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ABSTRACT

This paper explores the application of adversarial machine learning (AML) in RF communications, and more
specifically the impact of intelligently crafted AML perturbations on the accuracy of deep neural network (DNN)
based technology (protocol) and modulation-scheme classifiers. For protocol classification, we consider multiple
heterogeneous wireless technologies that operate over shared spectrum, exemplified by the coexistence of Wi-Fi,
LTE LAA (Licensed Assisted Access), and 5G NR-Unlicensed (5G NR-U) devices in the unlicensed 5 GHz bands.
Time-interleaving-based spectrum sharing is assumed. Given a window of received I/Q samples, a legitimate
DNN-based classifier (called the defender’s classifier) is often used to identify the underlying protocol/technology.
Similarly, DNN classifiers are often used to discern the underlying modulation scheme. For both types of
classifiers, we study an attack model in which an adversarial device eavesdrops on ongoing transmissions and uses
its own attacker’s classifier to generate low-power AML perturbations that significantly degrade the accuracy of
the defender’s classifier. We consider several DNN architectures for protocol and modulation classification (based
on recurrent and convolutional neural networks) that normally exhibit high classification accuracy under random
noise (i.e., AWGN). By applying AML-generated perturbations, we show how the accuracy of these classifiers
degrades significantly, even when the signal-to-perturbation ratio (SPR) is high. Several attack vectors are
formulated, depending on how much knowledge the attacker has of the defender’s classifier. On the one extreme,
we study a “white-box” attack, whereby the attacker has complete knowledge of the defender’s classifier and
its training dataset. We gradually relax this assuming, ultimately considering an almost “black-box” attack.
Mitigation techniques based on AML training are presented and are shown to help in countering AML attacks.
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1. INTRODUCTION

The demand for wireless capacity continues to outgrow spectrum availability, especially at low and mid bands
(e.g., sub-6 GHz). Various spectrum sharing architectures have been proposed to utilize the spectrum more
efficiently. For example, a three-tiered spectrum authorization access system was proposed for the Citizens
Broadband Radio Service (CBRS) band, which enables commercial users to coexist with incumbent federal
and non-federal users.1,2 A listen-before-talk (LBT) approach was adopted for the some of the Unlicensed
National Information Infrastructure (UNII) bands (5.15 – 5.85 GHz) to allow LTE license assisted access (LAA)
and 5G New Radio unlicensed (NR-U) cellular technologies to share the spectrum with Wi-Fi devices.3–5 The
coexistence of various technologies inevitably introduces cross-technology interference, which may be inadvertent
(e.g., due to hardware malfunction or protocol incompatibility) or adversarial (e.g., rogue devices that wish to
disrupt legitimate communications). A protocol (or technology) classifier can be used to rapidly identify an
ongoing transmission without decoding its signal and accordingly determine the legitimacy or otherwise of such
a transmission. Use cases for protocol classifiers include traffic estimation, fair allocation of the channel airtime,
identification of fake signals, and more.
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Conventional techniques for technology classification rely on unique features of the underlying protocols,
such as the periodicity of the cyclic prefix (CP).6 Many of these techniques are derivatives of spectrum sensing
for opportunistic (primary/secondary) access, where the main goal is to identify whether or not a particular
primary signal is present. These techniques are ineffective when the underlying technologies exhibit similarities
in their protocol semantics, e.g., the CP duration in LTE is one of the possible CP durations in 5G NR. Further,
extracting the features of interest often involves processing the signal over a long period to compute, for example,
its autocorrelation structure or to cross-correlate its samples against a priori known and unique part of it (e.g.,
the preamble). Such delay can be problematic for fast spectrum adaption.

Alternatively, technology identification can be performed using deep neural network (DNN) classifiers, which
can be trained using the In-phase (I) and Quadrature (Q) components of the received samples. Several such
classifiers have been proposed in the literature.7–12 The authors successfully applied a convolutional neural net-
work (CNN) based classifier to fingerprint Wi-Fi devices using I/Q data with deliberately added imperfections.8

Other authors applied CNN-based classifiers for dynamic spectrum sharing.9 Their models can detect the user
category (i.e., in/out network) and packet delivery rate. DNN classifiers were also applied to detect a priori
unknown spoofed signals.10

Despite their high classification performance, DNN-based classifiers can be vulnerable to AML attacks.13–16

Such attacks have been studied in object classification/recognition problems,17 and more recently in RF signal
classification.18 The general idea is to train a surrogate DNN classifier, hereafter called the attacker’s classifier,
to produce intelligently crafted perturbations. These perturbations, when combined with the original signal, can
mislead the defender’s classifier, causing it to incorrectly classify the received samples (see Figure 1). Note that
in contrast with image detection settings, where the same training dataset is used at both the attacker’s and
defender’s classifiers, different datasets may be used for RF signal classification to account for differences in the
channel conditions between the attacker and defender. Recent research efforts investigated AML perturbations
for baseband signal classification.18–21 However, an idealized “oracle” attack model was assumed, where the
attacker has complete knowledge of the defender’s classifier. In practical RF environments, the attacker has
limited information of the defender’s classifier (e.g., it only knows the type of layers in the DNN). As shown
in this paper, the amount of information that the adversary has of the defender’s classifier can have profound
impact on the attack’s strength. In addition, the received waveforms for the attacker can also be different
from the defender due to the various channel conditions. We explore such aspects and propose possible defense
mechanisms against AML attacks. Specifically, we study the impact of augmenting the defender’s training dataset
with properly tuned AML perturbations. Our results show that the proposed defense scheme can improve the
robustness of the DNN model under perturbations of different power levels.
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Figure 1. AML-based attack on the defender’s signal classifier.

2. MACHINE LEARNING-BASED SIGNAL CLASSIFICATION

This section proposes three DNN structures that can accurately classify signal protocol or modulation schemes.
Other works considered machine learning for RF signal classification;8–10 however, these approaches only used
the moving filter to capture the pattern behind a given signal but neglected the dependency naturally existing in
the waveform. The general idea behind using a DNN is that the samples associated with I/Q components can be
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Figure 2. The power spectral density (PSD) vs. time for spectrum sharing in an interleaving model.

fed into a DNN trained to recognize a particular type of signal. In contrast to traditional feature-based spectrum
sensing, DNN-based classification is data-driven, and does not require explicit specification of any technology-
dependent features. We build an interleaving spectrum sharing model (as shown in Figure 2), where only one
type of technology can be active at a given time. We then consider the modulation and protocol classification
problems under such model.

2.1 Modulation Classification

Previous DNN research focused on the CNN structure where the filter (or kernel) is used to capture features
hidden in a segmented sequence of I/Q samples. Further, real-time orthogonal frequency division multiplexing
(OFDM) signal modulation classification has recently been investigated using DNNs and software-defined ra-
dio.22 For example, Zhang et al. generated a modulation classification dataset under a dynamic fading channel,
including six types of OFDM modulation signals. Triple-skip residual stack (a kind of CNN) was trained and
showed high accuracy even with low SNR signals. Other works extended DNNs to signals with different mod-
ulations, channel conditions, and other available resources. Garrett et al.23 applied branch CNNs to achieve
approximately 80% classification accuracy averaged on 29 types of signals, including multi-carrier signals and
higher-order modulations. O’Shea et al. 24 investigated the DNN-based modulation classification tasks for
digital and analog signals. The authors24 also shared a dataset that consists of eleven modulation schemes.
In addition, a CNN-based classifier is designed and trained to classify the modulation of a given signal. The
dataset and the classifier are published as RML.2016a and VT-CNN2, respectively. In this work, we verify the
effectiveness of the VT-CNN2 structure (as shown in Figure 3 (c)) for modulation scheme classification then we
evaluate VT-CNN2’s performance under the proposed AML attacks.

2.2 Protocol Classification

Most existing DNN-based RF classification efforts focus on the modulation scheme identification;22–24 however,
there are many other supervised classification use cases for DNNs in wireless communication. We also seek
to explore how effective these approaches can classify wireless network protocols. Therefore, in addition to
modulation classification, we also seek to classify wireless protocols over the shared bands. While there are many
possible protocols to classify, we have selected a limited number of protocols. The three protocols examined in
this work have several modulation schemes in common operated over the same bandwidth. Hence, modulation
classification techniques cannot differentiate between the waveforms of such protocols, which calls for new machine
learning-based classifiers that capture other protocol-related embedded features in the observed transmissions.

A traditional protocol detection approach relies on a time-correlated view of the received sequences, which is
similar to how a recurrent neural network (RNN) captures temporal dynamic behavior over the input sequence.
Therefore, we investigate the application of RNNs for heterogeneous protocol classification over a shared spec-
trum, focusing on Wi-Fi, LTE-LAA, and 5G NR-U in the unlicensed 5 GHz bands. Next, we consider more
advanced RNN models by incorporating the bidirectional and multi-layer (hierarchical) gated structures. These
gates can balance the influence of the most recent input and the trained state during the recurrence. In addition,



the bidirectional layer(s) allow RNNs to simultaneously use past (backward) and future (forward) states during
the training. Hence, the bidirectional design can help the RNN detect the backward dependency that is difficult
to capture by the forward structure. Finally, the proposed DNNs shown in Figure 3 are trained to classify the
wireless protocols and evaluate the adversarial perturbations.
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Figure 3. DNN structures used for RF signal classification. Structures (a) is an RNN-based classifiers, structures (b) is a
traditional CNN classifier, and structure (c) is the VT-CNN2 classifier.

3. ADVERSARIAL MACHINE LEARNING PERTURBATIONS

This work considers the wireless communication system shown in Figure 1. In this setting, the legitimate user
– or defender – has a DNN trained to classify the received signals, whereas the transmitter sends one of several
possible protocols or modulation schemes in an interleaved manner. The attacker, shown as the adversary device
in Figure 1, overhears the transmitter’s signals (called benign data) and uses the signals to train its own DNN.
The purpose of the adversary’s DNN is to generate adversarial signals that a virtually indistinguishable from the
benign signal; however, the perturbation leads to deleterious predictions. In our model, the defender will receive
the benign transmission along with the perturbation generated by the adversary, resulting in the misclassification
of the received samples.

The communication scenario in Figure 1 can be formulated as follows: we define Htd, Hta, and Had as
the channel matrices between the transmitter and defender, the transmitter and attacker, and the attacker and
defender, respectively. We assume AWGN (n) at any receiving device and denote xo as the transmitted waveform.
Therefore, the defender receives xt

d = Htdxo + nd and the attacker receives xt
a = Htaxo + na. To launch an

AML attack, the adversary uses its received signal xt
a to generate and transmit the perturbations η. Under this

attack, the defender receives xt,a
d = Htdxo+Hadη+nd. We assume the attacker is close enough to the defender,

so the interference received by the defender is approximated equals to the η generated by the attacker.

Once the adversary has access to a signal xt
d, they can generate a perturbation to produce a new signal that

is crafted to fool the defender’s DNN. We use the Fast Gradient Sign Method (FGSM) in this work to generate
the perturbation because FGSM is widely accepted as a benchmark in the AML community.13,25 This technique
uses the gradients of a neural network to generate a perturbation η and, subsequently, the adversarial data
xadv. Typically, a DNN is expected to predict the same class for x and its neighboured input xadv = x + η if
every element of η is less than the threshold. This logic is because a classifier is trained to find the boundary of
different classes, the input with a similar feature can be assigned to the same class (e.g., x and xadv) if ||η||∞ < ϵ.
Nevertheless, the adversary’s goal is to amplify the effect of this small η so that the targeted classifier cannot
accurately classify xadv.

We simplify the DNN as the mapping function f(x; θ) : Rn×2 7→ Y where n are the number of samples and
Y is the set of outcomes (e.g., modulation format, etc.). The adversary crafts the sample xadv in a way such
that ∥x − xadv∥ ̸= η. Even though the difference between the xadv and x is small, the difference between the
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Figure 4. Relationship between SPR and ϵ: (a) protocol classification dataset, and (b) modulation classification dataset.

outputs f(x+ η; θ) and f(x; θ) is not minor. In fact, these small perturbations that are generated based on the
gradient of the loss correspond to large changes in the output space, which can make them difficult to detect. As
a result, we can expect that small perturbations at the input can result in a change in the network’s label from
the benign sample. The adversarial perturbation is formally given by η = ϵsign(▽xL(x, y; θ)), where L(x, y; θ)
is the cross entropy loss function with parameters θ.13 The adversarial data are generated by maximizing the
loss function with respect to the classifier’s input x based on the gradients ▽xL(x, y; θ). The final adversarial
perturbation is given by:

xadv = x+ ϵ sign(▽xL(x, y; θ)). (1)

To visualize the energy of the generated perturbations, we define the Signal to Perturbation Ratio (SPR)
between the received signal and the perturbation as E(x)/E(η) in dB. Note that the received signal already
includes the interference due to channel effects between the transmitter and defender, and the defender’s classifier
is trained to classify these interfered signals into different categories. Such interference is raised by the wireless
channel but has nothing to do with the adversarial perturbation. In other words, SPR is the energy ratio between
the benign signal received by the defender and the perturbation added by the adversary. Next, we calculate the
relationship between SPR and ϵ for the protocol and modulation classification datasets. As shown in Figure 4,
the ratio drops faster with smaller ϵ and slows down when ϵ becomes larger. Note that the scale of ϵ differs
from the two datasets corresponding to the overall magnitudes signals x in each dataset. For example, the
amplitudes of I/Q samples for some signal types in the modulation classification dataset are much smaller than
the magnitudes in the protocol classification dataset.

4. ADVERSARIAL VECTORS WITH VARYING ATTACK’S KNOWLEDGE

The strength of the adversarial attack (i.e., how much the defender’s performance is reduced) depends on the
adversary’s knowledge about the defender and the information that the adversary has access to.26 For example,
existing AML attacks13,14 require knowing either the model internals or its training data. These work craft
adversarial examples using detailed DNN architecture and parameters. We release such conditions by learning
a substitute model, giving different access for the adversary to the actual model. There is a wide range of
knowledge that could be available. Therefore, we categorize the adversary’s knowledge and availability to five
levels described in this section.

4.1 White-box Attack

A white-box attack scenario refers to the situation where the adversary has access to the defender’s classifier and
datasets. Therefore, the loss function used in AML attacks can be formulated as: L(xt,a

d , yd; θ). A white-box
attack scenario is the worst-case situation for the defender because the adversary has all the same information
as the defender. However, the defender can protect some of their information, so the attacker must generate



perturbations based on imperfect knowledge. Therefore, we consider the different levels of knowledge for the
attacker in both classifier and data and evaluate the classification accuracy accordingly.

4.2 Limited Knowledge of Classifier

In an imperfect knowledge situation, the attacker must learn a classifier fa(x; θa) based on different knowledge
levels of the defender’s classifier fd(x; θd). The loss can be represented by L(xt,a

d , ya; θa) because the label for
the corresponding input has to be estimated by attacker’s classifier. Therefore, the difference between fa(x; θa)
and fd(x; θd) has a direct impact on the loss function. In this paper, we study incompleteness of the knowledge
for the attacker and test their impacts on the generated perturbations as follows:

Attack (a): In this setting, the attacker has access to all the hyperparameters of the defender but not the
seed used to train the neural network (e.g., the attacker knows the network structure, number of nodes at
each layer, training routine, etc.). Therefore, although the hyperparameters are the same for the defender and
adversary, the mapping function of the final trained classifiers will be different due to DNN weight initialization.
Hence, the same network configuration with different random seeds will lead to different networks because of the
non-covexity of the optimization task.

Attack (b): The attacker knows the overall DNN architecture but does not know the other hyperparameters.
For example, an adversary knows the defender is using a CNN but not the hyperparameters (e.g., the filter
number, kernel size, strides, etc.). However, such an adversarial knowledge setting can significantly impact
the final weights of the DNN after the training. In this case, we consider all the defender’s architecture and
hyperparameters, except the filter number used in each layer, are known by the attacker.

Attack (c): In this setting, the attacker only knows the classifier type (e.g., CNN or RNN). Therefore, the
adversary uses the classifier with different layers on the attacker side to generate the perturbations. We apply
the same type of DNN but with varying layers (e.g., we use structure (a) for the defender but a two-layer RNN
for the adversary).

Attack (d): In this scenario, the attacker does not know the classifier type. In our case, we use the CNN and
RNN for signal classification. However, the mapping function f differs significantly with DNN types, especially
since a CNN could represent features spatially, different from an RNN’s sequential representation of features.
Under this knowledge scenario, the CNN is used by the adversary to generate perturbations, but an RNN is used
by the defender.

4.3 Limited Knowledge of Training Data

In the real environment, benign waveforms received by the attacker are xt
a = Htaxo + n, and signals received

by the defender are xt
d = Htdxo + n. The waveforms received by the attacker and the receiver are different

considering the channel impact. As a result, the attacker needs to train its classifier fa using xt
a instead of xt

d.
Due to the training data being different from the defender’s, the trained parameters for the attacker θa can vary
a lot from the defender’s θd even with the same hyperparameters. As a result, the loss function L(xt,a

d , yd; θd) is
approximated by L(xt

a, ya; θa)+ηT▽xt
a
L(xt

a, ya; θa). We denote this type of adversarial signal as Attack (e): The
attacker has access to a different dataset than the defender to train its classifier. The transmitter broadcasts the
signal, so the attacker and the defender receive the waveforms that contain the same bit-level information. Due
to the channel impact, datasets are different in baseband format. Various random seeds are used to generate
the interference caused by such an effect. We consider the AWGN channel between all the communication nodes
and the same levels of SNR for the signals received by the defender and attacker.

5. ADVERSARIAL TRAINING TO IMPROVE ROBUSTNESS

In order to mitigate the accuracy drop caused by AML attacks, we propose to defend the classifier by adversarial
training.13 The primary objective is to increase model robustness by injecting adversarial examples into the
training set. Adversarial training does not change the structure of the given classifier, because it only augments
these perturbed data while training the targeted model. We suppose the attacker generates the adversarial signal
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Figure 5. Classification accuracy vs. SNR of the test dataset. The VT-CNN2 classifier is used at the defender. The
attacker’s classifier is modified from VT-CNN2 to account for its limited knowledge (ϵ = 0.001).

using FGSM. The augmentation can be done by feeding the model with both the original and crafted data, or
learning with a modified objective function:

L̃(x, y; , θ) = αL(x, y; θ) + (1− α)L(x+ η, y; θ). (2)

where L is the cross entropy loss and α ∈ [0, 1]. This form of data augmentation instead uses inputs that are
unlikely to occur naturally but that expose flaws in how the model conceptualizes its decision function. The
central idea behind this strategy is to increase the model’s robustness by ensuring that it can predict the same
class for legitimate and perturbed examples. We assume the attacker knows the neural network used by the
defender with all parameters before the adversarial training (similar to white-box assumption, which is a strong
attack). However, the defender retrains the same neural network architecture with benign and self-perturbed
data (adversarial data) to improve the robustness. The attacker does not have access to the retrained neural
network. The self-perturbed examples are generated from the original data set, so they have the same amount
as the original ones. As a result, only half of the data are benign in the new training dataset. The attacker
generates FGSM perturbations based on the neural network trained with only benign data using different ϵ. We
then test and compare the classification accuracy of the original model and the adversarially trained model under
these attacks.

6. SIMULATION RESULTS

For the modulation classification problem, we used RML.2016a dataset that has eleven modulation schemes,
including 8PSK, BPSK, QPSK, QAM16, QAM64, CPFSK, GFSK, PAM4, WBFM, AM-DSB and AM-SSB,
with SNR ranges from -18 dB to 20 dB with a step size of 2dB. For the wireless protocol classification problem,
we use Matlab Communication and 5G Toolboxes to generate waveforms of LTE, Wi-Fi, and 5G NR protocols
with channel bandwidth of 20 MHz, and consider the baseband I/Q samples at the receiver (with added noise)
as input to the classifier. By applying a sliding window, these samples are divided into multiple sequences,
each consisting of 512 I/Q pairs. These sequences are used as datasets to train and test various classifiers.
Approximately 15,000 of such segments were obtained, split into 70% for training and 30% for testing. In
addition, we assume an AWGN channel for all transmission. The Wi-Fi waveform is transmitted by generating
baseband samples of 802.11ac (VHT) with BPSK modulation and 1/2 code rate. LTE waveforms are generated
assuming downlink reference measurement channel with R.9. This waveform uses 64 QAM modulation. We also
generate 5G waveforms using 5G downlink fixed reference channel under QPSK modulation and a code rate of
1/3, with a subcarrier spacing of 15 kHz.

We studied FGSM perturbations under limited-knowledge attacks for the modulation classification dataset.
To keep the energy of the perturbation low, we explore the FGSM attacks with ϵ = 0.001 as an example. As



Table 1. Protocol Classification Accuracy for Different Attacks and ϵ

ϵ W-B attack Attack (a) Attack (b) Attack (c) Attack (d) Attack (e) Benign Perturbs
0.05 62.03% 63.47% 84.24% 82.72% 83.83% 85.98% 91.73%
0.15 28.74% 31.85% 49.83% 48.49% 58.66% 46.97% 91.38%
0.25 10.79% 16.02% 21.36% 19.79% 42.31% 33.22% 90.51%
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Figure 6. Classification accuracy for different perturbed data under adversarial training for RML 2016.a dataset with SNR
= 16 dB (VT-CNN2 classifier is used at both the attacker and defender).

shown in Figure 5, attack (a) and (b) shows very close accuracy with the white-box attack. This result suggests
that a small structure change may not heavily impact the FGSM adversarial signals for VT-CNN2 on the RML
2016.10a dataset. However, when the knowledge of the attacker is further reduced, the impact of FGSM becomes
weaker (shown as the attack (c) and (d)).

We also investigate the protocol classification problem. The accuracy for structure (a) under different attacks
is summarized in Table 1. The impact of attack (a) is the closest to the white-box attack, and it is because the
attacker has the same hyperparameters as the defender. One can still inherit most of the properties from the
other, even with different training seeds. The DNN used by the attacker exchanges the filter number of the first
two layers for attack (b) and has fewer layers (i.e., we remove the third layer of structure (a)) for attack (c).
They have similar performance on the defender, which indicates that these hyperparameters have comparable
influences. Attack (d) has the worst attack impact among the imperfect knowledge attacks. The attacker in
this mode applies the CNN structure (b) to generate the adversarial signals for the RNN structure (a). Even
though both types of the classifier can achieve high classification accuracy on the received waveforms, the actual
mapping function can differ significantly from each other. As a result, a well-crafted perturbation by the CNN
may not achieve the expected effect on the RNN. Attack (e) uses the different training datasets to generate the
AML perturbations. Thus, it shows more variance than other attacks.

For the defense mechanisms, we apply adversarial training technique to the modulation classification dataset.
We first generate the self-perturbed data with ϵ = 0.005 because we care about the small perturbations, and
the largest ϵ considered in this dataset is 0.005. Figure 6 shows the classification accuracy for training under
different datasets. The orange bars indicate that the classifier has a higher accuracy under attacks when trained
with self-perturbed data. Even though we only consider the adversarial examples with ϵ = 0.005, the accuracy
for ϵ = 0.0025 and ϵ = 0.001 is also improved. Such improvement is because the ϵ in the FGSM attack only
impacts the energy of the perturbation. In other words, the perturbation vectors generated under ϵ = 0.0025 and
ϵ = 0.005 point to the same direction but with different scales. The adversarial examples with high ϵ helps the
neural network know the direction of the perturbations. It can help improve the accuracy of lower ϵ examples
with the same perturbation direction. However, adversarial training is not always helpful. The classification
accuracy for small ϵ (e.g., less than 0.0005) is reduced when including the adversarial examples into the training.
This may be because the self-perturbed data poison the original dataset, which makes the neural network unable
to learn the precise mapping relationship between the input and the label during the training. The green bars
stand for the result for adversarial training when the defender knows the ϵ that the attacker uses. In this case,
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Figure 7. Classification accuracy for different perturbed data under adversarial training using the RML 2016.a dataset
(SNR = 16 dB, VT-CNN2 classifier is used for both the attacker and defender).

the defender can generate the self-perturbed data with the same ϵ used by the attacker, so they have better
performance when tested under the attack. It indicates that the choice of the ϵ to generate the adversarial
data used by the defender could impact the robustness of the classifier. In Figure 7, we further corroborate the
above observations by studying the classification accuracy versus ϵ of the test data, considering various (fixed)
values of ϵ of the defender’s training set. This figure is essentially a generalization of the results presented by
the orange bar of Figure 6. The defender’s classifier performs the best when it is trained with the same ϵ used
by the attacker.

7. CONCLUSIONS

In this paper, we studied various CNN- and RNN-based classifiers for protocol and modulation identification
based on received I/Q samples (without signal decoding). These classifiers typically exhibit high classification
accuracy under random noise. However, under FGSM perturbations (a type of AML-based noise), we observed
that such classifiers become highly inaccurate even when the attacker has limited knowledge of the defender’s
classification engine. Compared with traditional jamming, where the attacker transmits only AWGN noise, the
proposed AML-based attacks require significantly less transmission power to mislead the defender’s classifier.
To improve the robustness of the studied DNN-based classifiers, we proposed the use of adversarial training for
the defender’s classifier. However, data injection increases the training cost, for it requires more samples for
the training process. In addition, it may not be as effective under other AML attacks (beyond FGSM). Our
future work includes adversarial defenses for baseband signals that do not involve adversarial training since the
generation of these samples causes a significant overhead during training.
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