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Abstract

One of the key issues in providing end-to-end quality-of-service (QoS) guarantees in communi-

cation networks is how to determine a feasible route that satis�es a set of QoS requirements (e.g.,

bandwidth, delay, delay-jitter, and loss) of a connection request while e�ciently using network

resources. In general, �nding a path subject to multiple additive constraints such as delay and

delay-jitter is an NP-complete problem. In this paper, we propose a polynomial-time heuristic

algorithm for this problem. We also discuss how to accommodate non-additive constraints such as

bandwidth and loss. Our algorithm �rst prunes all the links that cannot be on any feasible path

from the source to the destination. It then uses a randomized search to �nd a feasible path, if one

exists. In order to achieve e�cient utilization of resources, our algorithm tries to select a path

with minimum-hop count among all feasible paths. The worst-case computational complexity of

our algorithm is O(n

3

), where n is the number of nodes. Its storage complexity is O(n). Using

extensive simulations, we show that our algorithm gives very high success rate in �nding feasible

paths with minimum-hop count.

1 Introduction

Integrated communication networks (e.g., ATM) o�er end-to-end quality-of-service (QoS) guaran-

tees to various applications such as audio, video, and data. Some of these applications have multiple

stringent QoS requirements in terms of bandwidth, delay, delay-jitter, and loss. One of the most

important problems in QoS-based service o�erings is how to determine a route that satis�es multiple

QoS requirements of a connection request while simultaneously achieving e�cient utilization of net-

work resources. This problem is known as QoS-based routing and is being investigated in the research

community. In [2, 4] the authors survey various aspects of QoS architectures and QoS-based routing,

including the maintenance of state information, routing strategies, and path selection algorithms. In

this paper, we study QoS-based routing and focus on path selection with multiple QoS constraints.

The problem of path selection subject to multiple additive constraints is known to be NP-

complete [18]. In other words, there is no e�cient (polynomial-time) algorithm that can surely �nd
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a feasible path which simultaneously satis�es such constraints. To cope with the NP-completeness

of the problem, researchers have either proposed heuristic algorithms which reduce the computa-

tional time but do not guarantee to �nd a feasible path even one exists [8, 16, 10], or simpli�ed the

problem by considering a subset of the QoS parameters such as bandwidth and delay [17, 12, 7].

In [13, 15] the authors show that path selection subject to multiple QoS constraints can be solved in

polynomial-time if Weight Fair Queueing (WFQ) service discipline is used. In this service discipline,

delay, delay-jitter, and loss constraints can be de�ned as functions of bandwidth; thus, the problem

is reduced to the shortest path routing without any additive QoS constraint. Since these algorithms

either consider only bandwidth and delay or make other constraints depend on bandwidth by as-

suming speci�c service disciplines, they cannot be used to �nd a path subject to multiple constraints

that are additive and independent. In [9], the author presents a pseudo-polynomial-time algorithm

for path selection with two independent constraints. This is one of the closest studies to ours. The

computational complexity of this algorithm is O(n

5

b lognb), where n is the number of nodes and b

is the maximum weight of a link. Its storage complexity is O(n

3

b lognb). If b is large, this algorithm

is very expensive in terms of computational time and storage requirement. The author also proposes

a heuristic algorithm that approximates the constraints and runs with a polynomial-time complex-

ity. However, the algorithm is not guaranteed to �nd a correct solution. Another related work is

presented in [3], where the authors propose a heuristic algorithm that truncates all link weights

except one to bounded integer values. They show that the modi�ed problem can be solved with a

polynomial-time complexity by using extended Dijkstra's (or Bellman-Ford) algorithm and that the

solution for the reduced problem is also a solution for the original problem. However, the algorithm

is not guaranteed to �nd all the feasible paths in the original problem. When the extended Dijkstra's

algorithm is used, the computational complexity of the proposed algorithm in [3] is O(x

2

n

2

); when

the extended Bellman-Ford algorithm is used, the complexity is O(xnm), where x is a constant

de�ned by the algorithm, n is the number of nodes, and m is the number of links. The storage

complexity of this algorithm is O(xn). The value of x determines the performance and the overhead

of the algorithm. To increase the probability of �nding a feasible path, the value of x can be as large

as 10n, i.e., the worst-case computational complexity is O(n

4

) with extended Dijkstra's algorithm.

In this paper, we provide a heuristic algorithm to �nding a path subject to multiple additive

constraints without making any assumptions about the scheduling disciplines in the network or

the values of the QoS parameters. Furthermore, our algorithm tries to select a feasible path with

minimum-hop count; achieving e�cient utilization of resources. It has been shown that restricting

routing to short paths achieves e�cient resource utilization in QoS-based routing [12]. Our algorithm

mainly consists of two steps: (1) pruning all the links that cannot be on any feasible paths between the

source and destination nodes, and (2) performing a randomized search to �nd a feasible path, if one

exists. The idea behind randomization is to avoid unforeseen traps by making random choices during

the execution of the algorithm [11]. Randomized algorithms are being used very e�ciently in many

applications because of their simplicity and speed [14]. The worst-case computational complexity of

2



our algorithm is O(n

3

), where n is the number of nodes. This complexity can be further reduced

in practice. The storage complexity of our algorithm is O(n). In terms of both complexities, our

algorithm is better than the algorithms in [9] and [3]. On the other hand, since our algorithm is

also based on a heuristic, it has some small probability of not �nding a feasible path although one

does exist. However, our simulation results show that our algorithm achieves high performance in

�nding feasible paths. We present extensive simulations with two and three additive constraints

on di�erent network topologies in which our algorithm �nds 99.99% of all feasible paths with the

minimum number of hops.

The rest of the paper is organized as follows. In Section 2, we discuss routing with multiple QoS

constraints, and we formalize the problem of minimum-hop path selection subject to multiple additive

constraints. In Section 3, we introduce our polynomial-time randomized algorithm, and present the

pseudo-code, correctness, and complexity analysis of this algorithm. In order to illustrate how the

algorithm works, we give an example in Section 4. We report simulation results in Section 5. Finally,

Section 6 concludes this paper.

2 Routing Problem with Multiple QoS Constraints

Routing consists of two basic tasks [4]: collecting the state information of the network and searching

this information to �nd a feasible path, if one exists. In this paper, we focus on the second task by

assuming that the true state of the network is available to every node and that nodes use source

routing to determine an end-to-end feasible path. Each link in the network is associated with multiple

QoS parameters such as bandwidth, delay, delay-jitter, and loss. Although we consider only additive

constraints (e.g., delay and delay-jitter) in our randomized algorithm, non-additive constraints such

as bandwidth can be easily accommodate. This is done by pruning links that do not satisfy the

requested QoS constraint. Furthermore, we consider the problem of minimum-hop path selection

subject to multiple additive constraints. The underlying problem is formally stated as follows.

De�nition 1. Minimum Hop Routing with Multiple Constraints (MinHop MC): Consider a

communication network that is represented by a directed graph G = (N;A), where N is the set of

nodes and A is the set of links (arcs). Each link (i; j) 2 A is associated with M non-negative weights

(additive QoS values) w

k

(i; j) for k = 1; 2; : : : ;M . Given M constraints C

k

, k = 1; 2; : : : ;M , the

problem is to �nd a path p from a source node s to a destination node t such that the number of

nodes in p is minimum, i.e.,

Minimize

X

(i;j)2p

1

while satisfying the following additive M constraints:

X

(i;j)2p

w

k

(i; j) � C

k

for k = 1; 2; : : : ;M
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3 A Randomized Algorithm for MinHop MC

In order to minimize the hop count, we �rst transform the problem of MinHop MC into a new one

by replacing the minimum-hop objective with a constraint. The new problem is to �nd a path p that

satis�es the following constraints:

X

(i;j)2p

1 � H

X

(i;j)2p

w

k

(i; j) � C

k

for k = 1; 2; : : : ;M

where H is a bound for the hop count of path p. The value of H is an integer number between 0

and n� 1, where n is the number of nodes in the graph. Suppose that we have an algorithm which

can �nd a feasible path satisfying the above constraints. If we execute this algorithm for each value

of H starting from 0 and increasing by one up to n� 1 and stop whenever a path is found, then we

have solved the problem of MinHop MC.

The remaining important question is whether there is an e�cient (polynomial-time) algorithm

to �nding a path subject to the above constraints. Since the original problem is NP-complete, there

is no such an algorithm unless NP=P. Alternatively, we provide a heuristic algorithm which prunes

the graph and uses a randomized search method to �nd a feasible path with minimum-hop count.

Our algorithm consists of two main procedures:

1. Minimum Hop Routing with Multiple Constraints (MinHop MC)

To maximize the probability of success in the random search for a feasible path, this procedure

associates some labels with each node and prunes all links that cannot be on any feasible paths

with respect to givenM constraints. Then, for each value of hop bound, the procedure continue

to reduce and label the graph based on the current hop bound. If the procedure realizes that

there might be a feasible path, it calls the below procedure to search the path on the reduced

and labeled graph.

2. Modi�ed Random Breadth-First Search (MR BFS)

MR BFS is a randomized and modi�ed version of Breadth-First Search (BFS). Note that

BFS systematically discovers every node that is reachable from a source node s. In contrast,

MR BFS randomly discovers those nodes from which there is a good chance to go to the �nal

destination node t. By using the reduced graph and labels, MR BFS can realize whether this

chance exists or not before discovering a node. If there is no chance, MR BFS can foresee the

trap and randomly tries other nodes. The heuristic behind MR BFS is to discover a node from

which there is a chance to go to the destination node t and hope that this discovery will lead

to a feasible path from the source node s to t. Simulation results show that this method works

well for path selection with multiple additive constraints.

The inputs to the algorithm are a directed graph G = (N;A) in which each link (i; j) is associated
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with M weights: w

k

(i; j), k = 1; 2; : : : ;M ; a source node s; a destination node t; and M constraints:

C

k

, k = 1; 2; : : : ;M . In order to �nd a feasible path with minimum-hop count, the algorithm

maintains the following labels for each node u: B

k

[u],

e

B

k

[u],R

k

[u],D

k

[u], and �[u], k = 1; 2; : : : ;M; h.

Labels B

k

[u], k = 1; 2; : : : ;M; h, represent the costs of the shortest paths from the source node s

to node u with respect to individual M link weights and hop count, respectively. Labels

e

B

k

[u],

k = 1; 2; : : : ;M; h, represent the costs of the shortest paths from node u to the destination node t with

respect to individual M link weights and hop count, respectively. Labels R

k

[u], k = 1; 2; : : : ;M; h,

represent the same kind of information as

e

B

k

[u], k = 1; 2; : : : ;M; h, in the reduced graph. The

cost of a path is the sum of the link weights along that path. Note that all link weights are equal

to one for the hop-count parameter. In the random search for a feasible path with MR BFS, the

algorithm stores the predecessor of node u in �[u]. If node u has no predecessor, i.e., it has not been

discovered, then �[u] = NIL. The costs of a path from the source node s to node u is stored in

D

k

[u], k = 1; 2; : : : ;M; h, for M link weights and hop count.

For each k = 1; 2; : : : ;M , our algorithm �rst does the followings. Using Dijkstra's shortest path

algorithm [6], our algorithm determines B

k

[u] for each node u with respect to only the link weight

w

k

. At that point, if the cost of the individual shortest path from the source node s to the destination

node t is larger than the given constraints, i.e., if

B

k

[t] > C

k

is true, then there is no feasible path, so the algorithm restores all the pruned links and terminates.

Otherwise, the algorithm again individually determines

e

B

k

[u] for each node u by using Reverse-

Dijkstra [1]. The algorithm then reduces the graph by pruning some links that cannot be on any

feasible paths from the source node s to the destination node t. Consider an arbitrary link (i; j) 2 A.

If

B

k

[i] + w

k

(i; j)+

e

B

k

[j] > C

k

is true, then the link (i; j) cannot be on any feasible path; and it is pruned because when link (i; j)

is used, the costs of all paths from the source node s to the destination node t exceed the constraint

C

k

, even if the best path from the source node s to node i and the best path from node j to the

destination node t are used. The pruned links here are associated with a code of -1.

After this reduction, our algorithm determines B

h

[u] and

e

B

h

[u] for each node u by using Dijkstra

and Reverse-Dijkstra [1], respectively. Then, it starts the hop bound H from B

h

[t] to n�1 for �nding

a feasible path with minimum-hop count. Note that B

h

[t] is the minimum number of hops from the

source node s to the destination node t regardless of any other constraints.

For each value of H , the algorithm continues to reduce and label the graph according to current
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hop bound H . Consider an arbitrary link (i; j) 2 A. If

B

h

[i] + 1 +

e

B

h

[j] > H

is true, then the link (i; j) is pruned because of the same reason above. This time, the pruned links

are associated with the code of -2. Then, for each k = 1; 2; : : : ;M , the algorithm does the followings.

Using Reverse Dijkstra, it �nds R

k

[u] for each node u in the reduced graph. At that point, if

R

k

[s] > C

k

is true, then there is no path which satis�es the constraint C

k

; thus, the algorithm restores only the

pruned links with the code of -2, increases hop bound H by one, and repeats above operations in

this paragraph as long as H is less than the number of nodes. Otherwise, if R

k

[s] � C

k

for all k,

then there might be a path; and the algorithm will search it by using MR BFS. If MR BFS �nds

a path, the algorithm stops. Otherwise, the algorithm repeats the above operations by restoring

pruned links with the code of -2 and by increasing hop bound H by one.

MR BFS is modi�ed from BFS (see [6] for original BFS). To manage the just discovered nodes,

MR BFS uses a random queue Q instead of a �rst-in �rst-out queue in the original BFS. In the

main loop, MR BFS chooses a random node u from queue Q and tries to discover each node v in the

adjacency list of node u. Although BFS systematically discovers every node that is reachable from

the source node s, MR BFS discovers those nodes from which there is a chance to go to the �nal

destination node t, i.e., if

�[v] = NIL and

D

k

[u] + w

k

(u; v) +R

k

[v] � C

k

for all k and

D

h

[u] + 1 +R

h

[v] � H

is true, then MR BFS discovers node v from node u, updates D

k

[v], k = 1; 2; : : : ;M , D

h

[v], and �[v],

and puts node v into queue Q; otherwise, it does nothing. MR BFS leaves the search as soon as the

destination node t is discovered or queue Q is empty.

The pseudo-code of the randomized algorithm is presented below.
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procedure MinHop MC(G = (N;A); s; t; C

k

; k = 1; 2; : : : ;M)

begin

1 For k = 1 to M loop

2 Dijkstra(G = (N;A); s; k) to find B

k

[u];

3 if B

k

[t] > C

k

then

4 � there is no feasible path

5 Restore all the pruned links, and stop the algorithm;

6 end if

7 Reverse Dijkstra(G= (N;A); t; k) to find

e

B

k

[u];

8 for each link (i; j) 2 A loop

9 if B

k

[i] + w

k

(i; j) +

e

B

k

[j] > C

k

then

10 prunes link (i; j) from A (with code -1);

11 end if

12 end for

13 end for

14 � try to find a feasible path with min-hop count

15 Dijkstra(G= (N;A); s; h) to find B

h

[u];

16 Reverse Dijkstra(G= (N;A); t; h) to find

e

B

h

[u];

17 for H = B

h

[t] to n loop

18 for each link (i; j) 2 A loop

19 if B

h

[i] + 1+

e

B

h

[j] > H then

10 prunes link (i; j) from A (with code -2);

21 end if

22 end for

23 For k = 1 to M loop

24 Reverse Dijkstra(G = (N;A); t; k) to find R

k

[u];

25 if R

k

[s] > C

k

then

26 � there is no feasible path

27 Restore only the pruned links (with code -2), and go to 17;

28 end if

29 end for

30 Reverse Dijkstra(G= (N;A); t; h) to find R

h

[u];

31 MR BFS(G = (N;A); s; t;H);

32 if t is discovered (i.e., �[t] 6= NIL) then

33 � a feasible path is found

34 Restore all the pruned links, and stop the algorithm;

35 end if

36 Restore only the pruned links (with code -2), and go to 17;

37 end for

38 � no path is found

39 Restore all the pruned links, and stop the algorithm;

end MinHop MC;
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procedure MR BFS(G = (N;A); s; t;H)

begin

1 for each node u 2 N � fsg loop

2 D

k

[u] =1, k = 1; 2; : : :;M, and D

h

[u] =1;

3 �[u] = NIL;

4 end loop

5 D

k

[s] = 0, k = 1; 2; : : : ;M, and D

h

[s] = 0;

6 �[s] = �1;

7 Q = fsg;

8 while Q 6= ; and �[t] = NIL loop

9 u = random[Q];

10 Q = Q� fug;

11 for each v 2 Adj[u] loop

12 if �[v] = NIL and

13 D

k

[u] + w

k

(u; v) + R

k

[v] � C

k

for 8 k = 1; 2; : : : ;M, and

14 D

h

[u] + 1 +R

h

[v] � H then

15 D

k

[v] = D

k

[u] +w

k

(u; v) for 8 k = 1; 2; : : : ;M;

16 D

h

[v] = D

h

[u] + 1;

17 �[v] = u;

18 Q = Q [ fvg;

19 end if

20 end for

21 end while

end MR BFS;

3.1 Correctness of the Algorithm

Since the algorithm is randomized and based on a heuristic, it may not �nd all feasible paths.

However, if it �nds a path, this path must satisfy the given constraints. Such a randomized algorithm

which always gives correct solutions is known as Las Vegas Algorithm [14].

Theorem 1: Let G = (N;A) be a directed graph in which each link (i; j) is associated with M

non-negative and additive weights w

k

(i; j), where k = 1; 2; : : : ;M . Suppose that MinHop MC is run

on G to �nd a path p from a given source node s to a destination node t such that

X

(i;j)2p

w

k

(i; j)� C

k

for k = 1; 2; : : : ;M

where C

k

are given constants. If MinHop MC discovers the destination node t (i.e., �[t] 6= NIL)

upon termination, then the constructed path p from the source node s to the destination node t must

satisfy the given constraints. Proof: see Appendix.
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3.2 Complexity Analysis

Let n be the number of nodes andm be the number of links in the graph. The number of link weights,

M , is a constant and is much smaller than n. MinHop MC �rst runs Dijkstra, Reverse-Dijkstra, and

the graph reduction once with each link weight (lines 1{13); the worst-case complexities of both

Dijkstra's algorithms are O(n

2

), and the complexity of the graph reduction is O(m). MinHop MC

runs Dijkstra and Reverse-Dijkstra once more to �nd the minimum hop counts (lines 15{16). Then,

maximum of n times, MinHop MC repeats the graph reduction (lines 18{22) with O(m), Reverse-

Dijkstra for each link weight (lines 23{29) with O(n

2

), MR BFS (line 31) with O(n + m) [6], and

the graph restorations with O(m). Thus, the overall computational complexity of MinHop MC is

O(M � (n

2

+m) + 2 � n

2

+ n � (M � n

2

+m + n + m) +m), i.e., O(n

3

) since m � n

2

and M is a

small constant. The storage complexity of our algorithm is O(n) since 4M +1 labels are maintained

for every node. Fortunately, there are some ways to reduce the computational complexity of the

algorithm when it is executed in practice. First, source nodes may have a policy not to establish a

route that has a number of hops greater than a prede�ned maximum-hop-length limit H

max

[15]. In

this case, the algorithm repeats lines 17{37 H

max

times, i.e., the complexity will be O(H

max

n

2

). In

practice, H

max

< n. Second, the graph reduction drastically decreases the number of links m when

the given constraints are very tight. Thus, Reverse Dijkstra at line 24 in MinHop MC and MR BFS

run on a small size of graph, i.e., the computational complexities of these two procedures are less

than O(n

2

) and O(n +m), respectively. Finally, we can use e�cient implementations of Dijkstra's

algorithms to further reduce the computational complexity [1].

4 Example

In this section, we illustrate how the randomized algorithm �nds a path from a source node s to

a destination node t for the network in Figure 1. Each link is bidirectional and has two additive

weights (w

1

,w

2

). Although we assume that links are symmetric in this example, the algorithm has

been designed to run on asymmetric links. Suppose we want to �nd a path from s = 0 to t = 4 when

C

1

= 13 and C

2

= 12.

The algorithm �rst �nds B

k

[u] and

e

B

k

[u], k = 1; 2; h, for each node u by using Dijkstra and

Reverse-Dijkstra. These labels are also shown in Figure 1. Since B

h

[t] = 4, the algorithm sets H = 4,

reduces the graph, and �nds R

k

[u], k = 1; 2; h, for each node u. After the graph reduction, only

the following links will remain in the graph: (0; 1), (0; 7), (2; 3), (3; 4), (5; 4), and (6; 5). Obviously,

there is no path from source node s = 0 to destination node t = 4 in the reduced graph. Thus, the

algorithm increases H by 1 (i.e., H = 5) and tries again. In that case, the reduced graph and the

�nal R

k

[u], k = 1; 2; h, will be as shown in Figure 2. The algorithm calls the procedure of MR BFS

to search for a feasible path from the source node 0 to the destination node 4. In the reduced graph,

there are three feasible paths p

1

= (0; 7; 8; 9; 3; 4), p

2

= (0; 7; 8; 9; 5; 4), p

3

= (0; 1; 8; 9; 3; 4), and one

infeasible path p

4

= (0; 1; 8; 9; 5; 4) which does not satisfy the constraint C

1

. Figure 2 illustrates how
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Figure 1: An example of executing the proposed algorithm with two additive parameters. The �gure

also shows B and

e

B for each node.

one of the feasible paths is found. Suppose MR BFS discovers nodes 1; 7 from node 0, node 8 from

node 1, and node 9 from node 8. Thus, MR BFS constructs a path p = (0; 1; 8; 9) from the source

node 0 to node 9. At node 9, MR BFS foresees that if it discovers node 5 from node 9, there is

no chance to go to the destination since D

1

[9] + 3 + R

1

[5] = 14 is greater than C

1

= 13; thus, it

eliminates p

4

and discovers node 3 and then node 4 to go to the destination with p

3

. The algorithm

might select one of the other feasible paths, too.

5 Simulation Results

In this section, we study the performance of the proposed randomized algorithm. We start by

de�ning our simulation model and some performance measures. Although the performance has been

measured for various network topologies, due to lack of space, we present only two of them in this

paper.

5.1 Simulation Model and Performance Measures

In our simulation model, a network is given as a directed graph. We measure the performance when

each link is associated with two and three additive link weights. For each experiment, link weights are

chosen randomly from a given distribution. Then, the simulation program generates random connec-

tion requests and tries to �nd a feasible path for each request using our randomized algorithm. If our

algorithm �nds a path for a connection request, we count this request as a routed connection request.

For comparison purposes, we have also implemented an optimum exponential-time algorithm which

searches all possible paths in the reduced and labeled graph to determine whether there is a feasible

path or not. If the optimum algorithm �nds a path for a connection request, we count this request
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Figure 2: Labeled and reduced graph when H = 5.

as a routed connection requests, too. In order to compare the performances of our randomized

algorithm and the optimum algorithm, we use two measure: success ratio and average hop count.

The success ratio shows how often an algorithm �nds a path that satis�es the QoS constraints [3].

It is de�ned as

success ratio =

Total number of routed connection requests

Total number of connection requests

The average hop count shows the average number of hops per routed connection request. It is

de�ned as

average hop count =

Total number of hops in the routed connection requests

Total number of routed connection requests

5.2 Results on Irregular Network Topology

We consider the network topology shown in Figure 3, which is the same network topology modi�ed

from ANSNET [5] by inserting additional links. This topology was also used in [3]. We �rst consider

two link weights: w

1

(i; j) = uniform[0; 50] and w

2

(i; j) = uniform[0; 200]. Source node s and des-

tination node t are selected randomly. For di�erent ranges of C

1

and C

2

, we obtain the successratio

and average hop count based both the optimum algorithm and our randomized algorithm from

twenty runs; each run considers randomly generated 2000 connection requests. As shown in Table 1,

our randomized algorithm performs as good as the optimum one while the proposed algorithm in [3]

approaches the optimum one at the expense of higher overhead, i.e., when x goes to n (the number

of nodes in the graph).

We then associate one more weight w

3

(i; j) = uniform[0; 100] with each link. Accordingly, we

add a new constraint C

3

. For the di�erent ranges of C

3

with the same ranges of C

1

and C

2

in

Table 1, we obtain the success ratio and average hop count of both the optimum algorithm and our

11
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Figure 3: An irregular network topology.

Range for success ratio of average hop count of

C

1

and C

2

optimum/our algorithm optimum/our algorithm

C

1

= uniform[100; 115]

C

2

= uniform[400; 460] 0.7595/0.7595 2.7706/2.7706

C

1

= uniform[50; 65]

C

2

= uniform[200; 260] 0.2594/0.2594 1.7784/1.7784

C

1

= uniform[75; 90]

C

2

= uniform[300; 360] 0.5220/0.5220 2.3506/2.3506

C

1

= uniform[125; 140]

C

2

= uniform[500; 560] 0.9219/0.9219 3.0596/3.0596

C

1

= uniform[150; 165]

C

2

= uniform[600; 660] 0.9868/0.9867 3.1729/3.1729

Table 1: Simulation results with two constraints on an irregular topology.

randomized algorithm. As shown in Table 2, our randomized algorithm also performs as good as the

optimum algorithm when the path selection subject to three additive constraints.

5.3 Results on Regular Network Topology

We also consider a regular 10x10 mesh topology. Again we �rst consider two link weights: w

1

(i; j) =

uniform[0; 50] and w

2

(i; j) = uniform[0; 200]. s and t are selected randomly. For di�erent range

of C

1

and C

2

, we obtain the success ratio and average hop count based on both the optimum

algorithm and our randomized algorithm from ten runs; each run considers randomly generated 2000

connection requests. As shown in Table 3, our randomized algorithm performs almost as good as

the optimum one in this network, too.

For this experiment, we also associate an additional weight w

3

(i; j) = uniform[0; 100] with each

link and obtain the success ratio and average hop count based on both the optimum algorithm

12



success ratio of average hop count of

Range for C

3

optimum/our algorithm optimum/our algorithm

C

3

= uniform[75; 150] 0.3532/0.3532 2.0814/2.0814

C

3

= uniform[100; 200] 0.2102/0.2102 1.5736/1.5736

C

3

= uniform[150; 250] 0.4510/0.4510 2.1476/2.1476

C

3

= uniform[200; 300] 0.8438/0.8437 2.8767/2.8767

C

3

= uniform[250; 350] 0.9604/0.9604 3.1017/3.1018

Table 2: Simulation results with three constraints on an irregular topology.

Range for success ratio of average hop count of

C

1

and C

2

optimum/our algorithm optimum/our algorithm

C

1

= uniform[100; 115]

C

2

= uniform[400; 460] 0.3085/0.3085 3.1465/3.1465

C

1

= uniform[150; 200]

C

2

= uniform[500; 600] 0.5580/0.5580 4.4204/4.4204

C

1

= uniform[200; 300]

C

2

= uniform[600; 700] 0.7596/0.7595 5.4093/5.4093

C

1

= uniform[300; 380]

C

2

= uniform[650; 750] 0.8597/0.8597 5.9294/5.9297

C

1

= uniform[350; 400]

C

2

= uniform[700; 800] 0.9060/0.9060 6.1568/6.1571

Table 3: Simulation results with two constraints on a regular topology.

and our randomized algorithm by using di�erent ranges of C

3

with the same ranges of C

1

and C

2

in Table 3. As shown in Table 4, our randomized algorithm shows the same performance as the

optimum one when the path selection subject to three additive constraints in this regular topology.

6 Conclusion and Future Work

QoS-based routing subject to multiple additive constraints is an NP-complete problem. We formal-

ized it as MinHop MC (De�nition 1) and proposed a randomized algorithm with a polynomial-time

complexity. The algorithm �rst reduces and labels the original graph. Then, the algorithm uses the

procedure of MR BFS to construct a feasible path by randomly discovering nodes from which there is

a chance to go to the �nal destination. We proved that any path found by the randomized algorithm

satis�es the given constraints. The computational complexity of our algorithm is O(H

max

n

2

) where

H

max

is the maximum-hop-length limit and n is the number of nodes. The storage complexity is

O(n). In terms of both complexities, our algorithm is better than existing algorithms. Its perfor-

mance is studied by using simulation, which showed that the randomized algorithm and the heuristic

behind it work well and �nd 99.99% of all feasible paths with the minimum hop count.
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success ratio of average hop count of

Range for C

3

optimum/our algorithm optimum/our algorithm

C

3

= uniform[100::200] 0.1751/0.1751 2.4353/2.4353

C

3

= uniform[200::300] 0.4075/0.4075 3.6885/3.6885

C

3

= uniform[300::400] 0.6319/0.6319 4.7615/4.7615

C

3

= uniform[400::500] 0.7772/0.7772 5.4713/5.4713

C

3

= uniform[500::600] 0.8701/0.8701 5.9394/5.9394

Table 4: Simulation results with three constraints on a regular topology.

The randomized algorithm performs well when the true state of the network is given. However,

the true state of the network may not be available to every source node at all times because of network

dynamics, aggregation of state information, and latencies in the dissemination of state information.

As a future work, we will investigate how our algorithm performs in the presence of inaccurate state

information. Because of randomization, di�erent paths can be chosen for the same pair of source and

destination at di�erent times. We also plan to investigate how this random path selection strategy

a�ects load balancing and how to compensate for the inaccuracy in the network state information.

Appendix

A Proof of Theorem 1

Assume that the algorithm �nds a path p = (v

0

; v

1

; v

2

; : : : ; v

l

) where v

0

= s and v

l

= t. We show

that the path p satis�es the given constraints. Let v

i�1

and v

i

be two consecutive nodes on the path

p. The procedure of MR BFS discovers v

i

from v

i�1

if (line 13 in MR BFS)

D

k

[v

i�1

] + w

k

(v

i�1

; v

i

) + R

k

[v

i

] � C

k

(1)

is true for all k = 1; 2; : : : ;M . After the discovery of v

i

, we have (line 15 in MR BFS)

D

k

[v

i

] = D

k

[v

i�1

] + w

k

(v

i�1

; v

i

) (2)

from which we conclude

w

k

(v

i�1

; v

i

) = D

k

[v

i

]�D

k

[v

i�1

] (3)

From (1) and (2), we have

D

k

[v

i

] +R

k

[v

i

] � C

k

D

k

[v

i

] � C

k

�R

k

[v

i

] (4)
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Summing the weights (w

k

for each k = 1; 2; : : : ;M) along the path p yields

w

k

(p)

4

=

l

X

i=1

w

k

(v

i�1

; v

i

) (5)

=

l

X

i=1

D

k

[v

i

]�D

k

[v

i�1

] (6)

= D

k

[v

l

]�D

k

[v

0

] (7)

= D

k

[v

l

] (8)

� C

k

�R

k

[v

l

] (9)

= C

k

(10)

In this derivation, (7) comes from the telescoping sum on (6). Then, (8) follows from D

k

[v

0

] =

D

k

[s] = 0. Finally, (10) follows from R

k

[v

l

] = R

k

[t] = 0. Thus, w

k

(p) � C

k

for each k = 1; 2; : : : ;M .
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