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Abstract—In this paper, we explore the viability of multifractal anal-  in a stochastic model that can be used for synthetic trace gener-
yeis mOd\?\I/I\T\?wtqe ftfr_aff'c gelnera“g” [ ata VVtWW server. t'” ation and for designing and testing cache replacement policies.
principle, a raffic model can be used for generating representa- ) : L )
tive WWW traces and in designing prefetching and cache replacement A WWW traffic mOdel can ?.lSO be used in designprgfetch
policies. Multifractal processes constitute a superset of monofractal (self- ing policies and in evaluating the delay and loss performance
similar) processes. They are characterized by a time-dependent scaling gver a network.
law, which provides flexibility in describing irregularities that are local-
ized in time. Riedi et al. [11] presented a multifractal process that can be ) . ) o
fitted to empirical time series with an arbitrary autocorrelation function In this paper, we apply the multifractal analysis due to Riedi
(AC?]_and vgiﬂ; tan,aprftroximatellly |0tgnortrrr]laltmarginalll diztfibutti,Ofl‘-l W?' [11] in modeling WWW traffic. The presented model cap-
use this model tosimultaneouslycapture the temporal and spatial locali- : ‘i . :
ties of WWW traffic. Furthermore, the popularity profile is captured by tures the essential CharaCter_ls_tlcs of WWW traffic, InC!Udmg
construction using the LRU (least recently used) stack and the popularity  the temporal and spatial localities as well as the popularity pro-
profiles of each file in the real trace. We classify files into several classes file. For our purposes, we view the traffic as a stream of file ob-
according to their popularlty profll_e and_model the stack distance of each jects (or documents) that is generated by a WWW (or proxy)
class separately. Trace-driven simulations are used to study the perfor- . .
mance of our model and contrast it with a previously proposed model. SEIVEr In response tO. clients reqU?StS- Note that auser request
(a click on a URL pointer) could trigger the fetching of mul-
tiple objects that contain images, video clips, etc. Thus, one
should expect the presence of strong spatial localities (cross-

_ _ correlations between documents) within WWW traffic.

The accelerating growth of World Wide Web (WWW) traf-

fic over the Internet will soon stress to limit the switching and ¢ modeling of WWW traffic has been previously ad-

transmission capacities of the current networking infrastrugressed in several papers [1], [3], [6]. All of these works

ture, leading to excessive response times for client requestsye suggested the use of the stack distance string, which is
While the transmission bottleneck can be addressed through ¢qyivalent form of representation of the reference string
the_ deployment aneyv, uItrg-speed flber—bas_ed technology, tk'&ream of file objects). In [1], the authors use client-based
switching capacity will continue to be a major cause for netgces 1o demonstrate the presence of long-range dependence

work congestion. One approach to reduce the traffic volume rp) in www traffic. They provide a fractional ARIMA (F-
is to deploy WWW caching within the network and at its pear|mA) LRD model for the stack-distance string of a client

ripherals (WWW servers and client browsers). To be of anfaference stream. Their model exhibits self-similarity, which

pracitlgal benefit, the cache should only store the *mostimpojs 5 characteristic of monofractal processes [9]. A disadvan-
tant” files. Determining which files are important and which,ge of this approach is that is requires transforming the Gaus-
ones should be flushed out in case of cache saturation is 1§y marginal distribution of the F-ARIMA model into a more
primary function of a cache replacement policy. ‘appropriate one (e.g., lognormal). As explained in the next sec-
Several caching policies have been used for WWW traffigon such a transformation distorts the general structure of the
[5], including theleast recently use@ RU) and theleast fre-  5ytocorrelation function of the modeled data (the spatial local-
quently usedLFU) policies. LRU evicts the least recently jty) aithough it may still retain the value of thié parameter.
requested file. To some degree, this policy accounts for thg [6] the authors relied on a measure called sbaled stack
temporal localityof WWW traffic. In contrast, LFUpartially  gistanceto capture the impact of short-term correlation. Their
accounts for the popularity profile of the traffic by flushing ouinggel incorporates the popularity profile by construction, but

the least frequently used files (i.e., the least popular files). jtgoes not capture the spatial locality.
is clear from this context that the performance of a cache re-

placement policy depends on its ability to exploit the intrinsic
characteristics of WWW traffic, including the temporal Iocal-d

v and th larity of th ted d s H escribes the WWW traffic properties. In Section Il we give a
Ity and the popuiarily of the requested documents. HOWEVET, [t o\ eryiew of wavelet analysis and the multifractal wavelet
order to design such an ideal policy, one first needs to undey-

i : ) $hodel [11], which we use to approximate both the marginal
stand the characteristics of WWW maffic and incorporate ther(H'istribution and the correlation structure of the empirical data.

This work was supported by the National Science Foundation under grad@ Section IV we despnbe Pur mOd?I and in Section V we test
ANI 9733143 and CCR 9979310 and ANI 0095626. its performance by simulation. Section VI concludes the paper.

I. INTRODUCTION

The rest of the paper is organized as follows. Section II



Il. WWW TRAFFIC PROPERTIES localities of a WWW server traffic. More details about mul-
In [7], [13], [1], [3], the authors identified some of the im_tlfractals can be found in [12], [8]. Riedi et al.'s model relies

portant properties of WWW traffic that should be incorporategeav'ly on the discrete wavelet transform. The idea behind the

in a WWW model. These properties include temporal Iocatlit)>8’a\/6|et trans_fornt1 '; to exptr;:sg a S|g_nal (tr'gqbz.ﬁm%M)
spatial locality, and popularity. y an approximated (smoothed) version a il. The ap-

. I groximation process is repeated at various levels (scales) by
Temporal locality measures the closeness in time betweegl( ressing the aporoximated sianal at a given lévehy X
requests to the same file. In [13], [1], [3], it was sug- P 9 bproxi g g. FYERY A,

a coarser approximation at levet 1, sayX;, and a detail

gested that this property can be captured (at least, in pa i+1. At each scale, the approximation is performed through

through the marginal distribution of the stack distance string. : . . - .
The stack distance string is a transformation of the referen%leScallng functiong(t), while the detail is obtained through a

string using the LRU stack. It is obtained as follows. Leﬁivgle;;l&](c;ﬁz/}(ﬁzé:ﬂsr? formally, & wavelet expansion of
REF; = {ri,rs,..,r+} be the reference string up to time 9 9 y:

t, wherer; is the name of the object (file) requested at time

j,» 7 = 0,1,2,.... Note thatREF; may contain multiple >0
instances of the same file. Suppose that therenanaique X(t) =Y Uskdsp(® + D> Wikthju(t) (1)
objects at the server. The LRU stack at timis defined by k i=J k
the ordered sequendeRU; = (Obji, Obja, Objs, ...,Objn),  \where
where Obj; is the most recently requested objeCt)j, is -
the second most recently requested object, and so on. If L / X (t)thj,k(t)dt (2)
a request is subsequently made for an object, Gay;, —o0
the LRU stack is updated by movin@bj; from its loca- et o0
tion in LRU; to the top of the stack, i.e.LRU;11 = Ui = / X (#) ;. (t)dt ®3)
{Ob.]zaobjl,Ob]Z,7Ob.7z71,0b]2+1,,Ob]n} The -
stack distance is defined as the distance (in number of objec&)d; x ande; x, j, k = 0,1,2,..., areshiftedandtranslated
between the top of the stack and the original location of theersions of the wavelet and scaling functiap§) and ¢(t),
object that has just been moved to the top of the stack. respectively, and are given here by:

Spatial locality measures the correlation between requests to G /2 o
different objects (e.g., if object is requested, then there is a bik(t) = 2 (27— k) (4)
good chance that objeét will be requested in the near future). b k(1) el 2—1'/2(,5(2—2'75 — k). (5)

Modeling this property can help in designing cache replace-
ment policies that employ prefetching, which improves the hi? (1), the index/ indicates the coarsest scale (the lowest in
ratio of the cache. Previous work [1] has shown that spatifletail). The coefficient§V’; . andU;  are called the wavelet
locality can be captured (at least, in part) through the aut@nd scale coefficients at scalend time2’k. Together, they
correlation structure of the stack distance string. In [1] it wagefine the discrete wavelet transform of the sighdt) (as-
argued that the correlation structure of the stack distance strifl§ming thai(¢) andy)(t) are specified).

exhibits LRD behavior. To simultaneously model the marginal Several wavelet and scale functions have been used in the
distribution (temporal locality) and the correlation structurditerature. In our work, we use the wavelet and scale func-
(spatial locality) of the stack-distance string, the authors iHons of the Haar wavelet transform. As shown in [11], the
[1] relied on the work in [10] that proves the invariance of thé1aar wavelet transform (specified by the coefficidifits, and
Hurst parameter to transformations of the marginal distributioH;.« for all j andk) can be obtained recursively as follows (we

of an LRD process. However, the proof is valid asymptoticalljzdopt the same convention of [11]in which the higher the value
(i.e., does not apply to the finite-lag autocorrelations) and onRf J. the better the approximation of the original signal):

for Gaussian processes (e.g., fractional ARIMA).

Popularity refers to the overall likelihood of requesting a Ujx = Uis2k + U1k (6)
particular object. Previous work [4] has shown that the pop- V2
ularity of WWW objects follows a Zipf-like law, which states Wi = Ujt12k — Ujt1 2641 @
that the relative probability of requesting tite most popular ok V2

object is proportional td /i, where0 < « < 1. The expo- g initialize the recursion, the values ofy, k=0,1,...,
nenta varies from trace to another. df = 1, then we say that 5t the highest value of are taken as the empirical trace to be
the popularity profile follows Zipf’s law in the strict sense [4]. modeled. Figure 1 depicts the generation process of the scale
coefficients (from top to bottom).
In order to generate synthetic traces with a given autocorre-
We now describe Riedi et al's model [11], which is sub{ation structure, the Haar transform is reversed by rewriting (6)
sequently employed in characterizing the temporal and spatahd (7) as:

IIl. M ULTIFRACTAL MODEL OFRIEDI ET AL.



Ujr2,4k Ujr2,ak+1 Ujs2,4k+2 Ujs2,4Kk+4 (other distributions can also be used). Thus, the random vari-

able A; is completely specified b [A7].
v It was shown in [11] that the above model generates positive-

valued autocorrelated data with an approximately lognormal

Virt2c Ujr1,2k+1 marginal distribution. In fact, the model can be tuned to pro-
\/ duce any desired ACF. Since the stack-distance string is known
5 to have a longnormal-like marginal distribution [7], [13], [1],
ik [3], Riedi’s model can be used to capture the temporal locality

(marginal distribution of the stack-distance string) and spatial

Fig. 1. Scaling coefficients from fine to coarse scales. : . . ) )
9 g locality (ACF of the stack-distance string) in WWW traffic.

IV. M ODELING APPROACH

Ujti01 = Ui & Wi (8) In this section, we describe our approach for modeling the
V2 stream of file objects generated by a WWW server. Our mod-
Ujr — Wi eling study was conducted using the WWa&'rvertrace that

Uit1okt1 = V2 ©)  was captured at the Computer Science Department, University
of Calgary [2]. We use a portion of this trace that consists of
TP requests made over a period of two months and a half
(from October 24, 1994 through December 10, 1994). In our
analysis, we only include the requests with ‘successful’ code,
since they are the ones that result in actual data transfer from

Now to generate nonnegative data, which represent sta
distances, we need to ha\i&’; .| < U; ;. To satisfy this con-
straint, the wavelet coefficients can be defined as:

Wik = 4j kUi (19 the server. see [2] for more details of the collected trace.
whereA; ;. is a random variable (rv) defined ¢n1,1]. Us- Let U be the number of unique files (or objects) at the
ing (8), (9), and (10), we arrive at the following recursion forserver, and letfr; be the fraction of times that thah file,
synthesizing the scale coefficients: i =1,2,...,U, appears in the reference string (the popular-

ity profile of file 7). The modeling approach proceeds in three

Uji1ok = (LAM)UM (11) steps. First, we extract the stack-distance string from the URL
V2 reference string. The multifractal model described in the previ-

1—Ajg ous section is then applied to the stack-distance string to cap-
Ujt1,2k41 = (TWUM (12)  ture the temporal and spatial localities of the traffic. Finally,

) i . we incorporate the popularity profile of the traffic during the
The A; , must also satisfy the following additional con- ,rqcess of generating synthetic reference strings. These main

straints: . N steps are described next.

1. Thervsd; s, k=0,1,...,2/=" arei.i.d.

2. Let A; be a generic rv that has the same distribution a&. Extracting the Stack Distance String
Ajr,k=0,1,...,2771 Then, for eachy, 4; is symmet- i i ,
ric with zero mean. In [3] stack distances are computed by first assuming an

3. A, isindependentafi; for > j and is also independent arbitrary initial ordering of the stack. Whenever a file is re-
Ole]() . guested, it gets pushed to the top of the stack, and the distance

The wavelet energy at a given scale is defined as the vaffom the top of the stack and the last location of this file (the

ance of the wavelet coefficients at that scale. It has been showiCK depth) is recorded. The problem with this approach is
that the correlation structure of the signal can be approximatefjyt it depends on the initial ordering of the stack, which we

captured by controlling the wavelet coefficient energy. The r‘,j{?_ave found to affect the marginal distril_aution and the correla-
tio of the energy at scalg— 1 to the one at scalg (j is finer tion structure of the stack distance string. Instead, we use a

thanj — 1) was found to be [11]: different approach to extract the stack distances, which does
not require specifying an initial ordering of files in the stack.

E[A‘j-,l] We start with an empty stack and scan the empirical ref-
ni = QE[AZ.](l — E[A2_)) (13)  erence stringn the reverse direction, starting with last refer-
/ -t ence During this scanning process, if a file is referenced for
Equation (13) can be used to solve EM?]!J' - 1,2,..., the first time (in the reverse direction), it is pushed to the top

) o N E[W2,] of the stackbutits distance is not recorded. Otherwise, if the
given the initial valueE[A5] = =7, where the values for file has already been referenced before (hence, it is already in
Wo,0 andUp,o are obtained from the analysis part describethe stack), then it gets pushed from its previous location in the
earlier (Equations (6) and (7)). The marginal distribution fostack to the top of the stack, and its depth is recorded as a
A; is taken as beta with equal shape and scale parametstack distance. Finally, the resulting trace of stack distances is




reversed to get the correct stack distance string. The folloViiles of the various documents (i.e., the more popular a docu-
ing example illustrates the idea. Consider the reference stringent is, the more likely it will be placed closer to the top of the
[a d cbecdda b], where each letter indicates the name otack). Suppose that we want to generatévalong synthetic

a file. If we process this string starting from the end, the firdrace that has a certain popularity profile. Frdvand the
reference is to filé. Since this is the first time filé is being popularity profile, the number of requests to each file is known
referenced, we push it to the top of the stack without recordingeforehand. Then, the stack distance string is generated as was
any distance. The same procedure is performed for the nedéscribed in the previous section. We associate a counter with
two references (for files andd, respectively). The fourth ref- each unique object. Initially, the counter has a valu®&' dfimes
erence (fromthe end) is for file Since this file has been refer- the popularity index of the object. Every time the object is re-
enced before, it gets pushed to the top of the stanchits stack quested, the corresponding counter is decremented by one. If
depth is recorded (in this case, the stack depth forlfileone). the counter reaches zero, the file is flushed out of the stack.

T_he procedure continues until QII referencc_as are processes (Seéespite its simplicity, the above approach did not yield good
Figure 2). The end result of this process is the stack distang&suits in in terms of approximating the hit ratio at a cache,
stream[4 3 2 4 1]. The corresponding popularity profile is ggpecially if we have files that are very popular compared to

[(a,3), (b,2), (c,2), (d,2)]. others. To address this problem, we propose a different ap-
proach in which objects are first classified into several classes

s Le] [ [¢] [o] (2] [+ ] [-] according to their popularity profile. We then model the stack
distance string for each class separately. Instead of selecting
the file that is at the top of the stack to be the next requested

I =] object, we follow the approach in [3], where a small window is
=] E E E E E used near the top of the stack (e.qg., first three objects from the

o] o] o] Do o o] ] o] top). The next object in the URL string is selected randomly

sack - miraireie from that window, according to a probability distribution that
sing EIREIRES mE is weighted by the outstanding number of requests for each file.

The following example illustrates the trace generation pro-
Fig. 2. Example showing the extracting of the stack distanceess. Suppose that we have four unique files, a, b, ¢, and d,
string. with popularity profile [(a,2),(b,2),(c,2),(d,3)]. Using the mul-

tifractal model, suppose that we obtained the the stack distance
) ) ) string [4 3 2 4 1]. Assume further that the initial order of the
B. Modeling the Stack Distance String files in the LRU stack is [ab c d] (i.e., file 'a’ is at the top of the
Once the stack distance string is obtained, we fit it using tr&$ack) and that the window size is one. Since the window size
multifractal model in Section Il. Since the marginal distribu-s one, file 'a’ is the first object in the reference string. Because
tion of the empirical string is already captured, the fitting ighe next stack distance is file 'a’ is pushed to the bottom of
focused on the ACF. Recall that for each scalghe rv A;, the stack. Now filé is at the top of the stack, so it gets added
which is used to generate the scale coefficients, has a symmigtthe reference string. Since the next distance is 3 pfike
ric beta distribution with parameter. To obtain the value of pushed to the third position in the stack, and so on. When we
this parameter, we start from (13). At each scale, we need thgach a point where the file at the top of the stack is referenced
variance of the wavelet coefficients, which can be found empifor the last time (according to its popularity profile), this file
ically. The lowest scale should be chosen so that it has enouigiiropped from the stack. The generation process is shown in
wavelet coefficients to compute the variance (the zeroth scdfégure IV-C.
has only one data point, which is not enough to compute the
variance at that scale). Using the mean and variance of the
scaling coefficients at the lowest scale, we can generate the

norma“y distributed Scaling Coef‘fiCientS, from which the the We evaluate the goodness Of the mu'tifracta' mode| and con-
scaling coefficients at higher scales are computed using (1gst it with a self-similar (monofractal) model that uses trans-
and (12). formation of the marginal distribution. Our performance met-
. . . _rics are the file and byte hit ratios for the LRU and LFU cash

c. Gen_eratmg Syntheiic Traces and Capiuring the POIOUIarItP’eplacement policies. For each of these policies, the cache is

Profile fed by a stream of objects that is generated according to either
Generating a WWW reference string follows the reversenodel. The hit ratio under the real trace is used as a refer-

process of extracting the stack distance string from the reahce. Figures 4 and 5 depicts the results of our simulations for
data. The synthesis process starts by assuming an initial ordére LRU and LFU policies, respectively. As can be seen from
ing of the files in the stack. This is done by sampling from a@hese results, the multifractal-based WWW traffic model gives
probability distribution that is weighted by the popularity pro-much better performance than the monofractal-based model.

V. EXPERIMENTAL RESULTS
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Fig. 3. Example showing the generation of synthetic traffic (GR:

Generated Reference, NOR: # of Outstanding Requests,

SD: Stack Distance).
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Fig. 4. File and byte miss ratios versus cache size for the LRU

policy.

VI. CONCLUSIONS

In this work, we explored the viability of multifractal pro-
cesses in modeling WWW traffic. We adapted Riedi et al.’f1]

9]

[10]

model [11] to capture the temporal and spatial localities of

WWW traffic. The main advantage of this model is that it si{12]

multaneously captures the marginal distribution and ACF of

the traffic. We provided a novel approach for extracting th&!

stack distance string from the original URL reference string.
Our approach does not require specifying an initial ordering for
the objects in the stack. To capture the popularity profile, we

classified objects into a number of classes and modeled each

class independently. We found that this approach yields very
good results in terms of the file and byte hit ratios at a cache,
for both the LRU and LFU cache replacement policies.

(1]

[2]
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