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Abstract— In this paper, we address the problem of minimiz-
ing energy consumption in a CDMA wireless sensor network
(WSN). A comprehensive energy consumption model is proposed,
which accounts for both the transmit and circuit energies.
Energy consumption is minimized by jointly optimizing the
transmit power and transmission time for each active node
in the network. The optimization problem is formulated as
a non-convex optimization. Numerical as well as closed-form
approximate solutions are provided. For the numerical solution,
we show that the formulation can be transformed into a convex
geometric programming (GP), for which fast algorithms, such
as Interior Point Method, can be applied. For the closed-form
solution, we prove that the joint power/time optimization can
be decoupled into two sequential sub-problems: optimization of
transmit power with transmission time serving as a parameter,
and then optimization of the transmission time. We show that the
first sub-problem is a linear programming while the second one
can be well approximated as a convex programming problem.
Taking advantage of these analytical results, we further derive
the per-bit energy efficiency. Our results are verified through
numerical examples and simulations.

Index Terms— CDMA, sensor network, joint power and time
optimization, geometric programming, convex optimization.

I. I NTRODUCTION

Wireless sensor networks (WSNs) are expected to be uti-
lized in a wide range of military and civilian applications [1]
in the near future. The sensors in these networks are typically
powered by small batteries, which may be irreplaceable either
due to lack of access or to prohibitive cost. Consequently,
strategies for achieving high energy efficiency so as to maxi-
mize the lifetime of the network are essential.

It has been shown that the energy required to transmit a
certain amount of information grows exponentially with the
inverse of the transmission time [2]. This simple energy-
delay tradeoff was applied in the design of energy-efficient
packet scheduling protocols for single-user wireless links.
For example, in [3] and [4], the “lazy scheduling” approach
was proposed. According to this approach, the energy used
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to transmit packets over a wireless link is minimized by
judiciously varying packet transmission times according to
the delay requirements. In [5] and [6], traffic smoothing is
performed, resulting in an output packet traffic that is less
bursty than the input traffic, and leading to significant power
savings.

Although the tradeoff between transmission energy and
transmission time has been well studied for general wireless
networks, such work is not directly applicable to WSNs due
to two distinct features of these networks. First, because of
the high density of nodes in a WSN, e.g., 20 nodes per
meter3 [1], the average transmission distance between nodes
is usually small. For such short-range transmission, the circuit
energy consumption is no longer negligible relative to the
transmission energy [8]. Therefore, a more complicated trade-
off emerges between energy and transmission time; although
increasing the transmission time reduces the transmission en-
ergy, it also increases the circuit energy consumption. Second,
in a WSN, traffic streams from adjacent nodes exhibit a high
degree of correlation. Because WSNs are often designed to co-
operate on executing some joint task, less emphasis is usually
put on per-node fairness. Accordingly, it is more reasonable
to minimize the total energy consumption in the network
instead of minimizing the energy consumption of individual
nodes, i.e., a multi-user environment is more preferable for
the optimization. By accounting for the impact of circuit
energy consumption and the new context of multiple access
optimization, a new formulation is necessary to minimize the
overall energy consumption in a WSN.

Several previous studies incorporated circuit energy in the
optimization of energy consumption for a single user. In
[7] circuit energy consumption was included in the analysis
of a cooperative and hierarchical WSN. In [8], the authors
exploit the tradeoff between transmission and circuit energies
to provide a cross-layer optimization of link-layer coding and
physical-layer modulation for a single link. More recently,
there has been some work on minimizing the total energy
consumption in a multi-access environment. The authors in
[9] improve upon the work in [8] by extending the point-to-
point joint energy minimization to a multi-access scenario and
presenting a variable-length Time Division Multiple Access
(TDMA) scheme that minimizes the total energy consumption
in the network. However, two major difficulties appear when
implementing the ideas in [9], namely, the need for strict
synchronization between different nodes and the scalability of
the variable-length-time-slot allocation approach, especially in
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a dense network.

In this work, we consider a CDMA-based WSN. Sensors
are allowed to transmit data simultaneously to a remote sink
using different spreading (signature) codes. The assumptions
on time synchronization and variable-time slot allocation in [9]
are not imposed. This setup was first proposed in [10] and
was recently used in [11] and [12] to study the interference-
connectivity tradeoff and MAC protocol design. In this paper,
we study the joint control of transmit power and time to
minimize the total network energy cost subject to constraints
on the received signal quality, transmission delay, and trans-
mission powers. Traditionally, joint power/rate control for
CDMA cellular and ad hoc networks has been studied with the
objective of minimizing the total transmit power (e.g., see [13],
[14] and the references therein). In these studies, circuit power
is negligible and a traffic of continuous bit stream is assumed.
Our work differs from previous work in two fundamental
features. First, to account for the low duty cycle of sensors, the
traffic is represented by the number of bits to be transmitted
in one duty cycle and the transmission time (duration) of
these bits. Accordingly, we set energy, instead of power, as
the optimization objective. Second, our energy consumption
model accounts for both transmit and circuit energies.

The main contribution of this paper is twofold. First,
although the objective function and the constraints in the
underlying optimization problem are not convex, by exploit-
ing the special structure of the formulation we successfully
develop both numerical and closed-form analytical solutions
to this problem. Numerically, this formulation is converted
to a posynomial optimization problem that can be accurately
solved by using geometric programming (GP). Analytically,
we prove that the problem of jointly optimizing the trans-
mission power and transmission time can be decoupled into
two separate sequential sub-problems. The first is a parametric
linear program for optimizing the transmission power with the
transmission time being a parameter, and the second is a con-
vex optimization problem for finding the optimal transmission
time. We present approximate closed-form solutions to both
sub-problems, and consequently, to the original problem. Tak-
ing advantage of the closed-form results, we further study the
bit energy efficiency (BEE), defined as the minimum expected
energy consumed to transmit a single information bit in the
network while satisfying all constraints. For the special cases
of WSNs with fully correlated or independent traffic from
individual nodes, we obtain closed-form expressions or upper
bounds on the BEE. Numerical examples and simulations are
presented to validate our results.

The rest of this paper is organized as follows. We describe
the system model in Section II. We formulate the problem
and present the GP-based numerical solution in Section III.
Section IV presents an approximate closed-form analytical
solution to the energy-minimization problem. Based on this
solution, we study the BEE performance for a CDMA-based
WSN in Section V. Section VI presents numerical examples
and simulations, and Section VII concludes our work.

II. M ODEL DESCRIPTION

A. System Model

We consider a two-tired WSN [17], [18] that consists
of two types of nodes. Type-I nodes are simple sensing
nodes (SNs) that are responsible for sensing-related activities.
Such nodes are small, low cost, and disposable, and can be
densely deployed across the sensing area. Neighboring SNs
are organized into clusters. Type-II nodes have more battery
energy and stronger computational capability, and are referred
to as cluster heads (CHs). We assume each CH is within
the communication range of all SNs in its local cluster. Only
limited communication functionalities are supported by a SN;
it can transmit sensing data to or receive instructions from its
CH, but cannot relay data from or instructions to a peer SN.
Routing functions are supported by the CHs. A CH may collect
data from the intra-cluster SNs, conduct signal processing on
these raw data to create an application-specific view for the
cluster, and then relay the fused data through intermediate CHs
to the sink.

The above two-tiered structure is motivated by recent ad-
vances in distributed signal processing and source coding,
which attempt to achieve a good balance among reliability,
redundancy and scalability [19], [20]. Under this architecture,
the goal of the lower-tier SNs and their CHs is primarily
to gather data as effectively as possible; upper-tier CHs and
the sink are designed to move information as efficiently as
possible. The authors in [17] studied the energy efficiency of
the upper tier through optimal selection of the sink location
and inter-CH routing strategies. In this paper, we focus on the
energy efficiency of the lower tier. We note that because of
the large number of SNs, it is basically impractical to replace
such nodes when their batteries are used up. In contrast, a
CH may be replaceable, as relatively few CHs exist in the
network. Improving the energy efficiency of the intra-cluster
communication ultimately prolongs the lifetime of the whole
network.

Without loss of generality, we focus on an arbitrary cluster
that consists of a setS of densely distributed SNs. Leto denote
the CH and letN be the number of active sensors in the
cluster at any given time instant. The information from theN
sensors is transmitted simultaneously over a spread-spectrum
bandwidth ofW Hz. The single-sided power spectrum density
of the additive white Gaussian noise (AWGN) isN0 watt/Hz.
We assume that communications of different clusters can be
distinguished by using perfectly orthogonal codes (e.g., Walsh
codes). So only intra-cluster multiple access interference is
considered.

Per-cycle transmission power and transmission time control
for the sensor nodes is performed byo. For sensori, i =
1, . . . , N , there areBi bits in the queue waiting to be trans-
mitted to o using transmit powerPti and for a transmission
duration Ti. Different transmission rates are supported by
using variable spreading gains. Let the channel gain between
nodesi ando be hi and assume the channel is stationary for
the durationTi. The constraints on sensori’s transmission
are presented by the triple (γi, T

limit
i , Pmax), where γi is

the minimum bit-energy-to-interference-ratio threshold for the
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received signal from sensori, T limit
i ≥ Ti is an upper

limit on the transmission delay, andPmax ≥ Pti is the
maximum transmit power (assumed the same for all nodes).
As is common in DS-CDMA systems, we assume BPSK
modulation.

B. Energy Consumption Model

Consider theith SN with Bi backlogged bits. The energy
consumption at this node consists of transmission energy
consumption and circuit energy consumption, i.e.,

Ei = (Pti + Pci)Ti, (1)

wherePci is the power consumed by the circuit at sensori.
Following a similar model to the one in [8],Pci can be written
as

Pci = αi + (
1
η
− 1)Pti, (2)

where αi is a transmit-power-independent component that
accounts for the power consumed by the digital-to-analog
converter, the signal filters, and the modulator.PPAi

def= ( 1
η −

1)Pti is the power consumed by the power amplifier (PA),
whose value is related to the transmission power via the
efficiency of the PAη, where η Pti

Pti+PP Ai
. Physically, η is

determined by the drain efficiency of the RF power amplifier
and the modulation scheme [8][22]. Substituting (2) into (1),
the energy consumption of sensori is given by

Ei =
1
η
PtiTi + αiTi =

1
η
(Pti + αciri)Ti, (3)

whereαciri = ηαi is defined as the equivalent circuit power
consumption. ForN active sensor nodes, the total energy
consumption is

Etotal =
N∑

i=1

Ei =
1
η

N∑

i=1

(Pti + αciri)Ti. (4)

III. PROBLEM FORMULATION AND NUMERICAL SOLUTION

Our primary objective is to find the optimal transmission
powerP o

ti and optimal transmission timeT o
i for each sensor

nodei such thatEtotal is minimized while the various trans-
mission constraints are satisfied. Formally, this is expressed
as 




min{Pt,T}
∑N

i=1(Pti + αciri)Ti

s.t.(
Eb

I0

)
i
≥ γi, i = 1, . . . , N

0 ≤ Ti ≤ T limit
i , i = 1, . . . , N

0 ≤ Pti ≤ Pmax. i = 1, . . . , N

(5)

wherePt
def= (Pt1, . . . , PtN ), T def= (T1, . . . , TN ), and

(
Eb

I0

)
i

is the received bit-energy-to-interference-density ratio at node
o for sensori. This

(
Eb

I0

)
i

is given by

(
Eb

I0

)

i

=
W

Bi

hiPtiTi

δ
∑N

j=1,j 6=i hjPtj + N0W
(6)

whereRi
def= Bi

Ti
is the transmission rate under the assumption

of BPSK modulation andδ is theorthogonality factor, repre-
senting multiple access interference (MAI) from the imperfect-
orthogonal spreading codes and the asynchronous chips across
simultaneously transmitting nodes. Typical values forδ are 2

3
and 1 for a chip of rectangular or sinoide shape, respectively.

Because of the cross-product ofPt andT in the objective
function and in the

(
Eb

I0

)
i

constraint, (5) is not a convex
optimization problem. Hence, there is no guarantee that a
locally optimal solution will indeed be globally optimal. We
proceed to show that (5) can be put in a morestandard
form that reveals its special structure, for which an efficient
numerical algorithm (geometric programming) is available.
Moreover, as we show later, an approximate closed-form
analytical solution is also possible due to the fact that the
optimization problem can be solved sequentially, first with
respect to power and then with respect to time.
Proposition 1: The formulation in (5) is a GP that can be
transformed into a convex optimization problem of the so-
called log-sum-exponential form.

Proof: After some simple algebraic manipulations, (5) can
be expressed as





min{Pt,T}
∑N

i=1(Pti + αciri)Ti

s.t.

δBiγi (WhiPtiTi)
−1 ∑N

j=1,j 6=i hjPtj

+Biγi (WhiPtiTi)
−1 ≤ 1, i = 1, . . . , N

0 ≤ Ti

T limit
i

≤ 1,

0 ≤ Pti

Pmax
≤ 1.

(7)

The objective function and all of the left-hand sides of the
constraints in (7) are sums of monomials in (Pt,T) with non-
negative coefficients. These are known as posynomials1, and
(7) can be solved using geometric programming [23]. The
above form is still not convex. However, with a transformation
of variables, (7) can be converted into an equivalent convex
optimization problem. Letxi = ln Pti andyi = ln Ti. Taking
the logarithms of both the objective function and constraints,
(7) is transformed into the following equivalent problem:




min{x,y} log
∑N

i=1 [exp(xi + yi) + exp(ln αciri + yi)]
s.t.

log
[∑N

j=1,j 6=i exp
(
xj − xi − yi + ln δBiγiW

−1h−1
i hj

)

+exp
(
ln(BiγiW

−1h−1
i )− xi − yi

)] ≤ 0
log exp

(
yi − ln T limit

i

) ≤ 0,
log exp (xi − ln Pmax) ≤ 0, i = 1, . . . , N.

(8)
The log-sum-exponential functionf(z) = log (

∑n
i=1 ezi),

where z = (z1, . . . , zn) ∈ Rn, is a convex function [23].
This implies that the affine mappingg(s) = f(As + B)
preserves the convexity off(z). Hence, the objective function
and all the constraints presented in (8) are convex, and so
(8) is a convex optimization problem whose locally optimal
solution (xo,yo) is also globally optimal. Taking advantage of

1A posynomial in the variablex = (x1, . . . , xn) ∈ Rn is a linear
combination of monomials with nonnegative coefficients. Formally, it is
defined asf(x) =

∑K

k=1
ckx

ak1
1 x

ak2
2 . . . x

akn
n , where ck ≥ 0 and

akj ∈ R, j = 1, 2, . . . , n.
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this useful property, efficient numerical algorithms for convex
optimization problems, such as the primal-dual interior point
method [23], can be used to solve for (xo,yo). The globally
optimal solution of (5) is simply given byP o

ti = exp(xo
i ) and

T o
i = exp(yo

i ), for i = 1, . . . , N .

IV. CLOSED-FORM ANALYTICAL RESULTS

In this section, we derive a closed-form approximate an-
alytical solution to the optimization problem in (5). For all
practical purposes, this analytical solution is indistinguishable
from the exact numerical solution. The closed form of this
solution makes it quite attractive for any real-time transmit
control operation.

The analytical solution is obtained by decoupling the joint
optimization problem in transmission power and time into two
sequential sub-problems. This is achieved by first obtaining
the optimal transmission power as an explicit function of the
transmission timeT, for all feasible transmission times. Then,
the optimal value ofT is derived. A detailed mathematical
description and justification of this decoupling approach has
been given in [21]. Taking advantage of this property, the
analysis of (5) proceeds as follows.

A. Sub-Problem 1: Parametric Solution for Optimal Transmis-
sion Power

Treating the transmission time vectorT as a given system
parameter withTi ≤ T limit

i , problem (5) is equivalent to the
following linear programming problem:




min{Pt1,...,PtN}
∑N

i=1 PtiTi

s.t.(
1 + δBiγi

WTi

)
hiPti − δBiγi

WTi

∑N
j=1 hjPtj ≥ BiγiN0

Ti
,

Pti ≤ Pmax, i = 1, . . . , N.

(9)

Proposition 2: If the optimal solution to (9) exists, i.e., the
feasible set depicted by the constraints in (9) is not empty,
then this optimal solution is the solution to the following set
of linear equations
(

1 +
δBiγi

WTi

)
hiPti − δBiγi

WTi

N∑

j=1

hjPtj =
BiγiN0W

WTi
,

i = 1, . . . , N. (10)

Proof: Let fi(Pt)
def=

(
1 + δBiγi

WTi

)
hiPti − δBiγi

WTi

∑N
j=1 hjPtj ,

i = 1, . . . , N . Its first-order partial derivatives are∂fi

∂Pti
= hi >

0 and ∂fi

∂Ptj
= −Biγi

WTi
hj < 0 for j 6= i. The proof utilizes the

property thatfi(Pt) is a strict mono-increasing function of
Pti and a strict mono-decreasing function ofPtj , j 6= i. For
details, see [21].

After some mathematical manipulations of (10), we derive

Pti =
δ−1h−1

i gi

1− gΣ
, i = 1, . . . , N (11)

wheregi is thepower indexof nodei

gi
def=

δBiγi

WTi + δBiγi
(12)

and gΣ
def=

∑N
i=1 gi. For the sake of simplicity,Pti’s in (11)

and henceforth have been normalized with respect to the
background AWGN, i.e., it is assumed thatN0W = 1.

Given any feasible transmission time vectorT, (11) presents
the optimal transmit power vector in terms ofT if such an
optimal solution exists. Regarding the second constraint in (9),
a necessary condition for the existence of the optimal solution
is given by

Pti =
δ−1h−1

i gi

1− gΣ
≤ Pmax (13)

which leads to

gi ≤ δ(1− gΣ)hiPmax, i = 1, . . . , N. (14)

The inequality (14) depicts a polyhedron inRN
+ within which

a feasible solution to (9) exists. Summing overi in (14), we
have

gΣ ≤ δPmaxhΣ

1 + δPmaxhΣ
< 1, (15)

wherehΣ
def=

∑N
i=1 hi.

B. Sub-Problem 2: Optimization of Transmission Time

From (12), it is clear that for givenBi, γi,W , and δ, the
power indexgi and the transmission timeTi are equivalent
measures in the sense that there is a one-to-one mapping
betweengi andTi:

Ti =
δBiγi

Wgi
(1− gi). (16)

In the following optimization, it is more mathematically con-
venient to work withgi. To provide a tractable closed-form
solution, we relax (14) into

gi ≤ δhiPmax, i = 1, . . . , N. (17)

Note that this relaxation may result in some transmission
powers exceeding the upper boundPmax if the received
signal quality constraints are to be satisfied for all nodes.
However, for a typical CDMA-based WSN application, which
is characterized by low data transmission rates, large spread-
spectrum bandwidth, and a low SINR requirement, it must be
that gi ¿ 1 and gΣ is considerably smaller than 1. As will
be verified later in the numerical examples, the probability
that the peak-power constranit is violated as a result of this
relaxation is negiligible (e.g., less than0.2% when Pmax =
100mW). Therefore, the expansion of the feasible set through
(17) is a good approximation to the original polyhedron (14).

Let g def= (g1, . . . , gN ). The problem of determining the
optimal value ofg is formulated by substituting (16), (11),
and the constraints (17) and (15) into the original optimization
problem (5). This results in




min{g}
{

h(g)
def
=

∑N

i=1

(
δ−1h−1

i
gi

1−gΣ
+ αciri

)
δBiγi
Wgi

(1− gi)
}

s.t.
δBiγi

δBiγi+WT limit
i

≤ gi ≤ δhiPmax, i = 1, . . . , N∑N

i=1
gi ≤ δPmaxhΣ

1+δPmaxhΣ
(18)

where the lower bound ongi in the first constraint comes
from the delay bound requirementTi.
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Rewriting the objective functionh(g1, . . . , gN ) in (18) by
expanding the products results in

h(g) =

N∑
i=1

h−1
i Biγi(1− gi)

(1− gΣ)W
+

N∑
i=1

αciriδBiγi

Wgi
−

N∑
i=1

αciriδBiγi

W
.

(19)
As stated earlier, for a typical WSN application,gi ¿ 1.

Therefore, (19) is tightly approximated by

h(g) ≈
∑N

i=1
h−1

i Biγi

(1− gΣ)W
+

N∑
i=1

αciriδBiγi

Wgi
−

N∑
i=1

αiδBiγi

W

=
K

1− gΣ
+

N∑
i=1

αciriAi

gi
−

N∑
i=1

αciriAi (20)

whereAi
def= δBiγi

W is a node-dependent constant andK
def=∑N

i=1 δ−1h−1
i Ai is a system-dependent constant.

Proposition 3: The functionh(g1, . . . , gN ) in (20) is strictly
convex.
Proof: The method is to prove that theHeissian2 of
h(g1, . . . , gN ) is positive definite, thush(g) is a strictly convex
function of g. For details, see [21].

Replacingh(g1, . . . , gN ) in the objective function in (18) by
its approximation in (20), we arrive at the following convex
optimization problem





min{g1,...,gN}
K

1−gΣ
+

∑N
i=1

αciriAi

gi
−∑N

i=1 αciriAi

s.t.
δBiγi

δBiγi+WT limit
i

≤ gi ≤ δhiPmax, i = 1, . . . , N
∑N

i=1 gi ≤ δPmaxhΣ
1+δPmaxhΣ

.
(21)

Since (20) is a tight approximation, we can also expect that
the optimal solution to (21) will be a good approximation to
the optimal solution of (18).

The optimal solution(go
1, . . . , g

o
N ) to the constrained prob-

lem (21) can be related to the solution of the unconstrained
minimization of h(g). Being strictly convex,h(g1, . . . , gN )
must have only one unconstrained minimum solution, which
can be derived by solving the following equation set:

∂h

∂gi
=

K

(1− gΣ)2
− αciriAi

g2
i

= 0, i = 1, . . . , N. (22)

Through some mathematical manipulations, it can be shown
that the unconstrained optimum solution(go

u1, . . . , g
o
uN ) to

h(g1, . . . , gN ) is given by

go
ui =

√
αciriAi√

K +
∑N

i=1

√
αciriAi

, i = 1, . . . , N. (23)

Because of the convexity ofh(g), if any of thego
ui in (23)

violates the upper or the lower bound ongi in (21), then the
corresponding constrained optimal solutiongo

i must itself be
the upper or the lower bound, depending on which bound
is being violated. Accordingly, the optimal solution to the
constrained problem must have the following structure.
Proposition 4: The necessary condition of the constrained
optimal solution: Let(go

1, . . . , g
o
N ) denote the optimal solution

2The element aij of the Heissian of a multi-variable function

f(x1, . . . , xn) is defined asaij = ∂2f
∂xi∂xj

, for i, j = 1, . . . , n.

to (21). Let gupp
i

def= δhiPmax and glow
i

def= δBiγi

δBiγi+WT limit
i

be the upper and lower bounds ongi, respectively. LetV
denote the set of all active nodes, and letU denote the set
of active nodes for whichgo

i = gupp
i or go

i = glow
i . Define

t1
def= 1−∑

j∈U go
j andt2

def= δPmaxhΣ
1+δPmaxhΣ

−∑
j∈U go

j . Then for
i = 1, . . . , N ,
1. If

∑N
i=1 go

i < δPmaxhΣ
1+δPmaxhΣ

, then go
i ∈{

gupp
i , t1

√
αiAi√

K+
∑

j∈V−U

√
αjAj

, glow
i

}
.

2. If
∑N

i=1 go
i = δPmaxhΣ

1+δPmaxhΣ
, then go

i ∈{
gupp

i , t2
√

αiAi∑
j∈V−U

√
αjAj

, glow
i

}
.

Note: In the second case, at least onego
i will equal the

intermediate value.
Proof: The proof actually provides a recursive algorithm for
solving for go

i .

Case 1: First, we consider the case when
∑N

i=1 go
i <

δPmaxhΣ
1+δPmaxhΣ

. Let U be initially empty. Because of the strict
convexity of h(g), if for some i, the unconstrained optimal
solutiongo

ui exceeds its upper bound, i.e.,go
ui > gupp

i , then the
constrained optimal solution must bego

i = gupp
i . Similarly, if

go
ui < glow

i , thengo
i = glow

i . Such nodes whose unconstrained
optimal solutions exceed their upper or lower bounds are added
to the setU. With the knowledge ofgo

i for i ∈ U, the objective
function in (21) is equivalent to the following function

h′(V−U) =
K

t1 − g′Σ
+

∑

i∈V−U

αciriAi

gi
+

∑

i∈U

αciriAi

go
i

−
N∑

i=1

αciriAi

(24)
whereg′Σ

def=
∑

i∈V−U gi. Becausego
i is known for all i ∈ U,

replacing the objective function in (21) by (24) leads to an
inherited problem that is of the same form as (21) except that
the number of variables is reduced from|V| to |V−U|. With
some mathematical manipulations, it can be shown that the
unconstrained optimal solution to (24) is given by

go′
ui =

t1
√

αciriAi√
K +

∑
j∈V−U

√
αcirjAj

, i ∈ V −U (25)

which is a recurrent version of (23) in terms oft1 and U.
The above process is repeated and the values oft1 and U
are updated based on the newly computed values ofgo

i until
all unconstrained solutionsgo

ui, i ∈ V −U, of the inherited
problem meet their respective upper and lower bounds. In the
last iteration, the remaininggo

i ’s, i ∈ V−U, are equal to their
unconstrained counterparts given in (25).

Once all thego
i ’s have been computed, it should be verified

that
∑N

i=1 go
i < δPmaxhΣ

1+δPmaxhΣ
. If this is not the case, then the

solution ofgo
i falls into the next case.

Case 2: Consider the case when
∑N

i=1 go
i = δPmaxhΣ

1+δPmaxhΣ
. In

this case, the objective function in (21) degenerates into the
following function

h2(g) def= K(1+δPmaxhΣ)+
N∑

i=1

αciriAi

gi
−

N∑

i=1

αciriAi. (26)
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Accordingly, (21) is equivalent to the following problem




min{g1,...,gN}
∑N

i=1
αciriAi

gi

s.t.∑N
i=1 gi = δPmaxhΣ

1+δPmaxhΣ
,

δBiγi

δBiγi+WT limit
i

≤ gi ≤ δhiPmax, i = 1, . . . , N.

(27)

In this case, it is easy to show that

∇2h2(g1, . . . , gN ) = diag(
2αcir1A1

g3
2

, . . . ,
2αcirNAN

g3
N

) (28)

which is a positive definite matrix. Therefore,h2(g) is a
strictly convex function. Under the condition

∑N
i=1 go

i =
δPmaxhΣ

1+δPmaxhΣ
, the unconstrained optimal solution toh2(g) is

given by

go
ui =

δPmaxhΣ
1+δPmaxhΣ

√
αciriAi∑N

j=1

√
αcirjAj

. (29)

Accounting for the upper- and lower-bound constraints on
gi and following a similar process to case 1, it can be found
that go

i is equal togupp
i , glow

i , or

go
i =

t2
√

αciriAi∑
j∈V−U

√
αcirjAj

, i ∈ V −U. (30)

If in one of the computational cycles,go
i is found to be equal to

δhiPmax or δBiγi

δBiγi+WT i
limit

for all i = 1, . . . , N , then there is

no feasible solution to (21) because the constraint
∑N

i=1 go
i =

δPmaxhΣ
1+δPmaxhΣ

can not be satisfied.
Proposition 4 indicates the structure that the constrained

optimal solution will follow. It should be noted that in each
iteration there are multiple possible constructions ofU, i.e.,
different combinations of the nodes that violate their bounds
can be used to constructU in each iteration. To determine
the optimal solution, all possible constructions ofU in each
iteration need to be considered. However, as explained later
in Section V, for a practical CDMA WSN, the number of
variables whose unconstrained optimal solutions exceed the
bounds is usually small. In this case, we can approximate
the optimal solution by only evaluating the particularU that
consists of the whole set of violating nodes in each iteration.
A pseudo-code description of the computational algorithm is
outlined in Table I. The accuracy of this approximation process
is examined later using numerical examples.

Once thego
i ’s have been computed, the optimal transmit

power and transmission time are obtained by combining (11),
(16), and Proposition 4:

P o
ti =

δ−1h−1
i go

i

1− go
Σ

, (31)

T o
i =

δBiγi

Wgo
i

(1− go
i ), i = 1, . . . , N (32)

wherego
Σ

def=
∑N

i=1 go
i .

V. B IT ENERGY EFFICIENCY

Based on the expression for the optimal transmit power
and transmission time derived in Section IV, the minimum

Initialization: For i = 1, . . . , N , Ai = δBiγi
W

, gupp
i = δhiPmax,

andglow
i = δBiγi

δBiγi+WT limit
i

K =
∑N

i=1
δ−1h−1

i Ai, t1 = 1, t2 = δPmaxhΣ
1+δPmaxhΣ

V = {1, . . . , N}, U = ∅, andflag-continue= TRUE
For all i ∈ V −U

f
(1)
i (t1,U) =

t1
√

αiAi√
K+

∑
j∈V−U

√
αjAj

,

f
(2)
i (t2,U) =

t2
√

αiAi∑
j∈V−U

√
αjAj

End for
m = 1 // start with case 1

Iteration: While flag-continue= TRUE, do
flag-continue= FALSE

For all i ∈ V −U, setgo
ui = f

(m)
i (tm,U)

For all i ∈ V −U, do
If go

ui > gupp
i ,

Setgo
i = gupp

i
U = U ∪ {i}
flag-continue= TRUE

Else if go
ui < glow

i ,
Setgo

i = glow
i , U = U ∪ {i},

andflag-continue= TRUE
End if-else

End for
Updatetm:

If m = 1, t1 = 1−
∑

i∈U
go

i

Else,t2 = δPmaxhΣ
1+δPmaxhΣ

−
∑

j∈U
go

j

Updatef
(m)
i (tm,U) as in the initialization step

End while
If U = V, exit // no feasible solution
Else for all i ∈ V −U, setgo

i = go
ui

If (m == 1 &&
∑N

i=1
go

i < δPmaxhΣ
1+δPmaxhΣ

) or

(m == 2 &&
∑N

i=1
go

i = δPmaxhΣ
1+δPmaxhΣ

)
output (go

1 , . . . , go
N ) and exit

Else // case 2
SetU = ∅, flag-continue= TRUE, m = 2,
and go toIteration

TABLE I

PSEUDO-CODE FOR COMPUTING THE OPTIMAL SOLUTION FOR THE

TRANSMIT POWERS AND TIMES.

expected energy consumption for transmitting one informa-
tion bit in a DS-CDMA based WSN, termed thebit-energy
efficiency(BEE), can be studied analytically. To proceed with
our analysis, we focus our attention on ahomogeneousclock-
driven WSN, i.e., we takeαciri = αcir andγi = γ for all i. We
further assume that the considered WSN is well designed in the
sense that it does not operate at the boundary of its capacity,
i.e., the load of the traffic is reasonably less than the network
capacity so that the vast majority of the optimal transmit power
and time allocation are located within the polyhedron depicted
by the constraints of (5).

From (23), the optimal power index of nodei is given by

go
i =

√
αcirAi√

K +
∑N

i=1

√
αcirAi

, i = 1, . . . , N. (33)

Substituting (33) into (11) and (16), we obtain simplified
closed-form expressions for the optimal transmit power and
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time:

P o
ti =

√
αBi

hi

√
δ
∑N

j=1
h−1

j Bj

(34)

T o
i =

δBiγ

Wgo
i

(1− go
i )

'
δBiγ

(√
δ−1

∑N

j=1
h−1

j Bj +
∑N

j=1

√
αcirBj

)

W
√

αcirBi

.(35)

Substituting (34) and (35) into (4), the minimum energy
required for the transmission of

∑N
i Bi bits in a given

transmission cycle is given by

Emin
total =

γ

Wη




N∑
i=1

Bih
−1
i + 2

√
αcirδ

N∑
i=1

√√√√
N∑

j=1

h−1
j BiBj

+αcirδ

N∑
i=1

N∑
j=1

√
BiBj

)
. (36)

Suppose thatBi andhi, i = 1, . . . , N , are arbitrarily defined
random variables. Taking the expectation of (36) with respect
to Bi andhi gives E{Emin

total}; the minimum expected energy
consumption in one transmission cycle. In general, E{Emin

total}
can not be expressed in a closed form. However, as stated in
Proposition 5, a tight upper bound can be obtained.
Proposition 5:

E{Emin
total} ≤ γ

Wη

(
N∑

i=1

E{Bi}E{h−1
i }+ αcirδN

N∑
i=1

E{Bi}

+2
√

αcirδ

N∑
i=1

√√√√
N∑

j=1

E{h−1
j }E{BiBj}


 . (37)

Proof: Because the geometric average of a sequence of
nonnegative numbers can not be larger than their arithmetic
average, we have

E

{
αcirδ

N∑
i=1

N∑
j=1

√
BiBj

}
= αcirδ

N∑
i=1

N∑
j=1

E{
√

BiBj}

≤ αcirδ

N∑
i=1

N∑
j=1

E{Bi}+ E{Bj}
2

= αcirδN

N∑
i=1

E{Bi}. (38)

According to Jensen’s inequality, E{f(x)} ≤ f(E{x}) for a
concave functionf . Thus,

E





√√√√
N∑

j=1

h−1
j BiBj



 ≤

√√√√E

{
N∑

j=1

h−1
j BiBj

}

=

√√√√
N∑

j=1

E
{
h−1

j

}
E{BiBj} (39)

where we assume that the channel gainhi is independent of
Bi. Substituting (38) and (39) into the expectation of (36),
(37) follows.

If (37) is convergent, an upper bound on the BEE is obtained
by dividing (37) over the average number of bits transmitted

in one transmission cycle, i.e.,

BEE≤ γ

Wη
∑N

i=1
E{Bi}

(
N∑

i=1

E{Bi}E{h−1
i }

+αcirδN

N∑
i=1

E{Bi}+ 2
√

αcirδ

N∑
i=1

√√√√
N∑

j=1

E{h−1
j }E{BiBj}


 .(40)

Further simplification of this upper bound as well as closed-
form expressions of the BEE can be obtained for some special
cases. For example, if theBi’s are i.i.d. random variables and
N is large, it can be shown that (40) can be further simplified
to a traffic-distribution-independent asymptotic upper bound

BEEiid ≤ γ

Wη

(
E{G}

N
+ αcirδN + 2

√
αcirδE{G}

)
(41)

whereG
def=

∑N
i=1 h−1

i is the sum of the inverse of channel
gains. On the other hand, ifB1 = B2 = . . . = BN = B (fully
correlated traffic), then the BEE is given by

BEEFC =
γ

Wη

(
E{G}

N
+ αcirδN + 2

√
αcirδE

{√
G

})
.

(42)

VI. N UMERICAL INVESTIGATIONS

A. System Setup

We consider a20m× 20m sensing field that is centered at
the origin. The field containsN uniformly distributed sensors.
The sink is located at(D, 0), and a star topology is assumed.
We setη = 0.9, δ = 2/3, N0 = 10−15 W/Hz, γi = 4dB, and
W = 1 MHz. A clock-driven WSN is assumed withT limit

i =
1 second. For sensor nodei, the channel gain is given by

hi = L(d0)
(

di

d0

)−µ

Yi

(
X2

Ii + X2
Qi

)
, (43)

whereL(d0) is the path loss of the close-in distanced0, di is
the distance between nodei and the sink, andµ = 2 is the
path loss exponent (i.e., we consider a free-space loss model).
We taked0 = 10 meters and set the carrier frequency to2.4
GHz. The parametersYi, i = 1, . . . , N , are i.i.d. lognormally
distributed random variables with standard deviation of 7 dB.
They account for the effect of shadowing. The parametersXIi

and XQi are the real and the imaginary parts of a Rayleigh
fading channel gain, which follows a Gaussian distribution of
mean zero and variance12 .

B. Numerical Results

Figures 1 and 2 depict the BEE and average transmission
time per node for 10 successive cycles. In each cycle, the
channel gain of a node is generated according to (43). Both
numerical (GP based) and analytical algorithms are applied
to calculate the optimal transmit power and transmission time
for each node. The traffic generated by different nodes in each
cycle is i.i.d. with a Poisson distribution of mean100 bits. To
illustrate the benefits of jointly optimizing the transmission
power and time, we also include in Figure 1 the performance
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Fig. 1. Energy consumption per bit for ten successive cycles (N = 100). 
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Fig. 2. Average transmission time in ten successive cycles (N = 100).

of a “fixed-transmission-time” strategy [2], whereby the trans-
mission time for each sensor is set toT limit

i and the power is
determined using (11). It can be observed that our approximate
closed-form solution is almost indistinguishable from the GP-
based numerical solution. From Figure 2, it can be seen that
the average transmission duration of a node is 130 ms, which
corresponds togi ≈ 2× 10−3 ¿ 1.

However, the relaxation of the constraint ongi from (14)
into (17) may result in some nodes having optimal transmit
powers greater thanPmax. In practice, such nodes will have
to usePmax as their transmit power. In Figures 3 and 4, we
study the severity of violating thePmax constraint as a function
of Pmax. We use two metrics for this purpose:violation
rate and violation degree. The violation rate is defined as
the percentage of sensors in a cycle whose optimal transmit
powers exceedPmax. The violation degree is defined as the
average power surplus overPmax required by those violating
sensors, normalized byPmax. It is observed that for a wide
range ofN (20 to 100), even under a tight power constraint
of 10 mW, only a small percentage of sensors (≈ 5%) violate
the Pmax constraint to a degree of25%. Effectively, this says
that in each transmission cycle, about5% of the information
bits are received at the sink below their SINR threshold with
a normalized deficit of0.25. Taking advantage of the rich
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Fig. 3. Violation rate of transmission power constraint vs.Pmax. 
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Fig. 4. Violation degree of transmission power constraint vs.Pmax.

data redundancy of a WSN, the5% data loss can be easily
compensated for by other transmissions from neighboring
nodes. Using a more practical value forPmax = 100 mW [8],
the violation rate and degree are reduced to below0.2% and
20%, respectively (over various values ofN ).

In Figures 5 through 8, we study the BEE performance
under various traffic scenarios. Figure 5 depicts the BEE versus
N for the case of fully correlated traffic. The theoretical values
(obtained from (42)) are compared with those from simulations
whereBi is assumed to have a Poisson distribution with mean
100. In the simulations, the GP-based numerical algorithm
is employed to determine the optimal transmit powers and
times in each cycle. The figure shows that (42) accurately
captures the BEE performance of a WSN. The case of i.i.d.
traffic is considered in Figures 6-8, where the BEE is plotted
as a function of the circuit power consumption (α), the remote
node distance (D), andN , respectively. In these figures, we
contrast the distribution-independent theoretical upper bound
on the BEE (given in (41)) with three simulation-based BEE
values that correspond to three different traffic distributions.
The theoretical bound is found to be sufficiently tight. The
simulation results also show that the BEE decreases with an
increase in the variance of the traffic (compare the results for
the casesBi ∼ uniform(50, 150) andBi ∼ uniform(20, 180)).
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Fig. 5. BEE vs.N (fully correlated nodes). 
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Fig. 6. BEE vs. circuit power (i.i.d. traffic).

This can be attributed, in part, to the nonlinearity ofEmin
total,

given in (36). For example, consider the termB1B2 in (36).
Under the constraint thatB1 + B2 = 2B, where B is a
constant, we haveB1B2 = −B2

1 + 2BB1 where0 ≤ B1 ≤
2B. It is easy to see thatB1B2 is a concave function for0 ≤
B1 ≤ 2B, with its maximum value attained atB1 = B2 = B.
This says that the functionB1B2 is a mono-decrease function
of the absolute difference betweenB1 and B2. Similarly,
for a traffic distribution with a larger variation, the expected
absolute difference betweenBi andBj in (36) will be larger,
leading to a smaller product ofBiBj , hence resulting in a
smallerEmin

total and BEE.

VII. C ONCLUSIONS

In this paper, we studied the problem of jointly optimizing
the transmission powers and times of sensor nodes in a
DS-CDMA WSN. The optimization was carried out for the
purpose of minimizing the total energy consumption in the
network. A comprehensive energy model was used, which
accounts for both the transmit power consumption and the
circuit energy consumption. The problem was formulated as a
non-convex geometric program. In general, the non-convexity
of the objective function and the constraints in such problems
makes it quite challenging to obtain closed-form solutions.
We first showed that the formulation can be transformed into
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Fig. 7. BEE vs. sink location (i.i.d. traffic). 
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Fig. 8. BEE vs.N (i.i.d. traffic).

a convex GP for which fast computational algorithms, such
as the Interior Point Method, are applicable. By exploiting
the special structure of the underlying formulation, we then
derived a closed-form tight approximation for the optimal
transmit powers and transmission times. Our closed-form
solution is based on decoupling the optimization problem
into two sequential sub-problems. First, we optimize the
transmit powers, treating the transmission times as parameters.
As a result of this step, the optimal powers are expressed
as functions of the transmission times. In the second sub-
problem, we optimize the transmission times. We showed that
the first sub-problem is a linear program, while the second one
is approximately a convex optimization problem. We further
studied the bit energy efficiency for CDMA WSNs under
various traffic scenarios. Closed-form expressions and bounds
were obtained for the BEE. Comparisons with simulation
results indicate that the closed-form expressions are extremely
accurate, and can therefore be used as a basis for determining
the optimal transmit power and times in a WSN. Our future
work will focus on using such results in the design of protocols
for dyanmic adjustment of the powers and times.
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