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ABSTRACT
We consider a wireless sensor network in which sensors are
grouped into clusters, each with its own cluster head (CH).
Each CH collects data from sensors in its cluster and re-
lays them to a sink node directly or through other CHs.
The coverage time of the network is defined as the time
until one of the CHs runs out of battery, resulting in an
incomplete coverage of the sensing region. We study the
maximization of coverage time by balancing the power con-
sumption of different CHs. Using a Rayleigh fading channel
model for inter-cluster communications, we provide optimal
power allocation strategies that guarantee (in a probabilistic
sense) an upper bound on the end-to-end (inter-CH) path
reliability. Our allocation strategies account for the inter-
action between routing and clustering by considering the
impacts of intra- and inter-cluster traffic at each CH. Two
mechanisms are proposed for achieving balanced power con-
sumption: the routing-aware optimal cluster planning and
the clustering-aware optimal random relay. For both mech-
anisms, the problem is formulated as a signomial optimiza-
tion, which can be efficiently solved using generalized geo-
metric programming. Numerical examples and simulations
are used to validate our analysis and study the performance
of the proposed schemes.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication

General Terms
Algorithms, Performance, Design.

Keywords
Generalized geometric programming, signomial optimization,
sensor networks, clustering, topology control, coverage time.
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1. INTRODUCTION

1.1 Motivation
Recent technological advances in micro-electronic-mechanics

(MEMs) and low-power wireless communications have paved
the way for the deployment of dense wireless sensor networks
(WSNs). Such networks are expected to play an important
role in a wide range of applications, including motion de-
tection, environment monitoring, military surveillance and
reconnaissance, etc. [1]. Mass production of low-cost sen-
sors necessitates powering them with limited-energy, often
non-rechargeable batteries [2]. This makes energy consump-
tion a critical factor in the design of a WSN and calls for
energy-efficient communication protocols that maximize the
lifetime of the network subject to a given energy budget.

Sensors in a WSN are often organized into clusters, each
with its own CH [2]. Instead of communicating directly with
the data processing center, referred to as the sink, a sensor
transmits data to its CH, which in turn forwards the data
to the sink, either directly or via a multi-hop path through
other (intermediate) CHs. This significantly reduces the
battery drainage of individual sensors, which only need to
communicate with their respective CHs over relatively short
distances. Besides its energy-saving advantages, clustering
has other desirable features related to network management,
security, scalability, etc.

Expectedly, the clustering paradigm increases the bur-
den on the CHs, forcing them to deplete their batteries
much faster than in a non-clustered network. The addi-
tional energy consumption is attributed to the aggregation
of intra-cluster traffic into a single stream that is transmit-
ted by the CH and to the relaying of inter-cluster traffic from
other CHs. Such relaying is sometimes desirable because of
its power-consumption advantage over direct (CH-to-sink)
communication. Given the high density of sensors in com-
mon deployment scenarios (a density of 20 sensors per cubic
meter is not unusual [1]), the traffic volume coming from a
CH can be orders of magnitude greater than the traffic vol-
ume of an individual sensor. Even though the CH may be
equipped with a more durable battery than the individual
sensors it serves, the large difference in power consumption
between the two can lead to shorter lifetime for the CH.
Once the CH dies, no communications can take place be-
tween the sensors in that cluster and the rest of the network.



For clusters of comparable coverage and node density,
the intra-cluster traffic volume is roughly the same for all
clusters. On the other hand, the traffic volume relayed by
different CHs is highly skewed; the closer a CH is to the
sink, the more traffic it has to relay. Such a “traffic im-
plosion” situation is essentially caused by the many-to-one
communication paradigm in WSNs, i.e., traffic from all sen-
sors is eventually destined to the sink. Unless some action
is taken to correct this imbalance, different CHs will drain
their batteries at different times, resulting in early (partial)
loss of coverage and potential partitioning of the underlying
topology. Our goal in this paper is to design optimal power
allocation strategies that address this imbalance by maxi-
mizing the coverage time, defined as the time until one CH
runs out of battery1. These strategies deliberately offset the
impact of the skewed load by appropriately adjusting the
transmission distance (power) of different CHs. Because the
volume of relayed traffic is also affected by the underlying
routing scheme, a joint routing/clustering design methodol-
ogy is needed to achieve power balance among CHs.

1.2 Related Work
Extensive research has been dedicated to the study of clus-

tering algorithms for ad hoc and wireless sensor networks.
Early clustering algorithms mainly focused on the connec-
tivity problem [3]-[9], aiming at generating the minimum
number of clusters that ensures network connectivity. In
these algorithms, the election of the CH is done based on
node identity [3, 4, 5], connectivity degree [6], or connected
dominating set [7]-[9].

Recently, there has been increased interest in studying
energy-efficient clustering algorithms, in the context of both
ad hoc and sensor networks [10]-[17]. In [10], the authors
proposed the LEACH algorithm, in which the CH role is dy-
namically rotated among all sensors in the cluster. Energy
is evenly drained from various sensors, leading to improved
network lifetime. A similar CH-scheduling scheme was pro-
posed in [17] for a time-slotted WSN. In this scheme, several
disjoint dominating sets are found and are activated succes-
sively. Nodes that are not in the currently active dominating
set are put to sleep. A distributed algorithm was proposed
to obtain a set-schedule sequence for which the network life-
time is within a logarithmic factor of the maximum achiev-
able lifetime (obtained under an optimal sequencing of the
dominating sets). In general, such rotation-based algorithms
require excessive processing and communication overheads
for CH re-election and broadcasting of the new CH informa-
tion.

“Load-balanced” algorithms (e.g., [11]-[13]) focus mainly
on balancing the intra-cluster traffic load, and ignore inter-
cluster traffic. In [11], sensors are clustered according to
“load-balancing” metrics, whereby the traffic volumes orig-
inating from various clusters are equalized. The authors in
[12] extended the work in [11] by integrating the concept of
load balancing into traditional node-id/connectivity-degree
based clustering to produce a longer CH lifespan. In [13],
the max-min d-cluster algorithm was proposed to extend the
traditional 1-hop cluster to a d-hop cluster while generating
load-balanced clusters. This extension achieves better load

1Other definitions for coverage time may also be used, such
as the time until x% of coverage is lost or the time until the
network is partitioned. Such definitions will be considered
in a future work.

balancing with fewer clusters.
Distributed algorithms for organizing sensors into a hier-

archy of clusters were proposed in [15, 16], with the objective
of minimizing the energy spent in communicating informa-
tion to the sink. It should be noted that minimizing the total
energy consumption is not equivalent to maximizing cover-
age time, as the former criterion does not guarantee bal-
anced power consumption at various CHs. By shifting the
load from over-power-drained CHs to under-power-drained
CHs, coverage time can be maximized even though the total
power consumption is not necessarily minimal.

In [14], the authors proposed clustering algorithms that
maximize network lifetime by determining the optimal clus-
ter size and optimal assignment of nodes to preselected CHs.
Their exhaustive-search approach assumes full knowledge of
the network topology (i.e., the location of each sensor node
and each CH in the network). Also, it ignores inter-cluster
traffic.

The scheme in [18] incorporates the impact of inter-cluster
traffic in determining the optimal location of the sink node
that maximizes the topological lifetime of the network. Power-
balance among CHs was not considered. To the best of our
knowledge, there is no existing literature that adequately
addresses power balance among CHs and provides optimal
power allocation strategies that maximize the coverage time.

1.3 Main Contributions and Paper Organiza-
tion

The main contributions of this paper are as follows. First,
in contrast to previous “load-balanced” algorithms, we pro-
vide “power-balanced” alternatives that aim at directly op-
timizing coverage time by accounting for the interaction be-
tween clustering and routing, i.e., simultaneously taking into
consideration the impacts of both intra- and inter-cluster
traffic. Second, in contrast to previous algorithms, which
are based on heuristics, ours is based on an analytical ap-
proach in which coverage-time maximization is formulated
as a signomial optimization problem that can be efficiently
solved using generalized geometric programming (GGP) [22,
23]. Our analysis guarantees an upper bound on the path
reliability for communications between the originating CH
and the sink node. Two schemes are proposed for achiev-
ing power-balanced communications: routing-aware optimal
cluster planning and clustering-aware optimal random relay.
The first scheme is essentially a clustering approach that
is developed in the context of shortest-hop-count inter-CH
routing. For this scheme, the optimal cluster size and loca-
tion are obtained. The second scheme is essentially a rout-
ing strategy for “load-balanced” clustered topologies (i.e., all
clusters are of the same size). According to this approach,
a CH probabilistically chooses to either relay the traffic to
the next-hop CH or to deliver it directly to the sink.

Numerical examples and simulations are used to validate
our analysis and compare our proposed schemes with pure
“load-balancing” algorithms. Our results indicate that by
accounting for the interaction between clustering and rout-
ing, the proposed schemes achieve a significant reduction in
energy consumption and improved coverage time.

The rest of this paper is organized as follows. In Section 2
we describe the system model and the assumptions made in
the analysis. The optimization problems are formulated in
Section III. In Section IV we validate our analysis using
numerical examples and computer simulations. Section V



concludes the paper.

2. SYSTEM MODEL AND ASSUMPTIONS

2.1 Network Model
We consider a circular sensing area A of radius R. The

sink is located at the center, as shown in Figure 1. The
circular geometry, albeit too idealistic, serves as a basis for
understanding the intrinsic tradeoffs involved in a joint clus-
tering/routing optimization framework. It has been widely
used in the analysis of sensor networks; most recently in [19,
20]. The sensors are uniformly distributed across A with
density ρ. Data captured and generated by all sensors need
to be delivered to the sink. Due to energy considerations,
only those sensors within the area

�
(x, y)

��x2 + y2 ≤ r2
0

�
,

where r0 < R, can communicate directly with the sink; all
other sensors are organized into clusters and they commu-
nicate their data through their respective CHs. Without
loss of generality, we assume that each CH is located at the
center of its cluster.

 
 
 

 

Figure 1: Network topology with three rings (K =
3).

The procedure for cluster formation consists of two steps:
the deployment of CHs and the assignment of sensors to
CHs. Because of the symmetric nature of the area A and the
uniform distribution of sensors, the formation of clusters is
also symmetric, i.e., any two clusters with the same distance
from their centers to the sink should have the same coverage.
Such clusters are said to be of the same type. Suppose there
are K types of clusters in the network. We consider the
following clustering approach: sensors whose distances to
the sink fall in (ri−1, ri] are organized into clusters of the ith
type, where 1 ≤ i ≤ K and r0 < r1 < . . . < rK = R. As a
result, the clusters of the ith type cover the ith ring , defined
by the area

�
(x, y)

��r2
i−1 < x2 + y2 ≤ r2

i

�
. This clustering

approach can be easily realized in practice, e.g., by using
pilot signals that are broadcasted by the sink. Accordingly,
the CHs of the ith ring are placed evenly along the circle

�
(x, y)

��x2 + y2 = d2
i

�
with equal space between consecutive

CHs, where di =
ri−1+ri

2
. We assume that the initial battery

energy at all CHs is the same. A sensor located in the ith
ring is assigned to the nearest CH in the same ring. In
the analysis, we assume that a sufficiently large number of
CHs are placed in each ring such that the area covered by
each CH can be approximated by a small circle, as shown
in Figure 1. In the simulations section, we show that this
assumption has a negligible impact on network performance.
Remark: Although our model assumes a circular sensing
area and a two-tier network structure, the analysis ade-
quately captures the intrinsic interaction between inter- and
intra-cluster traffic. The analysis can be extended to handle
a non-circular region by covering it with a series of circles,
similar to the approach used in cellular networks (in cellular
networks, the region is approximately covered by hexagons).
A multi-layered organization of sensors, such as the “spine”
hierarchy [21], can also be accommodated in our analytical
framework. In this case, our analysis provides the optimal
CH coverage time for the “base” layers and a sub-optimal
coverage time for the whole network. The details of such
extensions are beyond the scope of this paper and will be
considered in a future work.

2.2 Traffic Model
In the underlying WSN, each sensor generates data at a

rate λ (in bits/second). The data are transmitted from the
source sensor to its CH, which then forwards the data to the
sink, directly or through other CHs. We assume that each
sensor has sufficient power to communicate directly with
its CH. Furthermore, we assume that the CH depletes its
energy at a much faster rate than the sensors it serves. This
assumption is justified by the low data rate and duty cycle of
commonly used sensors. Accordingly, we focus our attention
on energy depletion at CHs. From a strategic point of view,
a CH is more critical to the coverage of the network than
individual sensors.

Two different routing scenarios are considered:

2.2.1 Shortest-Distance Relay
In this scenario, packets are relayed through the closest

CH of the adjacent ring. More specifically, a CH in the
ith ring receives traffic originating from its own cluster as
well as traffic relayed from CHs in the (i + 1)th ring, and
forwards the combined traffic to the closest CH in the (i −
1)th ring. Traffic relaying continues hop-by-hop until the
sink is reached.

For this scenario, we consider a routing-aware clustering
mechanism that balances power consumption at different
CHs. Clearly, the radius profile of the clusters, 1

2
(r1 −

r0), ...,
1
2
(rK − rK−1), is critical to power consumption at

different CHs. For example, reducing 1
2
(ri − ri−1) results

in smaller clusters in the ith ring, which leads to less local
traffic from these clusters, shorter transmission distances to
subsequent CHs in the (i − 1)th ring, and a higher num-
ber of CHs in the ith ring. Because of the symmetry in
the topology and traffic load, the traffic from the CHs in
the (i + 1)th ring will be evenly shared among an increased
number of CHs in the ith ring, so the volume of the re-
layed traffic carried by individual CHs in the ith ring will
decrease. All of these factors contribute to a reduced power
consumption at the CHs in the ith ring. On the other hand,
the reduction in the area of the ith ring must be compen-



sated for by other clusters (e.g., the clusters in the jth ring),
because of the fixed number of rings in the system. In an
analogous manner, power consumption at CHs in ring j will
increase. Therefore, by deliberately adjusting the cluster
size in different rings, a more balanced power consumption
at different CHs, and hence an increase in the coverage time,
is achieved. This is addressed in the routing-aware optimal
cluster planning scheme presented in Section 3.2.

2.2.2 Random Relay
In this scenario, a CH has two options for data transmis-

sion. It may relay the data to the closest CH in the subse-
quent ring, or it may send it directly to the sink. Let αi be
the fraction of the load that a CH in the ith ring transmits
directly to the sink. For a given clustering structure, the
relay probability vector (α1, . . . , αK) plays a critical role in
balancing power consumption at different CHs. For exam-
ple, increasing αi will reduce the relayed traffic carried by
all CHs in rings 1 to i − 1. But this comes at the expense
of higher power consumption at the CHs in the ith ring, be-
cause of the longer transmission distance which, on average,
increases from approximately 1

2
(ri − ri−2) to 1

2
(ri + ri−1).

By deliberately adjusting the relay probabilities at different
CHs, a more balanced power consumption at different CHs
can be achieved.

In Section 3.3, we propose a clustering-aware optimal ran-
dom relay scheme that addresses the problem of finding the
optimal relay probability vector for a given clustering struc-
ture. Specifically, we consider a homogeneous clustering
structure, i.e., r1 − r0 = r2 − r1 = . . . = rK − rK−1, so
that all clusters are expected to cover the same number of
sensors. This structure is exactly the “load balanced” clus-
tering presented in [11]. It is highly desirable in practice
because of its simplicity. Through numerical examples, we
show that the proposed clustering-aware optimal random re-
lay scheme achieves longer expected coverage time compared
with pure “load balanced” clustering.

2.3 Wireless Channel Model
We use a Rayleigh fading model to describe the channel

between two CHs and also between a CH and the sink. For a
transmitter-receiver separation x, the channel gain is given
by

h(x) = L(d0)

�
x

d0

�−n

ξ, (1)

where L(d0)
def
= GtGr l2

16π2d2
0

is the path loss of the close-in dis-

tance d0, Gt is the antenna gain of the transmitter, Gr is
the antenna gain of the receiver, l is the wavelength of the
carrier frequency, n is the path loss exponent (2 ≤ n ≤ 6),
and ξ is a normalized random variable that represents the
power gain of the fading. Under the assumption of Rayleigh
fading, ξ is exponentially distributed; Pr(ξ ≤ t) = 1 − e−t.

Because ξ is random, the received signal is also random2.
Hence, correct reception of a signal can be guaranteed only
on a probabilistic basis. In our work, we require that Pr{er ≥
τ} ≥ δl for reliable reception, where er is the energy of the
received signal, τ is a predefined energy threshold, and δl

is the required link reliability. For an end-to-end path of

2Cost and energy considerations in WSNs prohibit the use
of fast power control to combat the fluctuations in channel
fading, as typically done in cellular networks.

M links that experience independently and identically dis-
tributed (i.i.d.) fades, the overall path reliability, i.e., the
probability of a successful end-to-end reception, is given by
δp = δM

l . Therefore, in order to guarantee a path reliabil-

ity of δp, the link reliability δl should be at least δ
1

M
p . The

assumption of i.i.d. link fadings is justified by noting that
the distance between consecutive CHs is much larger than
the wavelength of the carrier for a system operating at 2.4
GHz, which is a typical value in current standards.

3. PROPOSED SCHEMES

3.1 Problem Formulation
Let Pi be the average power consumption used for commu-

nications by any CH in the ith ring. We adopt the following
energy model for Pi:

Pi = erx(λoi + λri) + etx(λoi + λri) + PTi(λoi + λri, Γ) (2)

where erx is the energy-per-bit consumed in the receive
circuit, etx is the energy-per-bit consumed in the trans-
mit circuit, λoi is the expected intra-cluster bit rate (in
bits/second), λri is the expected bit rate of the incoming
inter-cluster traffic that is to be relayed by the underlying
CH, and PTi(., .) is the transmission power expressed as a
function of the outgoing bit rate and the employed routing
scheme Γ. Note that the terms in the right-hand side of
(2) represent, respectively, the power consumption in the
receive circuit, the transmit circuit, and the radio interface.

To maximize the expected coverage time, we need to solve
the following optimization problem:

maximize min

�
E1

P1
,
E2

P2
, . . . ,

EK

PK

�
(3)

where Ei, i = 1, . . . , K, is the initial battery energy for any
CH in the ith ring. In practice, CHs are often initialized
with identical batteries, i.e., Ei = E for all i. In this case,
the optimization problem in (3) becomes equivalent to:

minimize max{P1, P2, . . . , PK}. (4)

Hereafter, we focus on (4), as this formulation leads to a
standard signomial optimization problem, which can be ef-
ficiently solved using generalized geometric programming.

3.2 Routing-Aware Optimal Cluster Planning
Scheme

In this section, we formulate the optimal cluster orga-
nization problem in the context of shortest distance (hop-
by-hop) routing. Under this routing scheme, a CH in the
ith ring transmits all of its data to the nearest CH in the
(i−1)th ring. Let xi be the physical distance between these
two CHs. The expected transmission power is given by

PTi = eti(λoi + λri) (5)

where eti is the transmission energy per bit for the under-
lying CH. Substituting (5) into (2), the expected commu-
nication power consumption of any CH at ring i is given
by

Pi = (erx + etx + eti)(λoi + λri). (6)

Given eti, the corresponding received energy eri is given
by

eri = etiL(d0)

�
x

d0

�−n

ξ. (7)



The link-reliability requirement can be expressed as

δl = Pr{eri ≥ τ}
= Pr

�
ξ ≥ τ

etiL(d0)

�
xi

d0

�n�

= e
− τxn

i
etiL(d0)dn

0 (8)

Under min-hop routing, the maximum number of links of
an end-to-end path is K. Therefore, in order to guarantee
the constraint δp on the path reliability, the minimum link
reliability must be

δl = δ
1
K
p . (9)

Equating (8) and (9), the minimum transmit energy per bit
that satisfies the end-to-end reliability requirement is given
by

eti =
−Kτxn

i

L(d0)dn
0 log δp

. (10)

An approximation that provides an upper bound on the ex-
pected coverage time can be obtained by replacing xi in (10)
with a lower bound xi min that is given by:

xi min =

� r1+r0
2

, for i = 1
ri−ri−2

2
, for i = 2, . . . , K.

(11)

This lower bound represents the sum of the radii of a cluster
in the ith ring and the nearest cluster in the (i − 1)th ring.
It is easy to see that the distance between the CHs of the
corresponding two clusters is at least xi min.

Let λtotali denote the bit rate of the aggregate traffic that
originates from the clusters in rings i through K. Then,

λtotali = π(R2 − r2
i−1)ρλ, i = 1, . . . , K. (12)

Because relaying is done hop-by-hop, the total traffic load
carried by the CHs in the ith ring is equal to the total traffic
volume originating from all clusters in rings i to K. Due to
the symmetry of the rings and the uniform distribution of
sensors, the traffic from the ith ring is evenly distributed
among all CHs in that ring. The number of CHs in the ith
ring is approximately given by

Ni ≈ 2πri

ri − ri−1
. (13)

The quality of this (and other) approximations is evaluated
in Section 4 through a comparison with more realistic sim-
ulations.

Accordingly, the average traffic load at any CH in ring i
is given by

λoi + λri =
λtotali

Ni

≈ (R2 − r2
i−1)(ri − ri−1)

2ri
ρλ. (14)

Substituting (14), (10), and (11) in (6), the expected com-
munication power consumption of any CH in the ith ring can
be approximately represented as signomial functions3 of the

ring radius profile r
def
= (r1, r2, . . . , rK). More specifically,

3See the appendix for the definition of signomial functions.

they are given by

P1 =

�
erx + etx +

Kτ

−L(d0)dn
0 log δp

	r1 + r0

2


n
�
×

(R2 − r2
0)(r1 − r0)

2r1
ρλ, (15)

and

Pi =

�
erx + etx +

Kτ

−L(d0)dn
0 log δp

	ri − ri−2

2


n
�
×

(R2 − r2
i−1)(ri − ri−1)

2ri
ρλ, for i = 2, . . . , K. (16)

Our goal now is to determine the optimal r that minimizes
the average maximum power consumption among all CHs.
This optimization problem can be formulated as follows:�


�
minimize{r1,...,rK} {max {P1(r), . . . , PK(r)}}
s.t.
r0 < r1 < . . . < rK = R

(17)

where Pi(r), i = 1, . . . , K, are given by (15) and (16).
By introducing the auxiliary variable t ≥ Pi(r) for 1 ≤ i ≤

K, the optimization problem in (17) can be transformed into
the following equivalent form:����


����

minimize{r,t}t
s.t.
t−1Pi(r) ≤ 1, i = 1, . . . , K
ri−1r

−1
i < 1, i = 1, . . . , K

rK = D.

(18)

An examination of (18) reveals that its objective function
is a monomial , the inequality constraints are signomials,
and the equality constraint is a monomial of the variables
(r, t) (refer to the appendix for the concepts of monomial,
posynomial, and signomial). Therefore, (18) is a signomial
optimization problem of the standard form [22]. Its optimal
solution can be efficiently found using generalized geometric
programming algorithms introduced in [22] and [23].

3.3 Clustering-Aware Optimal Random Relay
Scheme

In this section, we consider a “load-balancing” cluster-
ing structure and address the optimization of coverage time
by determining the optimal relay probabilities at different
CHs. Recall that in the current scenario, a CH in the ith
ring relays its traffic to the closest CH in the (i − 1)th ring
with probability 1−αi, and with probability αi, it transmits
directly to the sink. Under “load-balanced” clustering, ho-
mogeneous clusters are formed, so that each of these clusters
is expected to contain the same number of sensors. In this
case, ri = r0 + iR−r0

K
, for i = 1, . . . , K.

Under random relay routing with i ≥ 2, the average power
consumed to transmit data from any CH in the ith ring is

PTi = etri(1 − αi)(λoi + λri) + etdiαi(λoi + λri) (19)

where etri and etdi are the transmission energy per bit for
relaying traffic to the nearest CH in ring i− 1 and for direct
transmission to the sink, respectively. Following a similar
development to the one in Section 3.2, etri and etdi are de-
rived as follows:

etri =
−Kτxn

i

L(d0)dn
0 log δp

(20)



and

etdi =
−(K − i + 1)τdn

i

L(d0)dn
0 log δp

(21)

where xi and di are the distances for the one-hop relay and
for the direct CH-to-sink transmission, respectively. In (21),
the factor (K − i + 1) is used instead of K in (20) and (10)
to accommodate a worst-case link reliability requirement.
Recall that in deriving (10), we split the end-to-end path
reliability δp among K links, providing a conservative esti-
mate of the link reliability for each of the K hops. In the
case of the random relay scheme, the traffic that is relayed
to a CH in the ith ring from outer rings may have traversed
from one to K − i hops before reaching the ith ring. So if
this traffic is to be transmitted directly from the ith ring to
the sink, its maximum hop count would be K − i+1, which
explains the appearance of this factor in (21).

The CH-to-CH distance xi in (20) is lower bounded by

xi min =
R − r0

K
(22)

which represents the sum of the radius of a cluster in the
ith ring and the radius of the closest cluster in the (i− 1)th
ring (note that under the random relay strategy, rings have
the same “thickness,” so ri − ri−1 = (R − r0)/K for all
i = 2, 3, . . . , K).

For the first ring, there is no difference between relaying
to the next CH and directly communicating with the sink.
Therefore,

PT1 = etd1(λo1 + λr1) (23)

where etd1 is given by

etd1 =
Kτdn

1

−L(d0)dn
0 log δp

. (24)

The traffic load coming from any CH in the ith ring, i.e.,
λoi+λri, is derived analytically as follows. Let λtotali denote
the total traffic load that originates from all clusters in rings
i to K. For the Kth ring,

λtotalK = π(R2 − r2
K−1)ρλ. (25)

Then, the traffic load relayed from the Kth ring to the (K−
1)th ring is simply given by

(1 − αK)λtotalK =
�
πR2(1 − αK) − πr2

K−1(1 − αK)
�
ρλ.
(26)

For the (K − 1)th ring,

λtotalK−1 =
�
π(r2

K−1 − r2
K−2)

�
ρλ + (1 − αK)λtotalK

=
�
πR2(1 − αK) + πr2

K−1αK − πr2
K−2

�
ρλ. (27)

Similarly, one can easily derive λtotalK−2, . . . , λtotal1. An
examination of these equations shows that they can be ex-
pressed as

λtotali =

�
π

K�
j=i

r2
j αj+1

j�
m=i+1

(1 − αm) − πr2
i−1

�
ρλ,

for i = 1, . . . , K (28)

where we take αK+1 to be 1.
Following a similar analysis to the one used to arrive at

(14), the total traffic load produced by any CH in the ith
ring, including intra-cluster as well as relayed traffic, can be

written as

λoi + λri = λtotali
R − r0

2πKri

=

�
π

K�
j=i

r2
j αj+1

j�
m=i+1

(1 − αm) − πr2
i−1

�
×

ρλ
R − r0

2πKri
. (29)

Substituting (19), (20), (21), and (29) into (2), the ex-
pected communication power consumption of any CH at ring
i is given by������������

������������

P1 =
�
erx + etx + Kτ

−L(d0) log δp

	
d1
d0


n�
×�

π
�K

j=1 r2
j αj+1

�j
m=2(1 − αm) − πr2

0

�
ρλ R−r0

2πKr1

Pi =
�
erx + etx + αi

(K−i+1)τ
−L(d0) log δp

	
di
d0


n

+

(1 − αi)
Kτ

−L(d0) log δp

	
D−r0
Kd0


n�
×�

π
�K

j=i r2
j αj+1

�j
m=i+1(1 − αm) − πr2

i−1

�
×

ρλ R−r0
2πKri

, i = 2, . . . , K

(30)

where ri = r0 + iR−r0
K

and di = ri − R−r0
2K

.
¿From (30), it is clear that for a given radius profile

(r0, r2, . . . , rK), the expected power consumption at differ-
ent CHs can be expressed as signomial functions of the prob-
abilities (α1, . . . , αK). Our goal is to determine the op-
timal values for these probabilities that maximize the ex-
pected coverage time (equivalently, minimize the maximum
expected power consumption at a CH). More specifically,
this optimization problem can be formulated as follows:���


���
minimize{α1,...,αK} max{P1, . . . , PK}
s.t.
α1 = 1
0 ≤ αi ≤ 1, i = 2, . . . , K

(31)

where Pi’s are given in (30).
By introducing the auxiliary variable t, (31) can be trans-

formed into the following equivalent optimization problem:������

������

minimize{α1,α2,...,αK ,t}t
s.t.
t−1Pi ≤ 1, i = 1, . . . , K
αi ≤ 1, i = 2, . . . , K
1 − αi ≤ 1, i = 2, . . . , K
α1 = 1.

(32)

An examination of (32) and (30) shows that the objective
function is a monomial, the inequality constraints are sig-
nomials, and the equality constraint is a monomial in the
variables (α1, . . . , αK , t). Therefore, (32) is also a general-
ized geometric programming problem in a standard form,
which can be efficiently solved by the GGP algorithms in-
troduced in [22] and [23] (also, refer to the appendix).
Remark: As verified in Section 4, in most cases, the objective
functions in (32) and (18) are minimized when power con-
sumptions at different CHs are equalized. This is because if
there is a CH with power Pi that is larger than the power
consumption of other CHs, then Pi can always be lowered
without violating the constraints by decreasing ri in (18)
or αi in (32), leading to an increase in the power consump-
tion of some other CHs. As a result, the maximum power
consumption will be minimized when a balance is reached
across all CHs.



4. NUMERICAL RESULTS AND SIMULA-
TIONS

In this section, we study the performance of the proposed
optimal cluster planning and optimal random relay schemes
and compare them with a “load-balanced” clustering ap-
proach [11] that uses hop-by-hop traffic relay between CHs
in consecutive rings. The analysis conducted in the previous
sections was based on certain simplifying assumptions (e.g.,
circular clusters, lower bounds on CH-to-CH distances, etc.).
To validate the adequacy of our analytical results, we con-
trast them with simulations conducted in a more realistic
setting (explained below). For the two proposed schemes,
we use the analytical results to compute the optimal ra-
dius profile r and optimal relay probabilities α1, . . . , αK .
We use these optimal values to drive the simulations of
the two proposed schemes. Our main performance met-
ric is the maximum expected power consumption of a CH,

Pmax
def
= max{P1, . . . , PK}. The smaller the value of Pmax,

the longer is the coverage time. We set the radius of the cir-
cular sensing region to R = 200m, where m is an arbitrarily
chosen distance unit (e.g., meter). Sensors are uniformly
distributed throughout this region at density ρ = 1/m2, i.e.,
the number of sensors in any area S follows a spatial Pois-
son distribution with parameter ρS. The number of CHs
in both the analysis and the simulations is set to

�K
i=1 Ni,

where Ni is obtained from (13) and K is given. The lo-
cation of these CHs is also taken to be the same for the
analysis and the simulations. However, in the simulations,
clusters are not necessarily circular, and the notion of rings
is no longer applicable. Instead, each sensor in a given sim-
ulation run is assigned to the nearest CH. As a result, two
CHs that have the same distance to the sink may have dif-
ferent cluster sizes. Each sensor generates data according
to a Poisson process of rate λ = 10 bits/second4. Because
of the randomness in the traffic and node distribution, the
powers consumed by different CHs in the same ring may be
different in the simulations. In this case, Pmax is taken as
the maximum of Pavg,1, . . . , Pavg,K , where Pavg,i is the av-
erage power of a CH in the ith ring. We take r0 = 10m,
Gt = Gr = 1, τ = 10−17 Joules, and δp = 0.99 (the required
end-to-end path reliability).

Figures 2 and 3 depict Pmax versus the number of rings
(K) for two path loss factors: n = 2 and n = 4, respec-
tively. It is observed that the gap between the (approxi-
mate) analytical results and the simulations is reasonably
small for all examined schemes, with the simulation results
being slightly more conservative than the analysis. The dis-
parity between the two is attributed in part to the approxi-
mate nature of the analysis and in part to the randomness in
the packet generation process and the distribution of sensors
within a CH. When n = 2, both the optimal cluster plan-
ning and the optimal random relay schemes result in signifi-
cantly longer coverage times (smaller Pmax values) than the
“load-balanced” clustering scheme. This improvement is at-
tributed to the power-balancing philosophy used in the two
proposed schemes. For n = 4 (Figure 3), the optimal cluster
planning scheme maintains its advantage, but the optimal
random relay scheme is shown to achieve only limited power
efficiency over “load-balanced” clustering. This can be ex-

4The choice of the traffic model has no impact on the relative
performance of the investigated schemes. For this reason, we
opted for a simple model.

 

 

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

55

e
x
=180*10-9J/b, path loss exponent=2

load balanced clustering

optimal cluster planning

optimal random relay

P
ow

er
 c

on
su

m
pt

io
n 

(m
w

)

Number of rings

 power consumption (theory)
 power consumption (simulation)

 

Figure 2: Pmax vs. number of rings (ex = 180 nJ/bit,
n = 2).
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Figure 3: Pmax vs. number of rings (ex = 180
nJoule/bit, n = 4).
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Figure 4: Number of clusters vs. number of rings
(K).



plained by noting that for a large path-loss exponent n, the
total power consumption is dominated by the transmission
power (PTi), which is highly nonlinear in the transmission
distance. As a result, for the random relay scheme, only a
small portion of the traffic at each CH (in our simulations,
less than 5%) is transmitted directly to the sink; the rest
is sent hop-by-hop. For traffic sent hop-by-hop, the ran-
dom relay and the “load-balanced” clustering schemes have
comparable Pmax values (they both use equal-size clusters).

Figure 4 depicts the total number of formed clusters (
�K

i=1 Ni)
versus the number of rings (K) for the optimal cluster plan-
ning and the “load-balanced” schemes. In addition to achiev-
ing a lower Pmax value (longer coverage time), optimal clus-
ter planning also results in a smaller number of clusters (and
hence, reduced network-management overhead). The reduc-
tion in the number of clusters comes from the improved
energy utilization of under-drained CHs, i.e., in order to
balance the power consumption of different CHs, an under-
drained CH tends to carry more intra-cluster traffic, hence
expanding the size of the cluster and reducing the number
of clusters required to cover the sensing region.

In Figure 5, we study the effect of the transmit-plus-

receive per-bit circuit energy ex
def
= etx + erx on the per-

formance of the two proposed schemes, using n = 2 and
K = 10. Interestingly, when ex is small (the circuit is more
energy-efficient), optimal cluster planning achieves better
coverage time (smaller Pmax) than optimal random relay.
However, as ex increases, the relative difference between the
two schemes shrinks, and eventually optimal random relay
becomes superior in terms of coverage-time performance to
optimal cluster planning.

This phenomenon can be explained as follows. When ex

is small, the total power consumption at a CH is domi-
nated by the transmission power (PTi), which is minimized
when the data are forwarded hop-by-hop using shortest-
distance routing. Because optimal cluster planning relies
solely on shortest-distance routing, whereas optimal ran-
dom relay sometimes uses direct CH-to-sink communication,
the former scheme achieves a lower Pmax value. As ex in-
creases, circuit power becomes more significant, and multi-
hop (shortest-distance) routes become less energy-efficient.
In this case, direct CH-to-sink communication becomes more
attractive, giving optimal random relay an advantage over
optimal cluster planning.

In Figures 6 and 7, we study via simulations the effect
of balancing the power across different rings. As indicated
earlier, for the optimal cluster planning and optimal ran-
dom relay schemes, the radius profile and the relay proba-
bilities are obtained from the analysis and used in the sim-
ulations. We measure the accuracy in the power balance by

η
def
=

Std(Pavg,1,...,Pavg,K )

Avg(Pavg,1 ,...,Pavg,K )
. The smaller the value of η, the

more balanced is power consumption across different CHs
(and the larger is the coverage time). The figures indicate
that in most cases, the analysis-based optimization of the
radius profile and relay probabilities leads to a small η (e.g.,
less than 0.1). However, Figure 7 shows that for a small
K and n = 4, the optimal random relay scheme exhibits a
relatively large η (comparable with the value of η for “load
balanced” clustering). This can be explained by noting that
for a small K, the length of each CH-to-CH hop is consid-
erably larger than the distance between the sink and a CH
in the first ring. Under a highly nonlinear channel attenu-

 

 

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

11

12

Number of rings=10, path loss exponent=2

optimal cluster planning

optimal random relay

P
ow

er
 c

on
su

m
pt

io
n 

(m
w

)

e
x
 (10-9J/b)

 power consumption (theory)
 power consumption (simulation)

 
Figure 5: Pmax vs. circuit energy efficiency ex (K =
10, n = 2).
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Figure 6: Normalized standard deviation of power
consumption vs. number of rings (ex = 180nJ/b,
n = 2).

 

 

2 3 4 5 6 7 8 9 10
0.01

0.1

1

e
x
=180*10-9J/b, n=4

N
or

m
al

iz
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

of
 p

ow
er

s 
ac

ro
ss

 r
in

gs

Number of rings

 load balanced clustering
 optimal cluster planning
 optimal random relay

 
Figure 7: Normalized standard deviation of power
consumption vs. number of rings (ex = 180nJ/b,
n = 4).



ation model (n = 4), even if αi = 0 (i.e., no traffic is sent
directly to the sink), the power consumption for CH-to-CH
relaying is still much larger than the power consumption of
a CH in the first ring. Consequently, no power balance can
be reached in this scenario. As we increase K, the length
of each relay hop decreases, so the power tradeoff between
relay and direct transmission becomes dominant in the op-
timization, leading to a better power balance.

5. CONCLUSIONS
We considered the problem of coverage-time optimiza-

tion by balancing power consumption at different CHs in
a clustered WSN. Our study demonstrates the significance
of simultaneously accounting for the impacts of intra- and
inter-cluster traffic in the design of routing and clustering
strategies. Two mechanisms for balancing power consump-
tion were studied: the (routing-aware) optimal cluster plan-
ning and the (clustering-aware) optimal random relay. Un-
der the assumptions of circular sensing area and clusters,
the control parameters in both mechanisms (radius profile
and relay probabilities) were optimized with respect to the
maximum power consumption of a CH. The optimization
problems were formulated as signomial optimizations, which
were efficiently solved using generalized geometric program-
ming. For tractability purposes, our analysis is necessarily
approximate, as it relies on several simplifying assumptions.
Simulations were conducted to verify the adequacy of our
analysis and demonstrate the substantial benefits of the two
proposed schemes in terms of prolonging the coverage time
of the network.

The definition of coverage time used in our work is some-
what conservative, and mainly applies to application scenar-
ios with stringent coverage requirements. Our future efforts
will focus on other, less stringent (and more general) defi-
nitions of coverage time, including the battery drainage for
x% of CHs or the time until the network partitions. We
will also consider extending the analysis to hierarchically
clustered WSNs (e.g., the “spine” hierarchy).
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APPENDIX

A. GENERALIZED GEOMETRIC PROGRAM-
MING

A function h is a monomial in the variables x1, x2, . . . , xn

if it can be written as h(x1, . . . , xn)xa1
1 xa2

2 . . . xan
n for any

real-valued exponents a1, . . . , an. Furthermore, a function
f is a posynomial in the variables x1, x2, . . . , xn if it can be
written as

f(x1, . . . , xn) =

L�
j=1

cjgj(x1, . . . , xn) (33)

where for j = 1, . . . , L, cj ≥ 0 and gj is a monomial in
x1, x2, . . . , xn.

Let x
def
= (x1, x2, . . . , xn) be a vector of n variables and let

M1 and M2 be two positive integers. A standard geometric
program is an optimization problem of the form:���


���
min f0(x)
s.t.
fi(x) ≤ 1, i = 1, . . . , M1

hl(x) = 1, l = 1, . . . , M2

(34)

where f0, f1, . . . , fM1 are posynomials in x and h1, . . . , hM2

are monomials in x.
A geometric program in the standard form is not a convex

optimization problem. However, with the change of vari-

ables yi
def
= log xi and bi

def
= log ci, it can be transformed into

the following convex form:����

����

min
�

p0(y)
def
= log

�
j exp

�
aT

0jy + b0

��
s.t.

pi(y)
def
= log

�
j exp

�
aT

ijy + bi

� ≤ 0, i = 1, . . . , M1

ql(y)
def
= aT

l y + bl = 0, l = 1, . . . , M2

(35)
where aij = (aij1, aij2, . . . , aijn)T ∈ Rn is the exponent

vector of the jth monomial in the ith posynomial and y
def
=

(y1, . . . , yn)T is the optimization variable. The logarithm

of a sum of exponentials is a convex function. Thus, (35)
is a convex optimization problem that can be efficiently
solved using numerical algorithms such as the interior point
method [24].

A signomial is a more generalized form of a posynomial,
whereby the coefficients cj , j = 1, . . . , L, can have any real
values. If in (34) the constraints consist of signomials, the
formulation is called a signomial program or generalized ge-
ometric programming.

Any signomial program can be transformed into an equiv-
alent program of the form���


���
min g0(x)
s.t.
gk(x) ≤ 1, k = 1, . . . , p
gk(x) ≥ 1, k = p + 1, . . . , q

(36)

where gk(x) is a posynomial for k = 0, 1, . . . , q. The form
(36) is called a reversed posynomial program.

One approach for solving signomial problems is to “con-
dense” the posynomial in each reversed constraint (i.e., ap-
proximate the sum of monomials by using their geometric
average, leading to another monomial) and obtain a posyno-
mial program that approximates the original signomial pro-
gram. Upon solving the posynomial program by any convex
optimization algorithm, the solution is used to generate a
better approximation. For example, suppose a program S
of the form (36) contains a single reversed constraint

gl(x) ≥ 1. (37)

Let ġl(x) be the monomial obtained by condensing gl with
an arbitrary set of weights ε using the arithmetic-geometric
mean inequality. Let Ṡ denote the program obtained from
S where (37) is replaced by

ġl(x)−1 ≤ 1. (38)

Since ġl(x) is a monomial, (38) is a standard posynomial

constraint and Ṡ is a posynomial program that approxi-
mates the signomial program S. Moreover, the arithmetic-
geometric inequality implies that ġl(x) ≤ gl(x). Thus, if x

is feasible for Ṡ, then it is feasible for S. The minimum value
for Ṡ, M(Ṡ), is an upper bound on the minimum value for

S, M(S). Suppose that ẋ is optimal for Ṡ. Define a new set
of weights

εi =
fi(ẋ)

gl(ẋ)
. (39)

Using these weights, one can define a new condensed posyno-
mial g̈l(x) and form the program S̈ where g̈l(x) ≥ 1 replaces
gl(x) ≥ 1 in S. Since g̈l(ẋ) = gl(ẋ) and ẋ is feasible for S,

it follows that ẋ is feasible for S̈. The minimum value for S̈,
M(S̈), therefore satisfies

M(S) ≤ M(S̈) ≤ M(Ṡ). (40)

This defines an iterative process for generating a sequence
of posynomial programs whose minimum values are mono-
tonically decreasing upper bounds of the desired minimum
value for S.

The detailed algorithmic description of signomial program-
ming is out of the scope of this work. A comprehensive sur-
vey on algorithms for generalized geometric programming is
given in [22].


