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Abstract— Current link-state routing protocols (e.g., OSPF)
use flooding to disseminate link-state information throughout the
network. Despite its simplicity and reliability, flooding incurs
unnecessary communications overhead since nodes may receive
multiple copies of the same advertisement. This extra overhead
becomes an issue in the context of quality-of-service (QoS) rout-
ing, where link state is dynamic and needs to be advertised fre-
quently. The advertisement overhead can be significantly reduced
by using tree-based broadcasting approaches. Although several
of these approaches have been proposed in the literature, they are
not used in practice because of their complexity and/or unrelia-
bility. We propose a new link-state dissemination approach that
combines the best features of flooding and tree-based broadcast-
ing. Our hybrid approach is particularly suited for “dynamic”
link metrics (e.g., available bandwidth). It uses periodic flooding
to advertise topology changes and first-time LSAs (link-state ad-
vertisements), and uses tree-based broadcasting to disseminate
subsequent refresh LSAs. The broadcast trees in our approach
are constructed dynamically during the flooding of the first LSA,
without the need for the complex algorithms of previous tree-
based approaches. Two versions of our dissemination approach
are presented, with one being more suitable for networks with
frequent topological changes. We prove the correctness of our
approach and contrast its communications overhead with flood-
ing and pure tree-based broadcasting. The results indicate that
our hybrid approach has a significantly lower overhead than flood-
ing; yet it enjoys the simplicity, reliability, and fast convergence
of flooding. Finally, we outline how OSPF can be extended to
support the proposed dissemination approach.

I. Introduction

In link-state routing, every node in a routing domain tries to
maintain an accurate “map” of the underlying network. It does
that by encoding the state information related to its outgoing
links into a link-state advertisement (LSA) packet and dissem-
inating this LSA throughout the network. For simple and re-
liable dissemination, existing link-state routing protocols (e.g.,
OSPF [1], [2] and PNNI [3]) use flooding, in which an incoming
LSA is forwarded to all neighbors except the one from which the
LSA is received. Despite its simplicity and reliability, flooding
involves unnecessary communications, causing inefficient use of
resources. To minimize the communications overhead, current
routing protocols use small LSAs and large update (refresh) in-
tervals. For instance, in OSPF a single, relatively static, “cost”
metric is advertised periodically every 30 minutes. Such infre-
quent dissemination is sufficient for a best-effort service. To
support emerging QoS-oriented services (e.g., DiffServ), routing
protocols will need to be extended to disseminate additional link
state information, including available bandwidth, delay, and jit-
ter. With more parameters being advertised, the size of the
LSA inevitably gets larger. Moreover, some of these parameters
(e.g., available bandwidth) are quite dynamic, and thus must
be frequently disseminated (e.g., using triggered updates [4]) to
provide an accurate representation of the underlying network.
In these scenarios, the overhead of flooding can be quite exces-
sive.

To achieve efficient state dissemination, researchers have in-
vestigated tree-based broadcasting approaches [5], [6], in which
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LSAs are forwarded over broadcast trees such that every node
receives exactly one copy of each LSA. While tree-based broad-
casting reduces the dissemination overhead, it introduces a chal-
lenging problem, namely how to determine and maintain con-
sistent broadcast trees throughout the network. Previously pro-
posed solutions for this problem rely on complex algorithms and
protocols (see Section II for details), making them impractical
for real networks.

In this paper, we propose a hybrid mechanism that combines
the best features of flooding and tree-based broadcasting. The
proposed mechanism alternates between flooding and tree-based
broadcasting modes. In the flooding mode, “first-time” LSAs
are flooded to establish the broadcast trees, over which sub-
sequent (refresh) LSAs are advertised in the tree-based broad-
casting mode. The hybrid mechanism is shown to achieve a
significant reduction in the communications overhead compared
to flooding; yet, it maintains the simplicity and reliability of
flooding. Compared to pure tree-based broadcasting, the pro-
posed mechanism incurs a slight extra overhead, but this over-
head is overshadowed by the simplicity of this mechanism and
its amenability to practical application in real networks. Fur-
thermore, in contrast to previous tree-based broadcasting mech-
anisms, in which the broadcast trees are determined based on
the hop count, ours uses the minimum delay experienced during
the flooding of a first-time LSA to compute the broadcast trees.
As a result, it enjoys the same fast convergence of flooding.

In principle, the proposed hybrid mechanism can be used with
any link-state routing protocol. However, for the sake of con-
creteness, we investigate it in the context of the OSPF protocol
and its QoS extensions [7], [8]. We explain how OSPF can be
extended to support the hybrid scheme. This entails: (1) re-
defining two of the currently unused bits in the LSA header, (2)
adding a table in each router for maintaining information rele-
vant to the broadcast trees, and (3) adding and/or modifying
some of the steps in the “flooding procedure” of OSPF.

The rest of this paper is organized as follows. In Section II,
we give background information on flooding in OSPF and re-
view the literature on tree-based broadcasting. In Section III
we present the basic version of the proposed hybrid mechanism.
In Section IV we present a modified version of this mechanism,
which is suitable for highly dynamic topologies. We also de-
scribe how to extend OSPF to support the proposed hybrid
mechanism. In Section V we analyze the communications over-
head of the hybrid mechanism and contrast it with flooding and
pure tree-based broadcasting. Finally, in Section VI we conclude
the paper and give some directions for future research.

II. Background and Related Work

Flooding in OSPF

Flooding is used in OSPF to disseminate the link-state infor-
mation to all routers in the same domain. Each router period-
ically generates LSAs representing the parameters of its outgo-
ing links and sends these LSAs to all of its neighbors. Receiving
routers then forward the LSAs to their neighbors except the
ones from which the LSAs have been received. For reliability
purposes, each LSA is acknowledged. This flooding process al-
lows every node to acquire the same map of the network.
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Fig. 1. Structure of an OSPF router-LSA with two advertised links.

OSPF uses five types of LSAs. For a network with point-to-
point links, only one of these types, known as router-LSA, is
used. The basic structure of a router-LSA is shown in Figure 1.
Every router-LSA starts with a 20-byte header that contains
specific information to uniquely identify the LSA. The rest of
the LSA contains the values of the “cost” metric and any ad-
ditional QoS parameters that are associated with the outgoing
links of the LSA’s originator. Note that OSPF currently uses
a single metric, but the type-of-service (TOS) field in OSPF,
which has not been much used in the past, can be redefined to
advertise multiple link parameters (see [7] for details). Consider
the shaded fields in Figure 1. In this example, the number of
advertised links is indicated by l. The link-state information is
then repeated l times with different values. Each link has some
identification information followed by the link parameters. The
number of link parameters is indicated by q. Each parameter
is encoded using a four-byte field that includes the parameter
name and its value. Hence, the size (in bytes) of a router-LSA

originating from node u is given by S(u)
def
= 20+4+l(u)(12+4q),

where l(u) is the number of advertised outgoing links from node
u (i.e., l(u) = deg(u)). Note that an LSA acknowledgment
(ACK) consists of only a 20-byte header.

Tree-based Broadcasting

State dissemination based on tree-based broadcasting appears
in the literature in two forms: a single broadcast tree (SBT) and
multiple broadcast trees (MBT). In the SBT approach, all nodes
compute a common broadcast tree (e.g., a spanning-tree), and
every node marks its own links on that tree. Every node then re-
ceives LSAs via one of its marked links and forwards the LSAs
through its other marked links. The SBT approach has two
main disadvantages. First, it results in an unbalanced load dis-
tribution since LSAs are sent over a fixed subset of the network
links (i.e., the links that belong to the broadcast tree). Second,
it is quite possible for nodes that are neighbors according to the
network graph to lie far away from each other on the broad-
cast tree, a situation that delays the convergence of the routing
protocol. In [9] the authors explored the viability of the SBT
approach for state dissemination in the PNNI protocol. They
provided a distributed spanning-tree algorithm for determining
the broadcast tree. However, finding this tree and maintaining
it in a consistent manner involves complex operations such as
exchanging extra control packets besides LSAs and executing
the spanning-tree algorithm in a distributed manner.

In the MBT approach, every node has its own broadcast tree
(e.g., a shortest path tree). For illustration, consider the trees
originating from nodes 1 and 3 in Figure 2. The LSAs originat-
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Fig. 2. Multiple broadcast trees originating from nodes 1 and 2.

ing from a given node are disseminated over that node’s broad-
cast tree. For example, node 1 generates an LSA and sends it to
nodes 2 and 3. However, only node 2 forwards this LSA to node
4 (according to the broadcast tree of node 1). To disseminate
LSAs over their originators’ broadcast trees, every node needs
to know the broadcast trees of all other nodes. This can be done
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Fig. 3. Representing the parent-children relationships of the broadcast
trees in the MBT approach.

as follows [5]. Every node determines its parent and children on
every broadcast tree and stores these parent-children relation-
ships in a table. Figure 3 illustrates an example. Let Ti be the
broadcast tree originating from node i, i = 1, 2, . . . , n, where n
is the number of nodes in the network. Consider the represen-
tation of T1 at node 2. Since node 2 has only one child on T1

(namely, node 4), it marks node 4 as its child in the first row of
its table. So whenever node 2 receives an LSA originating from
node 1, it forwards this LSA to node 4 only. Node 2 also stores
its parent on T1 (namely, node 1) in the first row of its table.
Since LSAs are disseminated over different shortest-path trees,
the MBT approach provides some form of load balancing. The
convergence time of this approach is also faster than that of the
SBT approach.

A key issue in the MBT approach is how to determine the
broadcast trees in a distributed manner. Previously proposed
approaches achieve that through additional control packets (be-
sides the LSAs) and by relying on protocols that execute some
variant of the shortest path algorithm [5], [6]. This compli-
cates the establishment and maintenance of consistent broadcast
trees. The main objective of these complicated mechanisms is
to always disseminate LSAs over the broadcast trees. In [5] the
authors addressed the issue of determining broadcast trees while
the topology information is still being disseminated over these
trees. In [6] the authors considered the idea behind reverse-path
forwarding (RPF) in [10] and proposed a new topology dissem-
ination protocol called TBRPF, in which broadcast trees are
computed based on full topological information received over
the broadcast trees themselves. In TBRPF, every node exe-
cutes Dijkstra’s algorithm to determine a reverse minimum-hop
tree, and then exchanges some information with neighbors to
determine its parent and children from the standpoints of other
nodes. Although TBRPF provides more reliability than other
existing methods, it suffers from the overhead associated with



computing the trees and communicating with neighbors when-
ever a topological change occurs.

III. Hybrid Dissemination Mechanism

In this section, we present our Hybrid Flooding and Tree-
based Broadcasting (HFTB) mechanism. Recall that in
OSPF [2], LSAs containing the values of the cost metric are
periodically flooded every 30 minutes. While this duration is
sufficient for the relatively static cost metric, other link param-
eters may change several times within the 30-minute period.
These parameters need to be frequently disseminated, e.g., us-
ing triggered updates. The objective of HFTB is to disseminate
triggered LSAs using tree-based broadcasting while continue to
use flooding for disseminating the cost metric and connectivity
information.

HFTB is similar to previous MBT approaches in the sense
that every node maintains the same parent-children relation-
ships, as shown in Figure 3. However, in contrast to previous
MBT approaches, HFTB uses flooding of the first LSA in each
30-minute update interval to establish the broadcast trees, which
are then used to disseminate subsequent “refresh” LSAs gener-
ated within the update interval. No extra control packets or
complex protocols are needed to establish the broadcast trees.

The broadcast trees are established as follows. Let LSAu de-
note a flooded LSA that was generated by some node u. Suppose
that LSAu arrives at some node i for the first time through node
j, as shown in Figure 4. Node i selects node j as its parent from
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Fig. 4. Establishing broadcast trees in the HFTB approach.

the standpoint of node u and acknowledges node j. When node
j receives the acknowledgment, it records node i as its child from
the standpoint of node u. If LSAu arrives at node i again via
another node v, then node i acknowledges the LSA as in OSPF
without establishing a new parent-child relationship. After the
flooding of the first LSAu, every node can determine its parent
and children on the broadcast tree of node u (Tu). In con-
trast to previous approaches that establish the broadcast trees
w.r.t. the minimum hop count, HFTB dynamically determines
the broadcast trees w.r.t. the actual minimum delay, and broad-
casts LSAs over these trees, suggesting that HFTB converges as
fast as flooding.

Theorem 1: (Correctness of HFTB) Consider a network
G = (V, E) with bidirectional links. Suppose that an arbitrary
node s ∈ V generates an LSA and floods it throughout the net-
work. Furthermore, suppose that the LSA experiences some de-
lay d(u, v) when processed and forwarded from node u to node
v. Using HFTB along with the flooding of the first LSAs, Ts

is established throughout the network in finite time (i.e., every
node determines its parent and children on Ts). Moreover, Ts

converges to a shortest-paths tree.
Proof: Initially, Ts consists of only node s. So, the theorem

is trivially true. Consider Ts after flooding LSAs through some
nodes in the network. In flooding, an arbitrary node u may
receive the same LSAs several times. However, node u forwards
the incoming LSAs to its neighbors only once, upon the first
arrival of this LSA. In addition, node u selects its parent on
Ts by acknowledging the node from which LSAs was received
for the first time. Subsequent arrivals of LSAs at node u are
acknowledged without establishing a parent-child relationship.
Let t[s] denote the time at which node s generates LSAs, and
t[u] the time at which node u receives LSAs for the first time
along a path p = 〈v0 = s, v1, . . . , vk = u〉. Without loss of

generality, we assume that t[s] = 0. So, t[u] =
∑k

i=1
d(vi−1, vi).

To prove that Ts is a shortest-paths tree, we need to show that
the path p does not contain any cycle and that p is the shortest
path from s to u. The proof follows similar arguments to those
used in [11, pages 523-525] for shortest-paths trees. However,
instead of the process of relaxing a link (u, v) in [11], we consider
the process of forwarding first-time LSAs from node u to node
v. So it is sufficient to show that forwarding LSAs from node u
to node v upon its first arrival is the same as relaxing the link
(u, v) in the computation of a shortest-paths tree.

In computing the shortest-paths tree, a node u with minimum
t[u] is selected and every link (u, v) is considered for relaxation
in a sequential manner. If t[u] + d(u, v) < t[v], then link (u, v)
is relaxed, i.e., the parent of node v is set to node u and t[v] is
set to t[u] + d(u, v). In HFTB, paths are explored in parallel.
So a node u starts forwarding LSAs through (u, v) as soon as it
receives LSAs for the first time. In other words, a node u with
minimum t[u] is automatically selected in parallel and every link
(u, v) is considered. If node v receives LSAs for the first time
via node u, then the parent of node v is set to node u, and t[v]
is set to t[u] + d(u, v); this is the same as relaxing (u, v) in [11].
Otherwise, no parent-children relationship is established again.
The rest of the proof follows the same proofs in [11, pages 523-
525].

Finally, forming the broadcast tree Ts takes finite time since
in flooding, every node receives LSAs in a finite amount of time.

Figure 5 explains how HFTB can be integrated into the state
dissemination procedure of OSPF. The first required modifica-

Basic HFTB executed at node i
Upon becoming operational
1. node i initializes its parent-children table
2. node i synchronizes its link-state database as in OSPF
3. node i goes into flooding mode
Repeat every 30 minutes
1. node i goes into flooding mode
2. node i generates a new LSA that describes the state of its outgoing links
Upon generating a new LSA
1. if node i is in flooding mode then
1.1 set FT-bit in Options to 0
1.2 send the LSA to all neighbors
1.3 node i goes into tree-based broadcasting mode
2. else if node i is in tree-based broadcasting mode then
2.1 set FT-bit in Options to 1
2.2 send the LSA to all children of node i
3. end if
Upon receiving an LSA originating from node u via node j
1. if FT-bit in Options is 0 then
1.1 if the LSA is the most recent and

this is the first time it arrives at node i then
1.1.1 send the LSA to all neighbors except node j
1.1.2 table[LSA’s originator].parent = node j
1.1.3 send LSA ACK to node j by setting FT-bit in Options to 1
1.2 else
1.2.1 send LSA ACK to node j by setting FT-bit in Options to 0
1.3 end if
2. else if FT-bit in Options is 1 then
2.1 send LSA ACK to node j (FT-bit is set to 1)
2.2 send the LSA to all children according to LSA’s originator
3. end if
Upon receiving an LSA ACK from node j
1. if FT-bit in Options is 1 then
1.1 table[LSA’s originator].children[node j] = yes
2. else if FT-bit in Options is 0 then
2.1 table[LSA’s originator].children[node j] = no
3. end if
Upon failure of link (i, j)
1. for each originator node u do
1.1 if table[originator u].parent is node j then
1.1.1 table[originator u].parent = no parent
1.2 end if
2. end for
3. send the LSA that indicates the link failure to all neighbors (FT-bit=0)

end HFTB

Fig. 5. Integrating HFTB into the OSPF protocol.

tion to OSPF is to designate one of the unused bits of the Op-
tions field in the LSA header as Flooding or Tree-based broad-
casting (FT)-bit. If this bit is set to 0, the LSA will be flooded
throughout the network as in the standard OSPF. The second
modification is to maintain a table at each node to record the
parent-children relationships. The third modification is to add
new steps into the flooding procedure of OSPF to establish the
broadcast trees during the flooding of the first LSA in the 30-
minute update interval. The subsequent LSAs generated within
the 30-minute interval are broadcasted by setting the FT-bit to
1. The FT-bit is also used in LSA ACKs. In this case, if the FT-
bit is 1, then this is an indication that the receiver has selected
the sender as its parent; otherwise, the receiver has a different
parent. Accordingly, the sender records the receiver as its child



when it receives an ACK with an FT-bit of one.

IV. Enhanced Hybrid Mechanism

The previously discussed HFTB mechanism computes the
broadcast trees once every 30 minutes. However, due to topo-
logical changes, particularly link failures, some broadcast trees
may become disconnected shortly after they have been updated.
If no action is taken to repair these trees, some nodes may not
receive the up-to-date values of link parameters for at most 30
minutes. So taking no action (i.e., using the basic HFTB) could
be a viable solution if the probability of a link failure is low
and if the underlying path selection algorithms are capable of
dealing with inaccurate state information. To maintain highly
accurate routing information at every node, disconnected trees
need to be repaired within each period. This is done using a
slightly modified version of HFTB, which we refer to as safe
HFTB (S-HFTB).

The idea behind S-HFTB is to use the basic HFTB while
dynamically repairing disconnected broadcast trees. Note that
when a link (j, i) goes down, the broadcast trees according to
which node j is the parent/child of node i become disconnected.
When node i receives a link failure message from the physical
layer, it initializes its parent-child relationship with node j, dis-
connecting some trees at node i. If all nodes execute S-HFTB,
then a disconnected tree at node i can be detected from another
node v, as follows. Node v forwards only the header of an incom-
ing LSA to neighbors that are not on the broadcast tree of the
LSA’s originator. When this header is received at some node
i, this node checks whether it has a parent on the broadcast
tree of the incoming LSA’s originator. If no such parent exists,
then node i is “disconnected” from the standpoint of the LSA’s
originator. So, node i selects node v, from which the header
of the LSA was received, as its parent and asks this parent for
the complete LSA. As an example, consider the broadcast tree
originating from node u in Figure 4. Suppose that link (j, i) has
gone down, disconnecting Tu. Furthermore, suppose that node
v has just received LSAu. Since node i is not a child of node
v on Tu, node v sends the header of LSAu to node i. Upon
receiving this header, node i (which lost its parent on Tu due to
the failure of link (j, i)) selects node v as its parent and sends
an ACK message to node v, indicating the establishment of a
new parent-child relationship. When node v receives this ACK,
it records node i as a child and sends it the complete LSAu. As
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Fig. 6. Repairing broadcast trees in S-HFTB.

a result, the broadcast tree originating from node u is repaired,
as shown in Figure 6.

S-HFTB can be integrated into OSPF, as illustrated in the
pseudo-code in Figure 7. In the flooding mode (i.e., when the
FT-bit of the incoming LSA is 0), S-HFTB and HFTB are iden-
tical. In the tree-based broadcasting mode, nodes using S-HFTB
perform two tasks. First, a node has to forward the incoming
LSA to its children, as in HFTB. Second, the node forwards
only the header of the incoming LSA to the neighbors that are
not children on the broadcast tree of the LSA’s originator. This
latter task, which is not present in HFTB, is used to repair dis-
connected trees. To integrate this enhancement into the OSPF
protocol, we designate one more unused bit in the Options field
of the LSA header as the Repair Tree (RT) bit (this is an addi-
tion to the modifications made above for the basic HFTB). This
bit is set to 1 if the LSA contains the header only. Suppose that
a given node i receives LSAu with FT-bit=1 and RT-bit=1 via
some node v. Node i first checks whether is has a parent on Tu.
If not, it selects node v as its parent and sends an ACK message
with FT-bit=1 and RT-bit=1 to node v. Upon receiving this

S-HFTB executed at node i
Upon becoming operational or Upon failure of link (i, j)

perform the same tasks as in Basic HFTB
Repeat every 30 minutes

perform the same tasks as in Basic HFTB
Upon generating a new LSA
1. if node i is in flooding mode then
1.1 set FT and RT bits in Options to 0
1.2 send LSAi to all neighbors
1.3 go into tree-based broadcasting mode
2. else (node i is in tree-based broadcasting mode)
2.1 set FT-bit to 1 and RT-bit to 0
2.2 send LSAi to all children of node i according to Ti
2.3 set FT and RT bits to 1
2.4 send LSA header to all neighbors that are not

children of node i according to Ti
3. end if
Upon receiving an LSA originating from node u via node j
1. if FT-bit is 0 then perform the same tasks as in Basic HFTB
2. else if FT-bit is 1 then
2.1 if RT-bit is 0 then
2.1.1 send LSA ACK to node j with FT-bit=1 and RT-bit=0
2.1.2 send the LSAu to all children of node i according to Tu (FT=1, RT=0)
2.1.3 set FT and RT bits to 1
2.1.4 send the header of LSAu to all neighbors that

are not children of node i according to Tu
2.2 else if RT-bit is 1 then
2.2.1 if table[ LSA’s originator u].parent = NIL and

LSAu is the most recent and
it arrives at node i for the first time then

2.2.1.1 send LSA ACK to node j with FT-bit=1 and RT-bit=1
2.2.1.2 table[LSA’s originator].parent = node j
2.2.2 else
2.2.2.1 send LSA ACK to node j with FT-bit=0 and RT-bit=0
2.2.3 end if
2.3 end if
3. end if
Upon receiving an LSA ACK from node j
1. if FT-bit in Options is 1 then
1.1 table[LSA’s originator].children[node j] = yes
1.2 if RT-bit in Options is 1 then
1.2.1 send the LSA to node j with FT-bit=1 and RT-bit=0
1.3 end if
2. else if FT-bit in Options is 0 then
2.1 table[LSA’s originator].children[node j] = no
3. end if

end S-HFTB

Fig. 7. Integrating S-HFTB into the OSPF protocol.

ACK, node v records node i as its child and sends the complete
LSA with FT-bit=1 and RT-bit=0 to node i. If node i already
has a parent, it sends an ACK message with FT-bit=0 and RT-
bit=0 to node v. As a result, disconnected trees are dynamically
repaired throughout the network.

V. Performance Evaluation

In this section, we analyze the communications overhead of
the proposed dissemination approaches and compare them with
flooding and pure tree-based broadcasting. Assume that we have
a network with n nodes and m links. Each node u periodically
(every 30 minutes) generates a router-LSA and floods it as in the
standard OSPF. Within the 30-minute period, each node may
be triggered to generate additional router-LSAs that advertise
the most recent values of the link-state parameters. Assume
that the average number of triggered advertisements within a
30-minute interval is λ. Recall that the size of an ACK packet
is 20 bytes while the size of an LSA packet originating from node
u is S(u) = 20+4+ l(u)(12+4q) bytes. If no link failure occurs
in a given 30-minute interval, then the total communications
overhead (TCO) of various state dissemination mechanisms can
be computed (in bytes) as follows. For pure flooding, LSAs
and ACKs are sent over every link. So the TCO of flooding is

TCOflooding
def
= (λ + 1)

∑n

u=1
m[S(u) + 20]

In pure tree-based broadcasting, LSAs are disseminated over
trees, each consisting of n−1 links. Thus, the TCO of tree-based

broadcasting is TCOtree
def
= (λ + 1)

∑n

u=1
(n− 1)[S(u) + 20].

Note that establishing the broadcast trees also involves some
protocol overhead. We ignore such overhead since our focus
is on the TCO during the state dissemination. For the pro-
posed HFTB mechanism, no protocol overhead is incurred,
since in HFTB the broadcast trees are established while LSAs
are being flooded. Since HFTB floods the first LSA to de-
termine the broadcast trees and then disseminates the subse-
quent LSAs over these trees, the TCO of HFTB is given by

TCOHFTB
def
=

∑n

u=1
m[S(u) + 20] + λ

∑n

u=1
(n− 1)[S(u) + 20].

In S-HFTB, the complete LSAs are disseminated over the
broadcast trees as in HFTB. However, to maintain consis-
tencies in the broadcast trees, S-HFTB also disseminates 20-
byte headers and their ACKs through neighbors that are not



children on the broadcast trees of the LSAs’ originators. So
these headers and their ACKs (total 40 bytes) are disseminated
over m − n + 1 links, since we have n − 1 links in each tree.

Hence, the TCO of S-HFTB can be computed as TCOS-HFTB
def
=∑n

u=1
m[S(u)+20]+λ

∑n

u=1
(n−1)[S(u)+20]+λ40n(m−n+1).

We now compare the above four link-state dissemination
mechanisms in terms of the TCO. We also report how much
TCO reduction is achieved over flooding when HFTB, S-HFTB,
or pure tree-based broadcasting is used. For HFTB and S-
HFTB, the reduction in TCO over flooding is given by 100(1−
TCO(S-)HFTB

TCOflooding
)%. For tree-based broadcasting, the reduction is

given by 100(1− n−1
m

)%. The computation of the TCO depends
on four parameters: n, m, q, and λ. For illustration purposes,
we consider topologies with n = 100, and vary m, q, and λ. The
same trends have been observed for other values of n. Figure 8
depicts the TCO of various dissemination mechanisms versus
the number of links m. As m increases, the TCO of flood-
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Fig. 8. Total communications overhead versus m.

ing increases quadratically, while this increase is linear in other
mechanisms. Figure 9 considers the effect of q. As shown in
the figure, the TCO of all mechanisms increases linearly with q.
However, the TCO of flooding increases at a higher rate than
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Fig. 9. Total communications overhead versus q.

those of tree-based mechanisms. Figure 10 considers the effect
of λ. The TCO of all mechanisms is linearly proportional to
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Fig. 10. Total communications overhead versus λ.

λ. Once again, the TCO of flooding increases at a much higher

rate than that of other mechanisms.
If the broadcast trees are already established, then the ba-

sic tree-based broadcasting provides the best possible efficiency
in state dissemination. However, establishing such trees in the
basic tree-based approach requires complex algorithms and pro-
tocols to maintain consistent trees throughout the network. Be-
cause of the complexities and/or unreliabilities of previous tree-
based mechanisms, current Internet protocols do not use tree-
based broadcasting, and instead rely on flooding despite its high
communications overhead. The proposed (S-)HFTB mechanism
takes advantage of both flooding and tree-based broadcasting,
and provides significantly better performance than flooding.
This is particularly advantageous in QoS routing, where the
values of q and λ are typically larger than those in best-effort
networks.

VI. Conclusions

We provided a hybrid state dissemination mechanism that
combines tree-based broadcasting and flooding to achieve sim-
ple yet reliable and efficient link-state dissemination. Such a
mechanism is particularly needed in the context of QoS rout-
ing, which involves frequent dissemination of several dynamic
parameters. In contrast to previous tree-based broadcasting
approaches, which require complex algorithms and protocols
to determine and maintain the broadcast trees, the proposed
HFTB simply determines the broadcast trees by flooding first-
time LSAs. Subsequent LSAs that update the state of an ex-
isting link(s) are then disseminated over the broadcast trees.
To deal with link-failures, we provided a modified version of
HFTB, called S-HFTB. S-HFTB incurs a fixed extra communi-
cations overhead over HFTB. However, by using S-HFTB, nodes
dynamically repair disconnected broadcast trees in the case of
link failures and acquire the most recent LSAs in a simple and
efficient manner. In spite of this overhead, the S-HFTB mech-
anism provides significantly better performance than currently
used flooding while maintaining the simplicity and reliability
of flooding. As a result, the S-HFTB approach is a viable al-
ternative to standard flooding, with improved TCO. We also
described how to integrate the proposed hybrid mechanism in
OSPF. For this purpose, two of the currently unused bits of the
Options field in the LSA header are defined as FT-bit and RT-
bit. Using these bits, we slightly modified the flooding procedure
of OSPF to determine the broadcast trees and to disseminate
LSAs over these trees.

As a future work, we plan to implement the proposed hybrid
mechanism along with OSPF and to demonstrate its efficiency
in real systems.
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