP-CTIM®! is feasible then

| LP-CTIM < LP-CTIM®!;

else
Define LP-CTIM®:0 as LP-CTIM with 2 |
@y =0,Yu € By,
LP-CTIM < LP-CTIM®:9;

end

= 0 and

end

while not all y are fixed do

6 (&,9) < Solve LP-CTIM;

<max{gl, :ve L., hekK,,teTh
= 1 and

tm
4 Yomhm

8 LP-CTIMY"! < LP-CTIM with y,™ ,
Yoy = 0,Vh € Kz h # b
9 if LP-CTIMY-! is feasible then
| LP-CTIM < LP-CTIMY!;
else
Define LP-CTIMY:0 as LP-CTIM with yf}:’; .
LP-CTIM < LP-CTIMY:0; '
end

=0

end
Return (z,y);

lemmas.

Lemma V.2. In the first iteration, LP-CTIM has a nonempty
feasible solution set, and its variables are bounded (0 <
zt,, yt, <1). Hence, it has an optimal solution.

Proof: 1t is easy to check that the solution obtained assigning
the WiFi channel 1 to all WiFi links and the ZigBee channel
16 to all ZigBee links?, ie., xl; = 1,Vu € L,(t),t € T,
zt, =0,Yu € Ly(t),t € T,k € Ky, with k # 1, and y,15 =
LYveL,,t€T,andy’, =0,Yv e L,,t €T, heK,,with
h # 16, is a feasible solution to the CTIM problem, and as
a consequence, to the LP-CTIM problem. Since the feasible
solution set of LP-CTIM is nonempty and the variables !,
and y!, are bounded between 0 and 1, Lemma V.2 holds.

Lemma V.3. In the first iteration, since LP-CTIM*® has a
nonempty feasible solution set and its variables are bounded,
it also has an optimal solution.

Proof: Tt follows from Lemma V.2 that LP-CTIM in the first
iteration must have an optimal solution. Therefore xtm "k, 18
> 0 before performing the fixing. When :Cu o and :cu”,; ,
Yu € B,,, are fixed to 0 while formulating the LP-CTIM® 7,0
problem, none of the constraints of the LP relaxation of (11)
could be violated by this decreasing action on the variables’
values. In fact, if we substitute xi’jﬂ k,, and xfj,;m, Yu € By,,

by 0 in constraints (6), we force all wireless links in BBN B,, |

This assignment ensures that there is no overlap between the WiFi and
ZigBee channels.

to use a WiFi channel k € K, which is different from k,,;
however, LP-CTIM®:? is still feasible, and has at least a
feasible solution. Therefore, LP-CTIM*:°, as LP-CTIM, must
have at least one feasible solution. Since the feasible solution
set of LP-CTIM**® is nonempty and the variables ¢, and v’
are bounded between 0 and 1, Lemma V.3 holds.

Lemma V4. In all iterations, since LP-CTIM and LP-
CTIM*° have nonempty feasible solution sets and their vari-
ables are bounded, they also have optimal solutions.

Proof: The existence of an optimal solution for LP-CTIM and
LP-CTIM®¥ in the first iteration is proved by Lemma V.2 and
Lemma V.3, respectively. In the second iteration, LP-CTIM
is obtained either from a feasible LP-CTIM®! or a feasible
LP-CTIM®0 of the first iteration. Hence, it must be feasible
in the second iteration. Given that LP-CTIM is feasible in
the second iteration, the rationale used in proving Lemma V.3
also applies here to prove the feasibility of LP-CTIM®" in
the second iteration. This induction can be repeated in all
iterations. Noting that all variables are bounded, Lemma V.4
holds.

Lemma V.5. In all iterations, since LP-CTIM (step 6 of LPSF-
CTIM algorithm) and LP-CTIMY (step 9) have nonempty
feasible solution sets and their variables are bounded, they
also have optimal solutions.

Proof: On one hand, it follows from Lemma V.4 that LP-
CTIM (the one defined in step 6), at the first iteration, must
be feasible, and according to Lemma V.2 must have one
optimal solution since the y!, variables are bounded. On
the other hand, it follows from Lemma V.3 that at the first
iteration LP-CTIMY:" (the problem formulated at step 9) has
an optimal solution. Hence, again, according to Lemma V.4
these problems also have optimal solutions in all iterations.
Therefore, Lemma V.5 holds.

At this point, the proof of Theorem V.1 is straightforward:
By iteratively applying Lemmas V.2 to V.5, it is guaranteed
that in each iteration at least one z!,, and then one y!,, is
fixed to either O or 1 and a new feasible LP-CTIM problem
is generated for the next iteration.

Based on Theorem V.1, it is easy to show that the compu-
tational complexity of LPSF-CTIM is bounded by the com-
plexity of the LP solver times | L., (¢)||/KCw| + |£:]|K.]|. Since
our linear programming problems (LP-CTIM, LP-CTIM**",
LP-CTIM®:!, LP-CTIM¥®, LP-CTIMY:!) can be solved in
polynomial-time, the complexity of the proposed LPSF-CTIM
algorithm is polynomial. In addition, as we show in the
Numerical Results section, the performance gap between the
approximate LPSF and the exact (optimal) solutions can be
very small (always below 15%), and in most cases it is null.

VI. INTERFERENCE MITIGATION PROTOCOL

This section presents the design of the signaling protocol
necessary to implement our CTI mitigation algorithm in a dis-
tributed fashion. We first describe the protocol used by mobile
terminals to exchange the proximity information necessary to
build the conflict graph. Then, we detail the operations per-
formed by all devices to compute in a completely distributed



fashion the channel assignment that minimizes the maximum
CTI, based on local information.

A. Signaling Protocol

In order to update the topology information related to
network connectivity, network nodes periodically exchange
control messages among each other using a common control
channel, similar to link-state routing protocols. This informa-
tion is then used by the interference mitigation algorithm to
create the conflict graph and compute the channel assignment
that minimizes the cross-technology interference.

In the design of our protocol, we assume that two nodes
within their reciprocal interference ranges can communicate
with each other. We observe that in scenarios where mobile
terminals use a transmission power for intra-WBAN commu-
nications that is lower than the power used on the control
channel, such an assumption provides a good approximation
of the real level of interference. Conversely, to further improve
the interference estimation, we can integrate other measures
of interference, such as the Link Interference Ratio (LIR) and
the Broadcast Interference Ratio (BIR) proposed in [17]. We
further note that solutions to the blind rendezvous problem,
i.e., the problem of establishing communications without a
common control channel or a centralized controller (e.g., [22],
[23], [24]), can be used to disseminate control messages in
our protocol. Moreover, the periodic scanning of the available
channels performed by WiFi devices can further simplify the
operations necessary to establish communication links among
nearby WBAN:S.

To represent interfering WiFi transmissions with the corre-
sponding conflict edges, each node needs to know the devices
within the 1-hop and 2-hop neighbor sets (i.e., nearby nodes
whose transmissions can be directly decoded, and nodes that
can be reached through direct neighbors). Indeed, assum-
ing the availability of an ARQ (Automatic Repeat reQuest)
mechanism to recover from transmission errors caused by
noise or collisions, all WiFi transmissions within the 2-hop
neighbor set cannot be scheduled simultaneously, since their
transmissions are hidden from the transmitter [25]. Conversely,
only nodes within the 1-hop neighbor set are considered for the
representation of interfering ZigBee links, since transmissions
using the ZigBee technology involve only the mobile terminal
and sensor nodes within the same WBAN (i.e., tWwo or more
different WBANs exchange information among each other
through the WiFi technology even if they belong to the same
BBN). Therefore, simultaneous transmissions on ZigBee links
of two different WBANs whose mobile terminals are more
than one hop away do not interfere with each other.

Given the different interference models of the two wireless
technologies, we define two different sets of control messages.
More specifically, the control traffic related to the WiFi con-
nectivity is exchanged using two different types of messages:
beacon messages, which permit the discovery of 1-hop and
2-hop neighbors, and link-state messages, which are used
to disseminate topology information within the network. In
contrast, only beacon messages are transmitted periodically
by ZigBee sensor nodes of a WBAN (either using the mobile

terminal interface or directly by any sensor node of the
WBAN), since only adjacent WBANSs interfere with each
other. The content of WiFi beacons differs from that of ZigBee
beacons. A WiFi beacon message contains the identifier of
the WBAN (concatenation of the addresses of the two radio
interfaces of the mobile terminal), and a list of neighbors
from which control traffic has been recently received. Each
neighbor in the list is represented using its WBAN and the
BBN identifiers. This list enables a mobile terminal to detect
the nodes that belong to the 2-hop neighbor set. In contrast,
the ZigBee beacon message contains only the identifier of the
WBAN, since conflicts arise only among adjacent WBANS.

Finally, WiFi link-state messages are used to spread topol-
ogy information to the entire network. A link-state message
contains two lists of WiFi and ZigBee neighbors, each iden-
tified by its WBAN and BBN identifiers, in addition to the
identifier of the underlying WBAN. Such messages are used by
devices three or more hops away to build the network topology
and the conflict graph.

Figure 3 illustrates a simple network scenario with three
BBN:Ss. In this example, the 1-hop neighbor set of mobile termi-
nal 2 is N1(2) = {1, 3, 7,8}, whereas its 2-hop neighborhood
contains only node 4, i.e., N?(2) = {4}.

Fig. 3: Neighborhood relationships among BBN nodes.The small
squares and circles depict WiFi and ZigBee radio interfaces, respec-
tively. Solid lines represent WiFi links established between 1-hop
neighbors of the same BBN, whereas dashed lines show nearby nodes
of different BBNs that are detected using WiFi beacon messages.

B. Operational Details

Having described the signaling protocol, we now detail
the operations performed by all nodes to build the conflict
graph and compute the channel assignment that minimizes the
maximum CTI. For simplicity, we omit the index ¢ of the time
epoch in the description of the operations.

For the representation of the mutual WiFi interference, each
mobile terminal maintains the 1-hop and 2-hop neighbor sets
as well as a list containing the links advertised by other nodes
in their link-state messages. Upon receiving a WiFi beacon
or link-state message, the interference mitigation algorithm
extracts the information necessary to update the network topol-
ogy and the conflict graph. In particular, for each neighbor
j € N'L(i), advertised in a WiFi beacon by originating node o,
that does not belong to the same BBN of the receiving node 1,
a new vertex (o0,j) is added to the conflict graph. Such
vertex is connected through a conflict edge to all vertices
representing wireless links whose terminating nodes are in the
1-hop neighbor set, i.e., Vj, k € N1(i),3(e1,e2) € & : €1 =



(i,7),e2 = (i, k), where N''(i) is the 1-hop neighbor set of
node ¢. Furthermore, a new conflict edge is established be-
tween each link (i, j) € £,,, which may connect a node i € N’
with one of its neighbors j € N'(i), and any link whose
terminating or originating node belongs to the 2-hop neigh-
borhood k € N?2(i): Vj € N1(i),Vk € N?(i),3(e1,e2) €
E :e1 = (i,j),ea = (k,h) or ea = (h,k), where N2(i)
represents the 2-hop neighbor set. As for links whose end
nodes are more than 2 hop away (i.e., (4, k) & N (i) UN2(7)),
conflict edges are added by controlling/examining the network
topology, which is built using the information carried in the
link-state messages. We emphasize that the previous rules are
applied only to links whose nodes belong to different BBNs,
since the unique WiFi radio interface of nodes of the same
BBN must be tuned to the same channel.

The modeling of the mutual ZigBee interference requires
simpler rules for the generation of the corresponding conflict
edges, since only links with one common ZigBee inter-
face interfere with each other. Therefore, for each received
ZigBee beacon message, the receiving node ¢ extracts the
WBAN’s identifier j, creates a new ZigBee link j € L,
whose corresponding vertex is connected through a conflict
edge to all vertices representing incident links, i.e., Vj, k €
N1(i),3(e1,e2) € E. : e1 = j,ea = k. Note that the remain-
ing links and conflict edges can be determined by analyzing
link-state messages, which contain the list of adjacent ZigBee
WBANS of the message originator.

Finally, for the representation of CTI, each node combines
network connectivity information of different technologies,
using all received control messages. Specifically, for each WiFi
link (4,7), 2+ |N1 (i) VA (5)| cross-conflict edges are created:
the first two edges represent the interference generated across
the different radio interfaces of mobile terminals ¢ and j,
while the remaining edges model the interference that the WiFi
transmitters of ¢ and j cause to the ZigBee receiver of their
1-hop neighbors.

Once a node has collected enough information to build
the network topology and the conflict graph, it executes the
sequential fixing algorithm presented in Section V-C. Indeed,
the distributed execution of LPSF-CTIM using the same
information leads all nodes to the same solution, since the
algorithm consists of only deterministic operations. Nonethe-
less, our distributed algorithm always computes a feasible yet
sub-optimal channel allocation even if mobile terminals use
different information due to fast topology changes [26]. Fur-
thermore, we observe that the iterative version of the sequential
fixing approach, which optimizes sequentially over each time
epoch, converges to the solution obtained using knowledge of
future conflicts, when such information is transmitted faster
than network changes. On the contrary, the tabu-search and
randomized rounding approaches cannot be executed indepen-
dently by all nodes, since they contain probabilistic steps.

In order to limit channel updates whenever a new control
message is received, nodes switch channels only if the new
solution provides a large improvement with respect to the
previous channel assignment. To this end, we can integrate
a hysteresis mechanism that keeps using the latest channel
assignment as long as the variation in the CTI metric ()

computed by each node is lower than a threshold. Note
that such a threshold must be set to select the best trade-
off between system performance and overhead. To further
reduce the signaling overhead and prevent stale information
from reaching distant nodes, we can employ the Fisheye
technique [27], defining different transmission periods for
WiFi beacon and link-state messages. Using this technique,
each node maintains accurate information about the immediate
neighborhoods, namely the 1-hop and 2-hop neighbor sets,
with progressively less detail as the distance increases.

VII. NUMERICAL RESULTS

This section presents numerical results that illustrate the
validity of the proposed algorithms to solve the CTI mitigation
problem. More specifically, we evaluate the impact of BBN
density (i.e., the total number of WBANs in a BBN) on
the performance of the overall system using the algorithms
developed in previous sections.

We first describe the experimental methodology of our
simulations. We then analyze and discuss the performance
achieved by the proposed algorithms.

A. Experimental Methodology

In our simulations, we consider both static and dynamic
BBN topologies whose nodes (the WBANSs) are randomly
scattered over an area of 500 x 500m?. Note that we increase
the size of the simulation area with respect to our previous
paper [28], in order to analyze the performance of our solution
in highly dense networks. To evaluate the effect of node
density on the level of interference, we vary the total number
of mobile terminals in the range [20, 50], similarly to [29]. To
do so, we fix the number of mobile terminals within each
BBN to 5 and vary the number of BBNs from 4 to 10.
Specifically, BBN centers are scattered according to a uniform
distribution inside the simulation area, whereas the mobile
terminals are deployed around each BBN center according to a
bi-dimensional Gaussian distribution with a standard deviation
of 100 meters.

In the dynamic network scenario, we simulate BBNs’ mo-
bility using the random way-point model [30], which is a
commonly used mobility model. In particular, for each time
epoch we compute the random displacements of all BBNs’
centers, and we move all mobile terminals within the same
BBN towards the same direction according to the displacement
vector.

In our simulations, we consider only the three orthogonal
channels defined by the WiFi alliance (K,, = {1,6,11}),
whereas for the WBAN links we use all the 16 available
ZigBee channels (C, € [11,26]). The transmission powers
of WiFi and ZigBee radio interfaces are fixed to 100 mW and
10 mW, respectively. In order to offset the higher transmission
power used by the WiFi technology, which is 10 times greater
than the ZigBee transmission power, we set v = 10 in
Equation (4). Furthermore, we set the coefficients related to the
mutual interferences o = 5 and 3 = 1 so as to penalize more
the number of potential WiFi conflicts than those generated
by the ZigBee technology.



The conflict graph is computed assuming an ARQ mech-
anism is in place (i.e., we assume DATA-ACK message
exchange between network nodes involved in data commu-
nications). The reception and carrier sense thresholds used
to decide whether nodes can establish communication links
or interfere with each others are defined according to the
sensitivity of Atheros (WiFi)? and CC2420 (ZigBee)4 radio
chipsets. The path loss, which is necessary to evaluate the
sensitivity of the receiving node, is computed according to
the Friis propagation model. We emphasize that all above
assumptions do not affect the proposed algorithms, which are
general and can be used to solve any network scenario.

In order to gauge the performance of the proposed heuristic
algorithms (Section V) with respect to the optimal solution
(Section IV), we consider the CTI as defined in (4) and the
normalized throughput. Furthermore, in the dynamic scenario,
we measure the number of times different channels are as-
signed to ZigBee links across two consecutive epochs, since
this number provides an indication of the signaling overhead
needed to coordinate channel switching.

Note that due to the high computational and storage com-
plexities of the ILP model, we could not scale beyond the
network sizes and time epochs discussed above (i.e., 50 nodes
and 10 time epochs).

B. Performance Evaluation

1) Static Scenario: We first evaluate the effect of node
density and the number of available channels on the perfor-
mance of our interference mitigation techniques. Specifically,
we vary the number of mobile terminals in the range [20, 50]
and we progressively increase the number of orthogonal WiFi
channels from 1 to 3. Figure 4 shows the CTI obtained using
our proposed algorithms. TS-CTIM-1 and 2 take as an initial
solution the one given by the RR algorithm to further improve
this solution and obtain a final good solution. For the sake
of clarity, the CTI has been normalized with respect to the
maximum value measured by the RR-CTIM algorithm.

The curves identified by labels “Opt.”, “RR”, “TS-v” (v €
{1,2}), and “SF” illustrate, respectively, the performance
metrics computed using the optimal, the randomized rounding,
the two tabu-search, and the sequential fixing algorithms.

As illustrated in the figures, the two versions of the tabu-
search algorithm and the sequential fixing scheme approach
the optimal solution, whereas the randomized rounding tech-
nique always provides solutions with higher interference. We
observe that in almost all network instances, the decision vari-
ables of the LP relaxation have almost the same values, which
are interpreted by the RR-CTIM algorithm as an even channel
assignment, thus failing to drive effectively the remaining
operations of the algorithm. Indeed, when the optimal solution
of the LP relaxation provides the same values to all decision
variables, the FeasWiFiSol() and FeasZigBeeSol() func-
tions in Algorithm 1 generate random channel assignment to
WiFi and ZigBee links.

3 Available online at http://www.diswire.com/SpecsCM9.pdf
4Available online at http://www.ti.com/lit/ds/symlink/cc2420.pdf
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As expected, increasing node density within the simulation
area leads to higher CTI, since the mobile terminals and
the sensor devices of the WBANs get closer, thus increasing
the number of edges in the conflict graph. It can be further
observed from Figures 4(a), 4(b) and 4(c) that the number
of available WiFi channels affects the performance of all
approaches. Specifically, the higher the number of orthogonal
channels, the lower is the overall interference of the solution
computed by the optimal, tabu-search, and sequential fixing
algorithms. Furthermore, as illustrated in Figures 4(b) and 4(c),
LPSF provides better performance than TS-CTIM-1 and TS-
CTIM-2, since the subset of the solution space explored by
the SF procedure is better than the solutions analyzed by the
tabu-search approaches. Indeed, TS-CTIM-1 and TS-CTIM-2
start from the solution provided by the RR algorithm, which

causes the worst level of interference.

In order to %auge the improvement offered by the SF
Clpproach over the other heuristics and demonstrate how the

TI metric enables objective assessment of the performance
enhancements relative to the standard AFH scheme, we mea-
sure the average normalized throughput of WiFi (p%) and
ZigBee (p?) links as follows:

Py (t) (12)
m%% <>u§m

07 = u (13)
T e 5 2

Assuming backlogged traffic and a slotted TDMA coordi-
nation mechanism, the normalized throughput p;/(t) that can
be achieved by a WiFi link u € £,, at time epoch teT is:

1

) = T wr a9
where wi'(t) = Y vec,w): Lio(t) and wi(t) =

(u,0,t) €€ (1)

vec.. 17 (t) represent the number of links that

2
(u,v,t)€EX*(t)
interfere with link v using non-orthogonal WiFi and ZigBee

channels, respectively. Note that the normalized throughput
calculated using a slotted TDMA system provides an upper
bound on the real throughput that can be achieved in realistic
BBN scenarios. Nonetheless, the performance gap measured
in our numerical analysis among our different approaches
remains likely similar to that we can obtain in more realistic
settings.

Similarly, the normalized throughput pu( ) that can be
achieved by ZigBee link v € £, at time t € T is given

by:
1

_— 15
T+ 20 () + 22 (0) (s

pa(t) =
where z!'(t) and z¢(t) represent the number of ZigBee links
and the number of WiFi links that interfere with ZigBee link
u, respectively.

Figures 6(a) - 6(b) show the normalized throughput for WiFi
and ZigBee links as a function of the number of mobile termi-
nals in the static network scenario with three orthogonal WiFi
channels. It can be observed that the minimization of the CTI
results in the improvement of the WiFi and ZigBee throughput,
and both the optimal and sequential fixing solutions favor
ZigBee over WiFi transmissions. Indeed, they select WiFi
channel assignments that achieve slightly worse performance
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Fig. 6: Average normalized throughput of WiFi and ZigBee links as
a function of the number of mobile terminals (static network scenario
with three WiFi channels).

than tabu-search heuristics in order to reserve more spectrum
for ZigBee communications. We underline that WiFi technol-
ogy achieves higher transmission rates than ZigBee (up to
more than 3 orders of magnitude). Therefore, any algorithm for
mitigating cross-technology interference should allocate the
available spectrum in a way to privilege ZigBee transmissions,
whenever such transmissions are deemed essential for the
correct operation of the BBN system.

2) Dynamic Scenario with Fixed Channels: The second
set of simulated scenarios, whose results are depicted in
Figure 5, aims at evaluating the effect of the mobility on the
performance of our proposed schemes. To this end, within
the 500 x 500m? simulation area, we randomly move all
nodes throughout 10 time epochs according to the mobility
model described before. The mobile terminal speed is set to
1 meter/sec, while the duration of one time epoch is fixed
to 10 seconds. This time is long enough to capture significant
changes in both network topology and the conflict graph. As in
the static scenario, the CTI has been normalized with respect
to the maximum value measured by the RR-CTIM algorithm.

The results obtained in the dynamic scenario confirm the
trends observed in the static scenario. Specifically, the CTI im-
proves by increasing the number of orthogonal WiFi channels
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and decreasing node density (or equivalently by increasing the
spatial reuse). Since the number of orthogonal WiFi channels
in the ISM band is limited, BBNs’ users should improve the
spatial reuse, reducing the transmission power to the minimum
level necessary to maintain network connectivity. Finally, we
can observe that node density affects the network performance
more than mobility, since all algorithms minimize the worst
CTI throughout all time epochs.

We further evaluate the computational time required to solve
the CTIM problem optimally and also using our heuristic ap-
proaches. The results are illustrated in Table I. As expected, the
execution time for the optimal algorithm increases exponen-
tially with the number of nodes. On the contrary, the execution
time of the RR-CTIM and LPSF-CTIM heuristics increases
linearly with the network size. LPSF-CTIM takes a longer time
than RR-CTIM to find a solution, since it solves an instance of
the relaxed problem for each decision variable. Note, however,
that the iterative version of the LPSF-CTIM algorithm, which
solves the problem considering sequentially each time epoch,
takes always less than 6 seconds. Furthermore, we can speed
up the computation of LPSF-CTIM by fixing the channel
assigned to all WiFi links of a BBN whenever any variable z?,,
is fixed to one, according to constraint (10). Numerical results
also confirm that the computational time of TS-CTIM-1 and
TS-CTIM-2 slightly varies with the number of nodes. Indeed,
the computational complexity of tabu-search approaches is
mainly affected by the tabu-list, the neighborhood size, and
the maximum number of iterations rather than the network
size.

3) Dynamic Scenario with Channel Switching: To pro-
vide further insight into the gain achievable by enabling the
channel switching, we evaluate the performance in terms
of the signaling overhead incurred by various algorithms,
neglecting constraints (8) and (9) for the optimization based
approaches and optimizing the topologies of all time epochs as



TABLE I: Computational Time for solving the CTIM problem (s)

2 WiFi Channels
Nodes 20 25 30 35 40 45 50
Opt. 2.5 4 7.5 13 32 83 237
RR 1.61 | 2.76 | 3.72 | 517 | 7.05 | 8.80 11.1
TS-1 1.15 | 1.20 | 1.24 | 1.27 | 1.32 | 1.36 1.42
TS-2 1.16 | 1.20 | 1.24 | 1.28 | 1.33 | 1.36 1.42
SF 4 9 15 24 33 47 56
3 WiFi Channels
Nodes 20 25 30 35 40 45 50
Opt. 4.7 12 37 98 278 | 1704 | 51338
RR 226 | 3.61 | 5.13 7 925 | 11.8 14.76
TS-1 1.16 1.20 1.24 1.28 1.33 1.36 1.42
TS-2 1.17 1.20 1.24 1.28 1.34 1.37 1.42
SF 5 10 18 27 38 55 64

consecutive instances of the static scenario for the tabu-search
and sequential fixing approaches. Recall that by ignoring
constraints (8) and (9), the model enables wireless links to
change channel at different time epochs. In particular, we
illustrate the distribution of ZigBee links that switch channels
during the simulation time and the overall number of channels
used by various algorithms. Note that the modified algorithms
to consider the channel switching functionality achieve the
same maximum CTI shown in Figure 5.

Figure 7 shows the distribution of ZigBee links that switch
channels, obtained under the optimal and heuristic algorithms.
The network scenario consists of 40 mobile terminals and 3
WiFi channels. For the sake of brevity, we do not illustrate the
results obtained with fewer mobile terminals (the distributions
depict similar trends, but with a smaller average number of
channel changes). Even though the optimal algorithm achieves
the lowest CTI, all ZigBee links change their channels at
least four times, as illustrated in Figure 7. The percentage
of links that switch channels at least four times decreases
by 95% for the tabu-search approaches (F(x > 4) = 0.05),
85% for the sequential fixing algorithm, and 10% using the
randomized rounding scheme. This is mainly due to the
smaller solution space analyzed by the heuristic and sequential
fixing approaches, which indirectly requires lower channel
changes than the optimal algorithm. Indeed, we noticed that
the randomized rounding approach selects almost uniformly
the channels assigned to each epoch, while the generation of
the neighborhood used by the tabu-search techniques limits
channel changes.

[—Opt.---RR

--TS-1--TS-2--SF

EEF S :

5 6
Epochs

Fig. 7: Channel switching distribution of ZigBee links in a scenario
of 40 mobile terminals (5 WBANSs for each of the 8 BBNs). The
markers represent the percentage of links that switch their channels
less than 4 times (i.e., F(z < 4)).

We observe that these new results confirm the trends ob-
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served in our previous publication [28]. Therefore, blindly
changing ZigBee channels by using a pseudo-random ap-
proach, without considering all sources that contribute to CTI,
results in a performance loss and higher signaling overhead.
This finding is further supported by the results illustrated in
the following simulations that compare the performance loss
caused by the standard channel hopping approach designed to
mitigate CTI for the Bluetooth technology.

From the standpoint of resource utilization, numerical re-
sults, which we do not show for the sake of brevity, show
that channel switching increases the total number of channels
used by the entire system during the simulation. In particular,
the solutions provided by TS and LPSF algorithms require all
available ZigBee channels to be utilized, without improving
significantly the maximum CTI experienced by network nodes.
Our results suggest that a good, yet non-perfect, estimation
of interfering links permits us to significantly reduce the
CTI within the network even when using fixed channels.
Therefore, knowledge of interfering transmissions reduces the
need for channel switching, since this latter technique achieves
similar performance to the one obtained forcing fixed channel
assignments despite an increased signaling overhead required
to coordinate the devices and an increased use of the available
channels.

4) Analysis of the Hysteresis Mechanism: In order to
evaluate the overhead caused by the hysteresis threshold,
we further implement the iterative version of the sequential
fixing algorithm, which computes the channel assignment that
minimizes the CTI in each time epoch, and we integrate
the hysteresis mechanism to simulate the behavior of the
proposed distributed approach. Figure 8 illustrates the system
changes (namely the number of times the system must be
reconfigured according to the new channel assignment) that
we measure in the dynamic network scenario with 7' = 20
epochs varying both the threshold and the number of mobile
terminals. Specifically, we consider 2 WiFi and 10 ZigBee
channels to limit the number of non-orthogonal frequencies,
thus increasing the interference. Furthermore, we vary the
hysteresis threshold in the [1 — 10]% range.

It can be observed that the utilization of the hysteresis
mechanism allows to decrease system updates by 75%. Indeed,
the gap between the CTI values computed using the old and
best channel assignment is larger than the hysteresis threshold
only during 5 out of 20 epochs.

o
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System Changes
R L
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Fig. 8: Number of system changes as a function of the hysteresis
threshold and number of nodes (5 Mobile Terminals and for each
BBN) in the dynamic scenario with 7" = 20 epochs.



5) Comparison of Channel Switching Techniques: The
problem of coexistence of different radio technologies that
operate on the same spectrum has been already addressed in
the past for devices equipped with both WiFi and Bluetooth
radio interfaces. More specifically, three different techniques
have been proposed to mitigate the cross-interference between
WiFi and Bluetooth technologies on the same device: the
Adaptive Frequency Hopping (AFH), Channel Skipping (CS),
and Time Division Multiplexing (TDM). Using AFH, a Blue-
tooth device periodically switches its transmission frequency
among a list of low noisy channels, with a switching frequency
of 1600 hops per second. The CS technique consists of
informing the Bluetooth MAC of the channel used by the WiFi
interface to avoid using the same spectrum band of this channel
for Bluetooth communications. Finally, the TDM mechanism
coordinates the activities of the two radio interfaces to share
the same spectrum.

In this work, we evaluate our techniques against those
proposed in the Bluetooth standard, implementing both the
AFH and CS schemes. Indeed, similar approaches can be
easily extended to WBANSs based on the ZigBee technology. In
particular, we measure the maximum CTI value defined in (4)
among the 1600 changes performed by all mobile terminals,
applying the AFH and CS techniques to the solution provided
by the LPSF algorithm.

Figure 9 illustrates the performance loss caused by the
utilization of AFH with CS (AFH + CS) approach with
respect to the fixed channel assignment provided by the LPSF
algorithm, in the static and dynamic scenarios. In particular,
we quantify such performance loss by the “CTI Increment
Ratio”, defined as IR = [I*""()/157 )] — 1, where IAFH (t)
and I°%(t) represent the maximum CTI obtained using AFH
and SF, respectively. Figures 9(a) and 9(b) show that AFH+CS
increases the CTI independent of nodes mobility, thus reducing
the overall quality of the channel assignment computed by
the LPSF algorithm. In particular, in the static scenario the
measured interference is 40% to 130% higher, whereas in the
dynamic scenario the interference increases up to 4 times.

We observe that the performance loss is mainly due to the
randomized approach used by the AFH+CS scheme, which
skips only the channels used within the same WBAN, without
considering the conflicting transmissions of nearby nodes.
Indeed, the AFH, CS, and TDM techniques have been pro-
posed for a scenario where the considered interference is only
between radio interfaces operating on the same device, which
considerably simplifies the CTI mitigation problem. Finally,
although the IR decreases with node density, the performance
improvement of our solution is still remarkable (up to 1.5x in
the dynamic scenario with 50 WBANS).

The comparative results illustrated above confirm the limits
of the current approaches to reduce cross-technology interfer-
ence and the validity of our solution that tackles the problem
from the system perspective.

VIII. CONCLUSION

In this paper, we addressed the Mutual and Cross-
Technology Interference mitigation (CTIM) problem in a
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Fig. 9: Performance loss caused by the utilization of the Adaptive
Frequency Hopping with Channel Skipping (AFH + CS) approach
with respect to the sequential fixing (LPSF) algorithm.

BBN system, composed of several body-to-body networks.
We formulated the interference mitigation problem across
different wireless technologies (i.e., ZigBee and WiFi) as an
optimization problem, and we introduced a new conflict graph
to represent interfering wireless links that use different radio
access technologies. To solve efficiently (i.e., in polynomial
time) the CTIM problem for large-scale BBN instances, we
developed three heuristic approaches based on randomized
rounding, tabu-search, and sequential fixing techniques. We
further presented a protocol to disseminate the information
necessary for constructing the conflict graph and computing
the channel assignment that minimizes the CTI in a fully
distributed fashion. We evaluated the performance of the
proposed algorithms considering both static and dynamic sce-
narios, illustrating the sensitivity of our algorithms to different
parameters, including BBN density, the number of available
WiFi channels, the utilization of the channel switching and
hysteresis techniques. Numerical results showed that the tabu-
search and sequential fixing techniques well approach the
optimal solution, yet in polynomial time. In particular, the gap
between the LSPF and optimal solution is always lower than
15% and goes to zero when there is only one available WiFi
channel.
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