
A Parsimonious Multifra
tal Model for WWW

TraÆ


?

Abdullah Balamash and Marwan Krunz

Department of Ele
tri
al & Computer Engineering

University of Arizona

Tu
son, AZ 85721

fbalamash,krunzg�e
e.arizona.edu

Abstra
t. In this paper, we 
apture the main 
hara
teristi
s of WWW

traÆ
 in a sto
hasti
 model, whi
h 
an be used to generate syntheti


WWW tra
es and assess WWW 
a
he designs. To 
apture temporal and

spatial lo
alities, we use a modi�ed version of Riedi et al.'s multifra
tal

model [18℄, where we redu
e the 
omplexity of the original model from

O(N) to O(1); N being the length of the syntheti
 tra
e. Our model has

the attra
tiveness of being parsimonious and that it avoids the need to

apply a transformation to a self-similar model (as often done in previ-

ously proposed models [2℄), thus retaining the temporal lo
ality of the

�tted traÆ
. Furthermore, be
ause of the s
ale-dependent nature of mul-

tifra
tal pro
esses, the proposed model is more 
exible than monofra
tal

models in des
ribing irregularities in the traÆ
. Tra
e-driven simulations

are used to demonstrate the goodness of the proposed model.

keywords | WWW modeling, web 
a
hing, multifra
tals, sta
k dis-

tan
e, self-similarity.

1 Introdu
tion

The ability to assess the performan
e of WWW 
a
hing poli
ies hinges on the

availability of a representative workload that 
an be used in tra
e-driven simu-

lations [5, 13℄. Measured (\real") tra
es 
an be used for this purpose. However,

due to the diÆ
ulty asso
iated with 
apturing real tra
es, only a handful of su
h

tra
es are available in the publi
 domain (see [1℄). This makes it hard to provide

simulation results with reasonable statisti
al 
redibility. A more feasible alter-

native is to rely on syntheti
 tra
es that are derived from a sto
hasti
 model.

The need for su
h a model is the main motivation behind our work.

In this paper, we use a modi�ed version of the multifra
tal model by Riedi [18℄

to simultaneously 
apture the temporal and spatial lo
alities in WWW traÆ
.

Riedi's model has the attra
tiveness of being able to simultaneously 
apture the

(lognormal) marginal distribution and the 
orrelation stru
ture of a time series.
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Its main disadvantage is its 
omplexity, whi
h grows linearly with the size of the

generated tra
e. We modify this model, redu
ing its 
omplexity to O(1). The

resulting (modi�ed) model is parsimonious, in that it is 
hara
terized by four

to �ve parameters, that represent the mean, varian
e, and 
orrelation stru
ture

of the \s
aled sta
k distan
e" string (see below). The popularity pro�le of the

traÆ
 is in
orporated in the model during the tra
e generation phase (assuming

that the popularity pro�les for all do
uments are given beforehand). Our model

is mainly intended for o�ine generation of the traÆ
 demand seen by a WWW

server. A

ordingly, the popularity pro�les 
an be easily 
omputed from the

server logs.

Two datasets were used in our study. The �rst one was 
aptured at the

Computer S
ien
e Department of the University of Calgary, while the se
ond

set was produ
ed by ClarkNet, a 
ommer
ial Internet Provider in Baltimore,

Washington DC [1, 3℄. Details of these tra
es 
an be found in [1, 3℄. Note that

the two tra
es have 
ontrasting loads (Calgary's load is light while ClarkNet's

load is very heavy). The data provide several pie
es of information, in
luding

the name of host that generated the URL request, the day and time the request

was re
orded, the name of the requested �le, the HTTP reply 
ode (explained

below), and the number of transferred bytes in response to the request. Four

types of HTTP reply 
odes were re
orded: su

essful, not modi�ed, found, and

unsu

essful. In our analysis, we only in
luded the requests with su

essful 
ode,

sin
e they are the ones that result in a
tual data transfer from the server. We

also ex
luded dynami
 �les (e.g., 
gi and pl �les).

WWW traÆ
 modeling has been the fo
us of several previous studies; exam-

ples of whi
h are given in [15, 2, 4, 14, 8℄. In these studies, the temporal lo
ality

of the traÆ
 was represented by the marginal distribution of the sta
k distan
e

string. This distribution was found to follow a lognormal-like shape. The sta
k

distan
e string, whi
h is an equivalent representation of a referen
e string, is

obtained by transforming the referen
e string using the LRU sta
k. In [2℄ the

authors showed that spatial lo
ality 
an be 
aptured (at least, in part) through

the auto
orrelation stru
ture (ACF) of the sta
k distan
e string. They argued

that the sta
k distan
e string exhibits long-range dependen
e (LRD) behavior.

Thus, to simultaneously model the marginal distribution (temporal lo
ality) and

the 
orrelation stru
ture (spatial lo
ality) of the sta
k distan
e string, they re-

lied on the work in [12℄, whi
h proved the invarian
e of the Hurst parameter to

transformations of the marginal distribution of an LRD pro
ess. More spe
if-

i
ally, the authors in [12℄ proved that under some mild assumptions, a point-

by-point transformation Y = F

�1

y

(F

x

(X)) of a Gaussian self-similar pro
ess X

with Hurst parameter H results in a self-similar pro
ess Y with the same Hurst

parameter, where F

x

and F

y

are the CDFs for X and Y , respe
tively. It should

be noted, however, that the proof of this result is valid asymptoti
ally and only

for Gaussian pro
esses (e.g., fra
tional ARIMA). More importantly, while this

result assures the invarian
e of H , it does not ne
essarily preserve the shape of

the ACF. As an example, 
onsider the transforming of the Gaussian distribution

of a F-ARIMA model into a lognormal distribution, whi
h adequately models



the marginal distribution of the sta
k distan
e string. The resulting ACFs are

shown in Figure 1, along with the ACF of the \real" traÆ
. The �gure illus-

trates the two main drawba
ks of the transformation. First, the transformation

distorts the overall shape of the ACF of the F-ARIMA pro
ess. Se
ond, the

original F-ARIMA model itself is not a

urate in representing the real ACF at

�nite lags.
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Fig. 1. Impa
t of transforming the distribution of a F-ARIMA model on the ACF.

To avoid the problems stated above, we resort to multifra
tal modeling to

simultaneously 
apture the 
orrelation stru
ture and the marginal distribution

of the sta
k distan
e string. Multifra
tality is a generalization of self-similarity

(monofra
tality), whereby the Hurst parameter (the s
aling exponent) is not

�xed, but varies with s
ale. This variability makes multifra
tal pro
esses more


exible than monofra
tal pro
esses in des
ribing \irregularities" in the traÆ


(e.g., 
ontrasting short-term and long-term behaviors). The reader is referred

to [17, 11, 18, 9, 10℄ and the referen
es therein for 
omprehensive dis
ussions of

multifra
tal pro
esses. In [18℄ the authors used a wavelet-based 
onstru
tion

of a multifra
tal pro
ess to show that the 
orrelation behavior of a strongly


orrelated time series 
an be approximately 
aptured by appropriately setting

the se
ond moments of the wavelet 
oeÆ
ients at ea
h s
ale of the multifra
tal

generation pro
ess. This result provides the basis for modeling the ACF of the

sta
k distan
e string. Combined with the fa
t that the above multifra
tal model

exhibits an approximately lognormal marginal distribution, they 
an be used to

model both the temporal and spatial lo
alities in WWW traÆ
.

Relying on the observation that temporal lo
ality is indu
ed by both tempo-

ral 
orrelation and long-term popularity [16℄, the authors in [6℄ introdu
ed a new

measure for temporal lo
ality 
alled the s
aled sta
k distan
e. This measure rep-



resents the deviation of the sta
k distan
es from their expe
ted values, assuming

that requests to a given do
ument are uniformaly distributed over the duration

of the tra
e. The s
aled sta
k distan
e 
aptures the impa
t of short-term 
orre-

lation, but does not 
apture the spatial lo
ality. For our WWW traÆ
 model,

we use a similar measure with the same name, but that measures the deviation

of the sta
k distan
es from their empiri
al expe
ted values. We model the ex-

pe
ted sta
k distan
e as a fun
tion of the popularity pro�le. Equally popular

do
uments have the same expe
ted sta
k distan
e. This s
aled sta
k distan
e

string was found to have a lognormal-like distribution and the same 
orrelation

stru
ture as the original sta
k distan
e string.

We use extensive simulations to evaluate the performan
e of our WWW

traÆ
 model and 
ontrast it with the self-similar model in [2℄ and the model

in [6℄, using the original (real) tra
es as a point of referen
e. Our performan
e

measures in
lude sample statisti
s of the syntheti
 tra
es (e.g., mean, varian
e,


orrelations, per
entiles) as well as the 
a
he and byte hit ratios for a tra
e-driven

LRU (least re
ently used) 
a
he. The results indi
ate marked improvement in

performan
e when using the proposed multifra
tal-based WWW model.

The rest of the paper is organized as follows. Se
tion 2 gives a brief overview

of Riedi et al.'s multifra
tal model and the modi�
ation we make to it to render

it parsimonious. The proposed WWW traÆ
 generation approa
h is given in

Se
tion 3, followed by simulation studies in Se
tion 4. We 
on
lude the paper in

Se
tion 5.

2 Multifra
tal Analysis of WWW TraÆ


As indi
ated earlier, multifra
tality is a generalization of monofra
tality (self-

similarity), where the �xed (s
ale independent) H parameter of a self-similar

pro
ess is now s
ale dependent. Certain multifra
tal pro
esses, in
luding the one


onsidered in this paper, inherently exhibit lognormal-like marginals, in line with

the shape of the marginal distribution of typi
al WWW tra
es. This 
onvenient

feature allows us to skip the risky step of transforming the marginal distribution,

leaving us with the task of �tting the ACF. In this se
tion, we �rst brie
y

des
ribe Riedi et al.'s multifra
tal model [18℄. This model uses a wavelet-based


onstru
tion to approximately 
apture the 
orrelation behavior of a given time

series by appropriately setting the se
ond moments of the wavelet 
oeÆ
ients at

ea
h s
ale. We then des
ribe how we modify this model to redu
e its 
omplexity

from O(N) to O(1). We then apply the modi�ed model in 
hara
terizing the

temporal and spatial lo
alities of WWW traÆ
.

2.1 Riedi et al.'s Multifra
tal Model

Riedi et al.'s model relies heavily on the dis
rete wavelet transform. The idea

behind the wavelet transform is to express a signal (time fun
tion) X(t) by an

approximated (smoothed) version and a detail. The approximation pro
ess is

repeated at various levels (s
ales) by expressing the approximated signal at a



given level j, say X

j

, by a 
oarser approximation at level j � 1, say X

j�1

, and

a detail D

j�1

. At ea
h s
ale, the approximation is performed through a s
aling

fun
tion �(t), while the detail is obtained through a wavelet fun
tion  (t). More

formally, a wavelet expansion of the signal X(t) is given by:

X(t) =

X

k

U

J;k

�

J;k

(t) +

1

X

j=J

X

k

W

j;k

 

j;k

(t) (1)

where

W

j;k

def

=

Z

1

�1

X(t) 

j;k

(t)dt (2)

U

j;k

def

=

Z

1

�1

X(t)�

j;k

(t)dt (3)

and  

j;k

and �

j;k

, j; k = 0; 1; 2; : : : ; are shifted and translated versions of the

wavelet and s
aling fun
tions  (t) and �(t), respe
tively, and are given by:

 

j;k

(t)

def

= 2

�j=2

 (2

�j

t� k) (4)

�

j;k

(t)

def

= 2

�j=2

�(2

�j

t� k): (5)

In (1), the index J indi
ates the 
oarsest s
ale (the lowest in detail). The


oeÆ
ients W

j;k

and U

j;k

are 
alled the wavelet and s
ale 
oeÆ
ients at s
ale j

and time 2

j

k. Together, they de�ne the dis
rete wavelet transform of the signal

X(t) (assuming that �(t) and  (t) are spe
i�ed).

Several wavelet and s
ale fun
tions have been used in the literature, giving

rise to di�erent wavelet transforms. One popular (and simple) transform is the

Haar wavelet transform. This transform, whi
h is spe
i�ed by the 
oeÆ
ients

W

j;k

and U

j;k

for all j and k, 
an be obtained re
ursively as follows (we adopt

the same 
onvention of [18℄, in whi
h the higher the value of j, the better the

approximation of the original signal):

U

j;k

=

U

j+1;2k

+ U

j+1;2k+1

p

2

(6)

W

j;k

=

U

j+1;2k

� U

j+1;2k+1

p

2

(7)

To initialize the re
ursion, the values of U

j;k

, k = 0; 1; : : : ; 2

j

� 1, at the highest

value of j are taken as the empiri
al tra
e to be modeled.

In order to generate syntheti
 tra
es with a given auto
orrelation stru
ture,

the Haar transform is reversed by rewriting (6) and (7) as:

U

j+1;2k

=

U

j;k

+W

j;k

p

2

(8)

U

j+1;2k+1

=

U

j;k

�W

j;k

p

2

(9)



Now to generate nonnegative data, whi
h in our 
ase represent the sta
k

distan
e string, we need to have jW

j;k

j � U

j;k

. To satisfy this 
onstraint, the

wavelet 
oeÆ
ients 
an be de�ned as:

W

j;k

= A

j;k

U

j;k

(10)

where A

j;k

is a random variable (rv) de�ned on the interval (�1; 1). Using (8),

(9), and (10), the following re
ursion 
an be obtained for synthesizing the s
ale


oeÆ
ients:

U

j+1;2k

= (

1 +A

j;k

p

2

)U

j;k

(11)

U

j+1;2k+1

= (

1�A

j;k

p

2

)U

j;k

(12)

The rvs A

j;k

must also satisfy the following additional 
onstraints [18℄:

1. A

j;k

; k = 0; 1; ::::; 2

j

� 1 are i.i.d.

2. For ea
h j, the probability density fun
tion of the rvsA

j;k

; k = 0; 1; : : : ; 2

j

�1,

is symmetri
 with zero mean.

3. A

j

is independent of A

l

for l > j and is also independent of U

0;0

.

The wavelet energy at a given s
ale is de�ned as the varian
e of the wavelet


oeÆ
ients at that s
ale. It has been shown that the 
orrelation stru
ture of the

signal 
an be approximately 
aptured by 
ontrolling the wavelet energy de
ay

a
ross s
ales. The ratio of the energy at s
ale j � 1 to the one at s
ale j (j is

�ner than j � 1) was found to be [18℄:

�

j

=

E[W

2

j�1

℄

E[W

2

j

℄

= 2

E[A

2

j�1

℄

E[A

2

j

℄(1�E[A

2

j�1

℄)

(13)

Assuming that E[W

2

j

℄ is given for all j, Equation (13) 
an be used to solve

for E[A

2

j

℄, j = 1; 2; : : :. The re
ursion 
an be initialized using E[A

2

0

℄ =

E[W

2

0

℄

E[U

2

0

℄

,

where W

0

and U

0

are the wavelet and s
ale 
oeÆ
ients at the 
oarsest s
ale.

In [18℄, the authors suggested two di�erent distributions for A

j

. One of them

is a symmetri
 beta distribution that has the following pdf:

f

A

j

(x) =

(1 + x)

�

j

�1

(1� x)

�

j

�1

�(�

j

; �

j

)2

2�

j

�1

(14)

where �

j

is the parameter of the rv and �(:; :) is the beta fun
tion. The varian
e

of this random variable is given by:

var[A

j

℄ =

1

2�

j

+ 1

: (15)

The other distribution is a point-mass distribution de�ned as:



Pr[A

j

= 


j

℄ = Pr[A

j

= �


j

℄ = r

j

Pr[A

j

= 0℄ = 1� 2r

j

In the 
ase of a beta distributed A

j

, the parameter �

j

at ea
h s
ale 
an be

found by solving (13) and (15), resulting in:

�

j

=

�

j

2

(�

j�1

+ 1)� 1=2 (16)

This, however, assumes that E[W

2

j

℄ is given for j = 1; 2; 3; : : :. Sin
e �

j

,

j = 1; 2; : : :, 
annot be obtained using a parametri
 model, it would be 
omputed

from the empiri
al data, whi
h makes the number of �tted parameters in the

model in the order of N ; N being the tra
e length.

On the other hand, if A

j

has a point-mass distribution, then (13) by itself

is not suÆ
ient to 
ompute both parameters of A

j

(


j

and r

j

). An alternative

approa
h to 
omputing these parameters is to rely on the following expression

for the moments of the s
aling 
oeÆ
ients at di�erent s
ales [18℄:

E[U

q

j

℄

E[U

q

j�1

℄

= 2

�q=2

E[(1 +A

j�1

)

q

℄; q = 1; 2; : : : (17)

However, to apply (17) one needs to have two moments (i.e., two values for q)

for ea
h s
ale j. Again, unless we 
an 
ompute these values using a parametri


model, we need to rely on the empiri
al data to do so, whi
h makes the model

more 
omplex than if a beta distributed A

j

were to be used.

It was shown in [18℄ that the above model (with either distribution of A

j

)

generates positive-valued auto
orrelated data with an approximately lognormal

marginal distribution.

2.2 Redu
ing the Number of Parameters

As shown in the previous se
tion, whether A

j

has a beta distribution or a point-

mass distribution, one needs to provide the se
ond moments of the wavelet 
o-

eÆ
ients or two moments of the s
ale 
oeÆ
ients at ea
h s
ale in order to 
om-

pletely determine A

j

, j = 1; 2; : : :. This signi�
antly in
reases the 
omplexity

of the model, as the number of parameters to be 
omputed a priori is in the

order of the tra
e length (unless we have a parameterized model to 
ompute

these values). Moreover, the point-mass rv is not ri
h enough and has only three

possible values.

To redu
e the 
omplexity of the model, we let A

j

be a triangular rv in the

range [�
; 
℄. This distribution is ri
her than the point-mass distribution and

has only one parameter. It allows us to �t the se
ond moment of the s
ale


oeÆ
ients for all s
ales using (17), provided that we 
an 
ompute the se
ond

moments analyti
ally knowing the mean � and the varian
e � of the modeled

data, as will be shown later in this se
tion.



For a dis
rete time series X = fX

i

: i = 1; 2; : : :g, we de�ne X

(m)

= fX

(m)

i

:

i = 1; 2; : : :g to be the aggregated time series of X at level m:

X

(m)

n

=

nm

X

i=nm�m+1

X

i

; n = 1; 2; 3; : : : ; N=m (18)

where m = 1; 2; 4; 8; :::N ; N is the length of X . Note that if the aggregation

level m 
orresponds to s
ale j, then the aggregation level 2m 
orresponds to

s
ale j � 1. From the de�nition of the Haar wavelet transform, the following

holds:

E[(X

(m)

)

q

℄

E[(X

(2m)

)

q

℄

= 2

�q=2

E[U

q

j

℄

E[U

q

j�1

℄

; for q = 1; 2; : : : (19)

From (19) and (17) we get:

E[(X

(m)

)

q

℄

E[(X

(2m)

)

q

℄

= 2

�q

E[(1 +A

(2m)

)

q

℄ (20)

where A

(2m)

= A

j�1

. Let 


(2m)

be the parameter of the rv A

j�1

at aggregation

level 2m. From (20) and the de�nition of the triangular random variable, we

obtain the following expression for 


(2m)

:




(2m)

=

s

6(4

E[(X

(m)

)

2

℄

E[(X

(2m)

)

2

℄

� 1) (21)

To redu
e the number of parameters in the multifra
tal model, we analyti-


ally obtain the se
ond moments of the s
aling 
oeÆ
ients, as shown next. The

varian
e at a given level of aggregation, var[X

(m)

℄ = V

(m)

, 
an be 
omputed

analyti
ally as a fun
tion of the auto
orrelation fun
tion of the signal [7℄:

V

(m)

= mv + 2v

m

X

k=1

(m� k)�

k

(22)

The mean, E[(X

(m)

)℄ = �

(m)

, is given by:

�

(m)

= m� (23)

where � and v are the mean and the varian
e of the original signal, respe
tively.

The se
ond moment of X

(m)

is then given by:

E[(X

(m)

)

2

℄ = mv + 2v

m

X

k=1

(m� k)�

k

+m

2

�

2

(24)

From Equations (21) and (24), the parameter of the rv A

j


an be 
omputed

for all s
ales j = 1; 2; : : :, given �, v, and the 
orrelation stru
ture of the time

series being modeled. For WWW traÆ
 sta
k distan
e strings, we found that



the form �

k

= e

��

n

p

g(k)

; k = 0; 1; : : : ; �ts the 
orrelation stru
ture very well,

where g is a fun
tion of the lag k. For the ClarkNet tra
e, g(k) = k produ
ed

a good �t to the empiri
al ACF, while for the Calgary tra
e, g(k) = log(k + 1)

was found appropriate.

In summary, to use the multifra
tal model for modeling the s
aled sta
k

distan
e string, we only need four parameters:

{ Mean of the sta
k distan
e string (�).

{ Varian
e of the sta
k distan
e string (v).

{ Auto
orrelation stru
ture (parameterized by �, n, and g).

Using these parameters, along with (24) and (21), one 
an 
ompute the param-

eter 


(m)

at ea
h aggregation level (s
ale).

The synthesis pro
ess starts from the highest level of aggregation. At this

level we 
an start with l data points that are normally distributed with mean

m

h

� (the mean at aggregation level m

h

) and varian
e of var[X

(m

h

)

℄, where m

h

is the highest aggregation level, whi
h is the length of the tra
e that needs to be

generated. After that, the pro
ess 
an be 
arried out using Equations (11) and

(12).

3 Modeling WWW TraÆ


In this se
tion, we des
ribe our approa
h for modeling the stream of �le obje
ts

generated by a WWW server. Let U be the number of unique �les (or obje
ts)

at the server and let fr

i

be the fra
tion of times that the ith �le, i = 1; 2; :::; U ,

appears in the referen
e string (fr

i

is the popularity pro�le of �le i). The model-

ing approa
h pro
eeds in three steps. First, we extra
t the sta
k distan
e string

from the URL referen
e string. Then, we apply some form of s
aling to 
apture

both sour
es of temporal lo
ality (temporal 
orrelation and long-term popular-

ity). The modi�ed multifra
tal model des
ribed in the previous se
tion is then

applied to model the s
aled sta
k distan
e string after 
omputing its mean and

varian
e and after �tting its 
orrelation stru
ture. Finally, we in
orporate the

popularity pro�le of the traÆ
 during the pro
ess of generating syntheti
 refer-

en
e strings. These main steps are des
ribed next.

3.1 Extra
ting the Empiri
al S
aled Sta
k String

In our model, we use the 
on
ept of sta
k distan
e to model the temporal and the

spatial lo
alities in WWW traÆ
. The authors in [4℄ extra
t the sta
k distan
es

from the original tra
e assuming an arbitrary initial ordering of the sta
k. When-

ever an obje
t is requested, its depth (sta
k distan
e) in the sta
k is re
orded

and the obje
t is pushed to the top of the sta
k. In our model we avoid making

any assumptions on the initial ordering of the sta
k, whi
h we have found to af-

fe
t the marginal distribution and the 
orrelation stru
ture of the sta
k distan
e

string. We start with an empty sta
k and pro
ess the empiri
al referen
e string



in the reverse dire
tion, starting from the last referen
e. If a �le is referen
ed for

the �rst time (in the reverse dire
tion), it is pushed to the top of the sta
k but

no sta
k distan
e is re
orded. Otherwise, if the �le has already been referen
ed

before (hen
e, it is already in the sta
k), then it is pushed from its previous

lo
ation in the sta
k to the top of the sta
k and its depth is re
orded as a sta
k

distan
e. Finally, the resulting tra
e of sta
k distan
es is reversed to get the 
or-

re
t sta
k distan
e string. The following example illustrates the idea. Consider

the referen
e string [a d 
 b 
 d d a b℄, where ea
h letter indi
ates the name of a

�le. If we pro
ess this string starting from the end, the �rst referen
e is to �le b.

Sin
e this is the �rst time �le b is being referen
ed, we push it to the top of the

sta
k without re
ording any distan
e. The same pro
edure is performed for the

next two referen
es (for �les a and d). The fourth referen
e (from the end) is for

�le d. Sin
e this �le has been referen
ed before, it gets pushed to the top of the

sta
k and its sta
k depth is re
orded (in this 
ase, the sta
k depth for �le d is

one). The pro
edure 
ontinues until all referen
es are pro
essed (see Figure 2).

The end result of this pro
ess is the sta
k distan
e stream [4 3 2 4 1℄.
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Fig. 2. Example showing our approa
h for extra
ting the sta
k distan
es from a real

tra
e.

Temporal lo
ality is attributed to both short-term 
orrelations and long-term

popularity [16℄. Do
uments that have long-term popularity pro�les tend to have

small sta
k distan
es. Some do
uments are not popular but have short-term


orrelation pro�les, whi
h make these do
uments appear often within a short

interval of time. As a result, these do
uments have small sta
k distan
es (i.e.,

they exhibit strong short-term popularity). In general, unpopular do
uments

tend to have longer sta
k distan
es. The authors in [6℄ tried to model these

trends by modeling the deviation of a sta
k distan
e from its expe
ted value;

assuming that the do
uments are uniformally distributed over the whole tra
e.

Instead, we model the deviation of a sta
k distan
e from its empiri
al expe
ted

value (the s
aled sta
k distan
e), as we found that the approa
h in [6℄ a�e
ts

the 
orrelation stru
ture. We model the expe
ted sta
k distan
e as a fun
tion of

the popularity pro�le. Equally popular do
uments have the same expe
ted sta
k

distan
e. Figure 3 shows the relationship between the number of requests a �le



gets (its popularity pro�le) and the empiri
al expe
ted sta
k distan
e. In both

tra
es, it is observed that the expe
ted sta
k distan
e drops exponentially with

respe
t to the popularity pro�le.

The s
aled sta
k distan
e string is obtained by normalizing ea
h sta
k dis-

tan
e by its expe
ted value. This string was found to have an approximately

lognormal marginal distribution and a slowly de
aying 
orrelation stru
ture that

is almost identi
al to the 
orrelation stru
ture of the sta
k distan
e string.
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Fig. 3. Number of requests versus the expe
ted sta
k distan
e for the two tra
es.

3.2 Modeling the S
aled Sta
k Distan
e String

To model the s
aled sta
k distan
e string, we need to determine �, v, �, and

n. On
e the values of these parameters are determined, the multifra
tal model

des
ribed in Se
tion 2 is used to 
apture the marginal distribution (temporal lo-


ality) and the 
orrelation stru
ture (spatial lo
ality) of the s
aled sta
k distan
e

string.

3.3 Modeling Popularity and Generating Syntheti
 Referen
e

Strings

To generate a syntheti
 WWW referen
e string, we �rst need to generate a

syntheti
 s
aled sta
k distan
e string, as shown in the previous se
tion. The

pro
ess of generating a syntheti
 WWW referen
e string starts by arranging the

unique do
uments of the WWW server in an LRU sta
k. This is done by sampling

from a probability distribution that is weighted by the popularity pro�les of the

various do
uments (i.e., the more popular a do
ument is, the more likely it will

be pla
ed 
loser to the top of the sta
k). To generate a referen
e string of length

N , we �rst 
ompute the number of referen
es a do
ument 
an get a

ording to

its popularity pro�le. Then the top do
ument at the LRU sta
k is 
onsidered as

the next referen
ed do
ument in the syntheti
 referen
e string. If the required



number of referen
es for this do
ument is rea
hed, then this do
ument is 
ushed

out of the sta
k. Otherwise, it is pushed down the sta
k a

ording to the next

value in the s
aled sta
k distan
e string. This is done after s
aling ba
k the s
aled

sta
k distan
e by multiplying it by the 
orresponding expe
ted sta
k distan
e

for the obje
t in hand (obje
ts with the same popularity pro�le have the same

expe
ted sta
k distan
e). This pro
ess 
ontinues until the popularity pro�les of

all obje
ts are satis�ed (no do
uments are left in the LRU sta
k).

4 Experimental Results

In this se
tion, we evaluate the performan
e of the proposed multifra
tal model

and 
ontrasting it with two other models. The �rst model is a self-similar

(monofra
tal) model [2, 4℄, whi
h 
hara
terizes the temporal and spatial lo
ali-

ties in WWW traÆ
. This model involves transforming the Gaussian marginal

distribution of a fra
tional ARIMA pro
ess into a more appropriate distribution

(e.g., lognormal). We simply refer to this model as the LRD model. The se
-

ond model was proposed by Cherkasova et al. [6℄, whi
h was dis
ussed in the

introdu
tion. The three investigated models were mainly designed for o�ine op-

eration, with the primary purpose of generating syntheti
 tra
es for use in 
a
he

design studies. A

ordingly, we 
ompare these models in terms of the �le and

byte miss ratios seen at an LRU 
a
he that is drived by syntheti
 tra
es from

these models. The 
omparison is made with referen
e to the 
a
he performan
e

seen under the real traÆ
 (the two studied tra
es). The results are shown in

Figures 4, 5, 6, and 7.
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Fig. 4. File miss ratio versus 
a
he size

(CALGARY tra
e).
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Fig. 5. Byte miss ratio versus 
a
he size

(CALGARY tra
e).

It is 
lear that of the three models, the proposed multifra
tal model produ
es

the most a

urate performan
e, espe
ially for small 
a
he sizes. The performan
e

improvement is greater in the 
ase of the CALGARY data. Consider, for exam-

ple, the CALGARY data with a normalized 
a
he size of 0.3. The per
entage
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Fig. 6. File miss ratio versus 
a
he size

(CLARKNET tra
e).
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Fig. 7. Byte miss ratio versus 
a
he size

(CLARKNET tra
e).

ina

ura
ies in the �le miss rate for the multifra
tal model, the LRD model, and

Cherkasova et al.'s model are given by 0.5%, 53%, and 111%, respe
tively. In the


ase of the byte miss rate, the 
orresponding values are 4.9%, 65%, and 109%.

The overall improvement in the a

ura
y of the �le and byte miss rates due to

the use of the multifra
tal model is signi�
ant.

5 Con
lusions

In this work, we demonstrated the potential of multifra
tal pro
esses as a viable

approa
h for WWW traÆ
 modeling. We started with the multifra
tal model of

Riedi et al., whi
h is 
apable of generating approximately lognormal variates with

any desired auto
orrelation stru
ture. However, to apply this model in traÆ


�tting and tra
e generation, one needs to mat
h as many parameters of the model

as the length of the tra
e to be generated. To make the model parsimonious, we

modi�ed it by using a di�erent distribution for the multiplier A

j

(whi
h relates

the wavelet and s
ale 
oeÆ
ients) and by analyti
ally expressing the parameter

of A

j

; j = 1; 2; : : :, in terms of the mean, varian
e, and ACF of the modeled

data. As a result, the modi�ed multifra
tal model is spe
i�ed by �ve parameters

only. We �tted this model to the s
aled sta
k distan
e strings of two WWW

traÆ
 tra
es. The proposed model 
aptures the spatial and temporal lo
alities

of the real traÆ
 as well as the popularity pro�le. Tra
e-drive simulations of the

LRU 
a
he poli
y indi
ates that our model gives mu
h more a

urate 
a
he miss

rates than two previously proposed WWW traÆ
 models. Our future resear
h

will fo
us on designing new 
a
he repla
ement and prefet
hing poli
ies that

exploit the 
hara
teristi
s of the traÆ
 and that rely on model predi
tions in

making �le repla
ement and prefet
hing de
isions.
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