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Abstract—In this paper, we explore the viability of multifractal anal-
ysis in modeling the traffic generation process at a WWW server. In
principle, a WWW traffic model can be used for generating representa-
tive WWW traces and in designing prefetching and cache replacement
policies. Multifractal processes constitute a superset of monofractal (self-
similar) processes. They are characterized by a time-dependent scaling
law, which provides flexibility in describing irregularities that are local-
ized in time. Riedi et al. [11] presented a multifractal process that can be
fitted to empirical time series with an arbitrary autocorrelation function
(ACF) and with an approximately lognormal marginal distribution. We
use this model tosimultaneouslycapture the temporal and spatial locali-
ties of WWW traffic. Furthermore, the popularity profile is captured by
construction using the LRU (least recently used) stack and the popularity
profiles of each file in the real trace. We classify files into several classes
according to their popularity profile and model the stack distance of each
class separately. Trace-driven simulations are used to study the perfor-
mance of our model and contrast it with a previously proposed model.

I. I NTRODUCTION

The accelerating growth of World Wide Web (WWW) traf-
fic over the Internet will soon stress to limit the switching and
transmission capacities of the current networking infrastruc-
ture, leading to excessive response times for client requests.
While the transmission bottleneck can be addressed through
the deployment of new, ultra-speed fiber-based technology, the
switching capacity will continue to be a major cause for net-
work congestion. One approach to reduce the traffic volume
is to deploy WWW caching within the network and at its pe-
ripherals (WWW servers and client browsers). To be of any
practical benefit, the cache should only store the “most impor-
tant” files. Determining which files are important and which
ones should be flushed out in case of cache saturation is the
primary function of a cache replacement policy.

Several caching policies have been used for WWW traffic
[5], including theleast recently used(LRU) and theleast fre-
quently used(LFU) policies. LRU evicts the least recently
requested file. To some degree, this policy accounts for the
temporal localityof WWW traffic. In contrast, LFUpartially
accounts for the popularity profile of the traffic by flushing out
the least frequently used files (i.e., the least popular files). It
is clear from this context that the performance of a cache re-
placement policy depends on its ability to exploit the intrinsic
characteristics of WWW traffic, including the temporal local-
ity and the popularity of the requested documents. However, in
order to design such an ideal policy, one first needs to under-
stand the characteristics of WWW traffic and incorporate them
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in a stochastic model that can be used for synthetic trace gener-
ation and for designing and testing cache replacement policies.
A WWW traffic model can also be used in designingprefetch-
ing policies and in evaluating the delay and loss performance
over a network.

In this paper, we apply the multifractal analysis due to Riedi
[11] in modeling WWW traffic. The presented model cap-
tures the essential characteristics of WWW traffic, including
the temporal and spatial localities as well as the popularity pro-
file. For our purposes, we view the traffic as a stream of file ob-
jects (or documents) that is generated by a WWW (or proxy)
server in response to clients requests. Note that a user request
(a click on a URL pointer) could trigger the fetching of mul-
tiple objects that contain images, video clips, etc. Thus, one
should expect the presence of strong spatial localities (cross-
correlations between documents) within WWW traffic.

The modeling of WWW traffic has been previously ad-
dressed in several papers [1], [3], [6]. All of these works
have suggested the use of the stack distance string, which is
an equivalent form of representation of the reference string
(stream of file objects). In [1], the authors use client-based
traces to demonstrate the presence of long-range dependence
(LRD) in WWW traffic. They provide a fractional ARIMA (F-
ARIMA) LRD model for the stack-distance string of a client
reference stream. Their model exhibits self-similarity, which
is a characteristic of monofractal processes [9]. A disadvan-
tage of this approach is that is requires transforming the Gaus-
sian marginal distribution of the F-ARIMA model into a more
appropriate one (e.g., lognormal). As explained in the next sec-
tion, such a transformation distorts the general structure of the
autocorrelation function of the modeled data (the spatial local-
ity), although it may still retain the value of theH parameter.
In [6] the authors relied on a measure called thescaled stack
distanceto capture the impact of short-term correlation. Their
model incorporates the popularity profile by construction, but
it does not capture the spatial locality.

The rest of the paper is organized as follows. Section II
describes the WWW traffic properties. In Section III we give a
brief overview of wavelet analysis and the multifractal wavelet
model [11], which we use to approximate both the marginal
distribution and the correlation structure of the empirical data.
In Section IV we describe our model and in Section V we test
its performance by simulation. Section VI concludes the paper.



II. WWW T RAFFIC PROPERTIES

In [7], [13], [1], [3], the authors identified some of the im-
portant properties of WWW traffic that should be incorporated
in a WWW model. These properties include temporal locality,
spatial locality, and popularity.

Temporal locality measures the closeness in time between
requests to the same file. In [13], [1], [3], it was sug-
gested that this property can be captured (at least, in part)
through the marginal distribution of the stack distance string.
The stack distance string is a transformation of the reference
string using the LRU stack. It is obtained as follows. Let
REFt = fr1; r2; :::; rtg be the reference string up to time
t, whererj is the name of the object (file) requested at time
j, j = 0; 1; 2; : : :. Note thatREFt may contain multiple
instances of the same file. Suppose that there aren unique
objects at the server. The LRU stack at timet is defined by
the ordered sequenceLRUt = (Obj1; Obj2; Obj3; :::; Objn),
whereObj1 is the most recently requested object,Obj2 is
the second most recently requested object, and so on. If
a request is subsequently made for an object, sayObji,
the LRU stack is updated by movingObji from its loca-
tion in LRUt to the top of the stack, i.e.,LRUt+1 =
fObji; Obj1; Obj2; : : : ; Obji�1; Obji+1; : : : ; Objng. The
stack distance is defined as the distance (in number of objects)
between the top of the stack and the original location of the
object that has just been moved to the top of the stack.

Spatial locality measures the correlation between requests to
different objects (e.g., if objectA is requested, then there is a
good chance that objectB will be requested in the near future).
Modeling this property can help in designing cache replace-
ment policies that employ prefetching, which improves the hit
ratio of the cache. Previous work [1] has shown that spatial
locality can be captured (at least, in part) through the auto-
correlation structure of the stack distance string. In [1] it was
argued that the correlation structure of the stack distance string
exhibits LRD behavior. To simultaneously model the marginal
distribution (temporal locality) and the correlation structure
(spatial locality) of the stack-distance string, the authors in
[1] relied on the work in [10] that proves the invariance of the
Hurst parameter to transformations of the marginal distribution
of an LRD process. However, the proof is valid asymptotically
(i.e., does not apply to the finite-lag autocorrelations) and only
for Gaussian processes (e.g., fractional ARIMA).

Popularity refers to the overall likelihood of requesting a
particular object. Previous work [4] has shown that the pop-
ularity of WWW objects follows a Zipf-like law, which states
that the relative probability of requesting theith most popular
object is proportional to1=i�, where0 < � < 1. The expo-
nent� varies from trace to another. If� = 1, then we say that
the popularity profile follows Zipf’s law in the strict sense [4].

III. M ULTIFRACTAL MODEL OF RIEDI ET AL .

We now describe Riedi et al.’s model [11], which is sub-
sequently employed in characterizing the temporal and spatial

localities of a WWW server traffic. More details about mul-
tifractals can be found in [12], [8]. Riedi et al.’s model relies
heavily on the discrete wavelet transform. The idea behind the
wavelet transform is to express a signal (time function)X(t)
by an approximated (smoothed) version and adetail. The ap-
proximation process is repeated at various levels (scales) by
expressing the approximated signal at a given levelj, sayXj ,
by a coarser approximation at levelj+1, sayXj+1, and a detail
Dj+1. At each scale, the approximation is performed through
a scaling function�(t), while the detail is obtained through a
wavelet function (t). More formally, a wavelet expansion of
the signalX(t) is given by:

X(t) =
X
k

UJ;k�J;k(t) +

1X
j=J

X
k

Wj;k j;k(t) (1)
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Z
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and j;k and�j;k, j; k = 0; 1; 2; : : : ; areshiftedandtranslated
versions of the wavelet and scaling functions (t) and�(t),
respectively, and are given here by:

 j;k(t)
def
= 2�j=2 (2�jt� k) (4)

�j;k(t)
def
= 2�j=2�(2�jt� k): (5)

In (1), the indexJ indicates the coarsest scale (the lowest in
detail). The coefficientsWj;k andUj;k are called the wavelet
and scale coefficients at scalej and time2jk. Together, they
define the discrete wavelet transform of the signalX(t) (as-
suming that�(t) and (t) are specified).

Several wavelet and scale functions have been used in the
literature. In our work, we use the wavelet and scale func-
tions of the Haar wavelet transform. As shown in [11], the
Haar wavelet transform (specified by the coefficientsWj;k and
Uj;k for all j andk) can be obtained recursively as follows (we
adopt the same convention of [11] in which the higher the value
of j, the better the approximation of the original signal):

Uj;k =
Uj+1;2k + Uj+1;2k+1p

2
(6)

Wj;k =
Uj+1;2k � Uj+1;2k+1p

2
(7)

To initialize the recursion, the values ofUj;k; k = 0; 1; : : : ;
at the highest value ofj are taken as the empirical trace to be
modeled. Figure 1 depicts the generation process of the scale
coefficients (from top to bottom).

In order to generate synthetic traces with a given autocorre-
lation structure, the Haar transform is reversed by rewriting (6)
and (7) as:
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Fig. 1. Scaling coefficients from fine to coarse scales.

Uj+1;2k =
Uj;k +Wj;kp

2
(8)

Uj+1;2k+1 =
Uj;k �Wj;kp

2
(9)

Now to generate nonnegative data, which represent stack
distances, we need to havejWj;kj � Uj;k. To satisfy this con-
straint, the wavelet coefficients can be defined as:

Wj;k = Aj;kUj;k (10)

whereAj;k is a random variable (rv) defined on[�1; 1]. Us-
ing (8), (9), and (10), we arrive at the following recursion for
synthesizing the scale coefficients:

Uj+1;2k = (
1 +Aj;kp

2
)Uj;k (11)

Uj+1;2k+1 = (
1�Aj;kp

2
)Uj;k (12)

The Aj;k must also satisfy the following additional con-
straints:

1. The rvsAj;k; k = 0; 1; : : : ; 2j�1 arei.i.d.
2. LetAj be a generic rv that has the same distribution as
Aj;k; k = 0; 1; ::::; 2j�1. Then, for eachj, Aj is symmet-
ric with zero mean.

3. Aj is independent ofAl for l > j and is also independent
of U0;0.

The wavelet energy at a given scale is defined as the vari-
ance of the wavelet coefficients at that scale. It has been shown
that the correlation structure of the signal can be approximately
captured by controlling the wavelet coefficient energy. The ra-
tio of the energy at scalej � 1 to the one at scalej (j is finer
thanj � 1) was found to be [11]:

�j = 2
E[A2

j�1]

E[A2
j ](1�E[A2

j�1])
(13)

Equation (13) can be used to solve forE[A2
j ], j = 1; 2; : : :,

given the initial valueE[A2
0] =

E[W 2

0;0
]

E[U2

0;0
]
, where the values for

W0;0 andU0;0 are obtained from the analysis part described
earlier (Equations (6) and (7)). The marginal distribution for
Aj is taken as beta with equal shape and scale parameters

(other distributions can also be used). Thus, the random vari-
ableAj is completely specified byE[A2

j ].
It was shown in [11] that the above model generates positive-

valued autocorrelated data with an approximately lognormal
marginal distribution. In fact, the model can be tuned to pro-
duce any desired ACF. Since the stack-distance string is known
to have a longnormal-like marginal distribution [7], [13], [1],
[3], Riedi’s model can be used to capture the temporal locality
(marginal distribution of the stack-distance string) and spatial
locality (ACF of the stack-distance string) in WWW traffic.

IV. M ODELING APPROACH

In this section, we describe our approach for modeling the
stream of file objects generated by a WWW server. Our mod-
eling study was conducted using the WWWservertrace that
was captured at the Computer Science Department, University
of Calgary [2]. We use a portion of this trace that consists of
HTTP requests made over a period of two months and a half
(from October 24, 1994 through December 10, 1994). In our
analysis, we only include the requests with ‘successful’ code,
since they are the ones that result in actual data transfer from
the server. see [2] for more details of the collected trace.

Let U be the number of unique files (or objects) at the
server, and letfri be the fraction of times that theith file,
i = 1; 2; : : : ; U , appears in the reference string (the popular-
ity profile of file i). The modeling approach proceeds in three
steps. First, we extract the stack-distance string from the URL
reference string. The multifractal model described in the previ-
ous section is then applied to the stack-distance string to cap-
ture the temporal and spatial localities of the traffic. Finally,
we incorporate the popularity profile of the traffic during the
process of generating synthetic reference strings. These main
steps are described next.

A. Extracting the Stack Distance String

In [3] stack distances are computed by first assuming an
arbitrary initial ordering of the stack. Whenever a file is re-
quested, it gets pushed to the top of the stack, and the distance
from the top of the stack and the last location of this file (the
stack depth) is recorded. The problem with this approach is
that it depends on the initial ordering of the stack, which we
have found to affect the marginal distribution and the correla-
tion structure of the stack distance string. Instead, we use a
different approach to extract the stack distances, which does
not require specifying an initial ordering of files in the stack.

We start with an empty stack and scan the empirical ref-
erence stringin the reverse direction, starting with last refer-
ence. During this scanning process, if a file is referenced for
the first time (in the reverse direction), it is pushed to the top
of the stackbut its distance is not recorded. Otherwise, if the
file has already been referenced before (hence, it is already in
the stack), then it gets pushed from its previous location in the
stack to the top of the stack, and its depth is recorded as a
stack distance. Finally, the resulting trace of stack distances is



reversed to get the correct stack distance string. The follow-
ing example illustrates the idea. Consider the reference string
[a d c b c d d a b], where each letter indicates the name of
a file. If we process this string starting from the end, the first
reference is to fileb. Since this is the first time fileb is being
referenced, we push it to the top of the stack without recording
any distance. The same procedure is performed for the next
two references (for filesa andd, respectively). The fourth ref-
erence (from the end) is for filed. Since this file has been refer-
enced before, it gets pushed to the top of the stackand its stack
depth is recorded (in this case, the stack depth for filed is one).
The procedure continues until all references are processes (see
Figure 2). The end result of this process is the stack distance
stream[4 3 2 4 1]. The corresponding popularity profile is
[(a; 3); (b; 2); (c; 2); (d; 2)].
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Fig. 2. Example showing the extracting of the stack distance
string.

B. Modeling the Stack Distance String

Once the stack distance string is obtained, we fit it using the
multifractal model in Section II. Since the marginal distribu-
tion of the empirical string is already captured, the fitting is
focused on the ACF. Recall that for each scalej, the rvAj ,
which is used to generate the scale coefficients, has a symmet-
ric beta distribution with parameter�j . To obtain the value of
this parameter, we start from (13). At each scale, we need the
variance of the wavelet coefficients, which can be found empir-
ically. The lowest scale should be chosen so that it has enough
wavelet coefficients to compute the variance (the zeroth scale
has only one data point, which is not enough to compute the
variance at that scale). Using the mean and variance of the
scaling coefficients at the lowest scale, we can generate the
normally distributed scaling coefficients, from which the the
scaling coefficients at higher scales are computed using (11)
and (12).

C. Generating Synthetic Traces and Capturing the Popularity
Profile

Generating a WWW reference string follows the reverse
process of extracting the stack distance string from the real
data. The synthesis process starts by assuming an initial order-
ing of the files in the stack. This is done by sampling from a
probability distribution that is weighted by the popularity pro-

files of the various documents (i.e., the more popular a docu-
ment is, the more likely it will be placed closer to the top of the
stack). Suppose that we want to generate anN -long synthetic
trace that has a certain popularity profile. FromN and the
popularity profile, the number of requests to each file is known
beforehand. Then, the stack distance string is generated as was
described in the previous section. We associate a counter with
each unique object. Initially, the counter has a value ofN times
the popularity index of the object. Every time the object is re-
quested, the corresponding counter is decremented by one. If
the counter reaches zero, the file is flushed out of the stack.

Despite its simplicity, the above approach did not yield good
results in in terms of approximating the hit ratio at a cache,
especially if we have files that are very popular compared to
others. To address this problem, we propose a different ap-
proach in which objects are first classified into several classes
according to their popularity profile. We then model the stack
distance string for each class separately. Instead of selecting
the file that is at the top of the stack to be the next requested
object, we follow the approach in [3], where a small window is
used near the top of the stack (e.g., first three objects from the
top). The next object in the URL string is selected randomly
from that window, according to a probability distribution that
is weighted by the outstanding number of requests for each file.

The following example illustrates the trace generation pro-
cess. Suppose that we have four unique files, a, b, c, and d,
with popularity profile [(a,2),(b,2),(c,2),(d,3)]. Using the mul-
tifractal model, suppose that we obtained the the stack distance
string [4 3 2 4 1]. Assume further that the initial order of the
files in the LRU stack is [a b c d] (i.e., file ’a’ is at the top of the
stack) and that the window size is one. Since the window size
is one, file ’a’ is the first object in the reference string. Because
the next stack distance is4, file ’a’ is pushed to the bottom of
the stack. Now fileb is at the top of the stack, so it gets added
to the reference string. Since the next distance is 3, fileb is
pushed to the third position in the stack, and so on. When we
reach a point where the file at the top of the stack is referenced
for the last time (according to its popularity profile), this file
is dropped from the stack. The generation process is shown in
Figure IV-C.

V. EXPERIMENTAL RESULTS

We evaluate the goodness of the multifractal model and con-
trast it with a self-similar (monofractal) model that uses trans-
formation of the marginal distribution. Our performance met-
rics are the file and byte hit ratios for the LRU and LFU cash
replacement policies. For each of these policies, the cache is
fed by a stream of objects that is generated according to either
model. The hit ratio under the real trace is used as a refer-
ence. Figures 4 and 5 depicts the results of our simulations for
the LRU and LFU policies, respectively. As can be seen from
these results, the multifractal-based WWW traffic model gives
much better performance than the monofractal-based model.
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Fig. 4. File and byte miss ratios versus cache size for the LRU
policy.

VI. CONCLUSIONS

In this work, we explored the viability of multifractal pro-
cesses in modeling WWW traffic. We adapted Riedi et al.’s
model [11] to capture the temporal and spatial localities of
WWW traffic. The main advantage of this model is that it si-
multaneously captures the marginal distribution and ACF of
the traffic. We provided a novel approach for extracting the
stack distance string from the original URL reference string.
Our approach does not require specifying an initial ordering for
the objects in the stack. To capture the popularity profile, we
classified objects into a number of classes and modeled each
class independently. We found that this approach yields very
good results in terms of the file and byte hit ratios at a cache,
for both the LRU and LFU cache replacement policies.
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