
Machine Learning Based Protocol Classification in
Unlicensed 5 GHz Bands

Wenhan Zhang and Marwan Krunz

Dept. Electrical & Computer Engineering, University of Arizona, Tucson, AZ

{wenhanzhang, krunz}@email.arizona.edu

Abstract—To monitor RF activity and efficiently coordinate
channel access for heterogeneous wireless systems over a shared
channel, it is important to be able to classify observed trans-
missions accurately without decoding them. In this paper, we
propose novel recurrent neural network (RNN) architectures for
signal classification, considering as a use case on interleaving-
based spectrum sharing model for Wi-Fi, LTE-LAA, and 5G-
NRU over the unlicensed 5 GHz bands. Several classifiers are
presented, which take raw in-phase/quadrature (I/Q) samples
as input. First, we examine Simple RNNs, Long Short-term
Memory (LSTM) networks, and Gated Recurrent Units (GRU)
networks for protocol classification. These RNNs are used to
capture the unique features in observed signals. To further
improve the classification accuracy, we extend the RNN designs
into a bidirectional structure, allowing an RNN cell to learn
the temporal dependence in the waveform in both forward and
backward directions. Bidirectionality can effectively increase the
amount of information and the context available to the neural
network. We then extend our designs to multi-layer RNNs, which
allow the classifier to capture temporal correlations at multiple
time scales, hence increasing the network’s computational ca-
pacity. Finally, we propose further enhancements to reduce the
over-fitting problem in RNN training, including regularization,
recurrent weight constraints, and rate halving. Our simulation
results show that the multi-layer and bidirectional designs can
effectively improve the accuracy of the RNN-based RF signal
classifier. Combining the two features, an RNN structure can
achieve more than 92% accuracy in our protocol classification
problem.

Index Terms—Deep learning, signal classification, coexistence,
recurrent neural networks, dynamic spectrum access

I. INTRODUCTION

The demand for wireless capacity continues to outgrow

spectrum availability, especially at low and mid bands (e.g.,

sub-6 GHz). To efficiently utilize the congested spectrum,

various spectrum-sharing architectures have been proposed [1].

For example, in the Citizens Broadband Radio Service

(CBRS), a three-tiered spectrum authorization access system is

employed, which enables commercial users to share spectrum

with incumbent federal and non-federal users [2]. A dynamic

frequency selection approach was adopted for the Unlicensed

National Information Infrastructure (UNII) bands, permitting

LTE license assisted access (LAA) and 5G unlicensed (NR-

U) cellular technologies to share the unlicensed spectrum with

Wi-Fi devices [3], [4] in sub-6 GHz bands. The coexistence of

various waveforms inevitably introduces interference among

users. Interference may originate from legitimate devices or

may come from adversarial systems that aim at jamming or

capturing the channel and preventing legitimate devices from

accessing it. Therefore, it is critical for network coordinators

to be able to classify observed signals for the purpose of ensur-

ing fair access and detecting nonconforming and adversarial

behavior.

Common spectrum sensing approaches are usually based on

energy detection, maximum likelihood estimation, and cyclo-

stationarity [5]. Many of these approaches require the receiver

to know the protocol semantics as well as the transmitter

parameters (e.g., frequency offset). Such methods are often

designed to detect the signal of a particular protocol. However,

in some spectrum sharing scenarios, multiple heterogeneous

protocols may contend for the shared spectrum. For example,

in the unlicensed 5 GHz bands, Wi-Fi, LTE LAA, and 5G NR-

U devices can share the common spectrum [6], [7]. Unless a

given contending device is equipped with multiple radios, it is

difficult to identify the waveforms of different signal protocols.

In addition, the conventional methods require listening for

a certain period when receiving the waveforms to estimate

the periodicity and calculate the correlation with the known

sequences (e.g., the preamble). Nonetheless, such listening

time can be insufficient for the fast adaption between different

protocols, especially in the dynamically shared bands. To ad-

dress the above limitations, we propose a deep neural network

(DNN) based framework for accurate and fast signal sensing

and classification in multi-protocol coexistence scenarios.

If the modulation and coding scheme (MCS) of the captured

signal is unknown, then a protocol classifier would have to

rely on down-converted baseband signals to be used as input.

In recent years, different neural networks have been designed

to classify RF signals based on baseband in-phase/quadrature

(I/Q) samples. In [8], [9], the authors used the moving kernel

of a convolutional neural network (CNN) to capture features

hidden in a segmented sequence of I/Q samples. However,

CNNs are not particularly effective at capturing temporal

dependencies. In contrast, a recurrent neural network (RNN)

can capture the memory (time dependency) in the data, which

explains its widespread use in forecasting problems, such as

language modeling, speech recognition, and trajectory predic-

tion of moving objects. The authors in [10] applied a Long

Short-term Memory (LSTM) network, a type of RNNs, for

automatic modulation classification. Their proposed design

outperforms a CNN classifier at high SNRs. In [11], the

authors used both CNN and LSTM networks to generate

adversarial RF waveforms that successfully mislead legitimate

classifiers. Most existing DNN-based RF classification efforts

focus on modulation scheme identification. However, the three

examined protocols have several modulation schemes in com-

mon, and they may operate over the same bandwidth. Hence,

modulation classification techniques cannot differentiate be-

tween the waveforms of such protocols, which calls for new

machine learning-based classifiers that capture other protocol-

related embedded features in the observed transmissions.

A traditional protocol detection approach relies on the time-

correlated view of the received sequences, which is similar to

an RNN that can exhibit temporal dynamic behavior over the

input sequence. Therefore, we investigate the application of

RNNs for heterogeneous protocol classification over a shared

spectrum, focusing on Wi-Fi, LTE-LAA, and 5G NR-U in

the unlicensed 5 GHz bands as an example. We consider an

interleaving spectrum sharing approach, where any but only

one of the three coexisting technologies can be active at a time.

Starting first with a basic two-layer RNN model, we show that

this model can achieve around 71% classification accuracy,

on average. To improve the classification accuracy, we then

consider more advanced RNN models, involving bidirectional

and multi-layer (hierarchical) gated structures. Unlike basic

RNN models, these advanced networks have gates that balance

the impact of the most recent input and the trained state

during the recurrence. In addition, our bidirectional RNN

structures allow information from the past (backward) and

future (forward) states to be simultaneously used during the

training. Such bidirectional design helps the RNN detect

the backward dependency that the forward structure cannot

capture. Our results show that the bidirectional design can

increase not only the accuracy but also the precision and recall.

In our hierarchical RNN designs, the classification outcomes

of a lower RNN layer are used as input to train the next upper

layer, which further increases the computational capability of

the RNN-based classifier.

On the other hand, the multi-layer and bidirectional struc-

tures increase the neural network’s complexity and give rise to

possible model over-fitting. To solve these problems, we pro-

pose further enhancements, including regularization, dropout,

recurrent weight constraints, and learning rate halving. Matlab-

based simulations of the three coexisting protocols over the 5

GHz band were conducted for various proposed designs. They

show that the average classification accuracy as a result of the

novel RNN structures exceeds 92%.

II. BASIC RNN MODELS

A. Simple RNN

An RNN is a type of neural networks that is designed for

sequential processing. At each time step j, j = 1, 2, ..., a

basic RNN cell takes sequence xj as input and updates the

corresponding learnable hypothesis parameter θ. In contrast

to CNNs, RNNs can capture temporal dependencies over the

entire input. A typical RNN model can be unfolded over j,

where the current hidden state hj is updated based on the

previous state hj−1 and the external input xj . Formally, hj =

+*

*

*

Cj-1Cj-1

hj-1hj-1
xjxj

CjCj

hjhj

pjpj i ji j ojoj

+

*
*

*

xjxj

hj-1hj-1 hjhj

r jr j zjzj
1-

sigmoid

tanh

(a) LSTM cell (b) GRU cell

Fig. 1. Cell architecture for LSTM and GRU networks.

f(hj−1, xj ; θ), where f is a mapping function. For a finite

number of time steps, state hj can include the previous state

input in a recursive manner:

hj = f(hj−1, xj ; θ) = f(f(hj−2, xj−1), xj ; θ) = · · · (1)

B. LSTM Network

An LSTM network builds on the simple RNN architecture

but adjusts the updating procedure of the hidden state. We

define the cell as the unit for state update, as shown in

Figure 1(a). At each j, the cell output at the previous time step,

hj−1, is combined with xj to form the input to the current cell.

The state of the cell is Cj , which records the system memory

and gets updated at each j. In contrast to simple RNNs, an

LSTM network uses several gates, including an input gate (ij),

an output gate (oj), and a forget gate (pj). These gates are

defined in Equation (2) below. They are used to control the

effect of the input and output information through a sigmoid

(σ) function:

ij = σ(Wixj + Uihj−1 + bi)

oj = σ(Woxj + Uohj−1 + bo)

pj = σ(Wpxj + Uphj−1 + bp).

(2)

In (2), Wi, Wo, and Wp are weights assigned to the three gates;

Ui, Uo, and Up are the corresponding recurrent weights; and

bi, bo, and bp are the bias values of the three gates. Similar

to the gate function, xi and hj−1 are combined to update the

intermediate cell state C̃j . Instead of a sigmoid, the inputs

are processed by a hyperbolic tangent function (tanh) that

generates an output value between −1 and 1:

C̃j = tanh(Wcxj + Uchj−1 + bc). (3)

After knowing Cj−1 and C̃j , the cell state at time j is updated

by the forget gate and the input gate as follows:

Cj = pj ∗ Cj−1 + ij ∗ C̃j . (4)

The output of the cell hj , which will be used at time j+1, is

obtained from by the element-wise product of the output gate

and the hyperbolic tangent functioned Cj :

hj = oj ∗ tanh(Cj). (5)

C. GRU Model

The main difference between the GRU model and the LSTM

network is that GRU models use the same unit to control the

input gate and the forget gate factor, as shown in Figure 1(b).

Therefore, a GRU has only two gates: a reset gate rj and an

update gate zj . At each step j, these gates are calculated as

follows:

rj = σ (Wrxj + Urhj−1 + br)

zj = σ(Wzxj + Uzhj−1 + bz).
(6)

Similar to LSTM structure, Wr and Wz are gate weights; Ur

and Uz are recurrent weights; and br and bz are bias vectors.

rj determines the combination rate of the current input and

the previous state’s output, while zj defines the amount of the

previous state’s output that will be used in the current step.

As depicted in Figure 1(b), the intermediate hidden state h̃j

is determined by xj and hj−1, where hj−1 is processed by rj
before tanh. Thus, h̃j can be expressed as:

h̃j = tanh(Whxj + Uh(rj ∗ hj−1) + bh). (7)

A GRU does not have the extra output gate to apply the

nonlinearity as in (5). Hence the output of the cell is the direct

gated combination of hj−1 and h̃j :

hj = (1− zj) ∗ hj−1 + zj ∗ h̃j . (8)

III. MULTI-LAYER AND BIDIRECTIONAL RNNS

Although the basic RNN structures described in the previous

section have the unique ability to capture correlations in the

signal, capturing long-term dependencies is still challenging

due to the gradient vanishing and exploding problems. In

addition, long-term correlations tend to be subdued by small

perturbations caused by short-term variations in the input. In

this paper, we explore the use of multi-layer and bidirectional

RNN-based to increase the computational capacity of the

classifier. We also propose further enhancements to regularize

and constrain the recurrent structure so as to balance the

over-fitting problem raised by the higher model complexity.

Combining the above three aspects, we apply the designs to

our protocol classification problem.

A. Multi-layer RNN Structure

We consider a stacked RNN architecture in which the output

of a RNN layer is used as input to the next-upper RNN

layer, as shown in Fig. 2(a). The layer can be any RNN

structure, such as a standard RNN (i.e., the SimpleRNN in

TensorFlow), a LSTM [10], or a GRU. During training, the

classification outcomes of a lower layer are used as inputs

to train the next upper layer. Thus, the output at the final

layer (i.e., classification layer) is expected to achieve higher

classification accuracy than any lower-layer network. This

stacked architecture captures temporal correlations at different

time scales without using too many input samples. It allows

the lower layer to transform the raw input into a more suitable

format (e.g., remove the unrelated samples and disturbances).

An RNN cell can be regarded as a hypothesis that updates

according to (1). The output ȳj is generated by the φ(hj),
where φ is the activation function. After that, the loss function

L can be calculated based on ȳj and desired prediction

yj . To minimize this loss function, we train the model and

update θ at each iteration by the back-propagated gradient:

U1U1

o j-1o j-1

x j-1x j-1

h 1,j-1h 1,j-1

h 2,j-1

h 3,j-1

W1W1

U1U1

W2W2

W1W1

U1U1

W2W2

h 3,jh 3,j

h 2,jh 2,j

h 1,jh 1,j

o jo j

x jx j

o j+1o j+1

x j+1x j+1

h 1,j+1h 1,j+1

h 2,j+1

h 3,j+1

W1W1

U1U1

W2W2

U2U2

U3U3 U3 U3U3 U3U3

U2 U2U2 U2U2

(a) Multi-layer RNN

o j-1o j-1

x j-1x j-1

o jo j

x jx j

o j+1o j+1

x j+1x j+1

h j-1h j-1 h jh j h j+1hj+1h j-1 h j h j+1

b j-1b j-1 b jb j b j+1b j+1b j-1 b j b j+1

Forward

Backward
U(b)U(b)

U(h)U(h)

W(b)W(b) W(h)W(h)

V(h)V(h)V(b)V(b)

(b) Bidirectional RNN

Fig. 2. Computational graph for recurrent network with multi-layer and
bidirectional structures.

g = 1
J∇θ

∑J
j=1 L(φ(f(hj−1, xj ; θ)), yj). When it comes to

the multi-layer RNN structure, the output of the hidden layer in

layer l at time j can be computed from the hidden layer output

of both lower layer at current time j (hl−1,j) and the same

layer at previous time (hl,j−1). Combined with the hypothesis

parameter θ, the hidden layer output can be formulated as:

hj,l = f(hj−1,l, hj,l−1; θ). (9)

The unfolding of RNN involves two-dimensional calculation

in layer and time, which leads to a different information flow

than a regular RNN structure. The gradient propagated through

layer and time is used to calculate the weights of the input

and previous hidden state. A typical gradient of the weight

matrix from hidden unit gθ can be computed by its Jacobian

matrix
∂hj,l

∂θ and the partial derivative vector of the loss ghj,l
:

gθ =
∂hj,l

∂θ ghj,l
. As a result, the singular values of the Jacobian

matrix decide the magnitude of gradients. A small value will

attenuate the gradient and result in a vanishing problem. In

contrast, a large value results in gradient explosion. For a deep

RNN structure, the gradient of the hidden layer can be affected

by the previous layer and time. Therefore, the hidden unit

gradient can be expanded as:

ghj,l
=

∂hj,l+1

∂hj,l
ghj,l+1

+
∂hj+1,l

∂hj,l
ghj+1,l

. (10)

To reduce the impact of extreme gradient updates, we con-

sider the adaptive moment optimizer, also known as ADAM.

In this optimization algorithm, the DNN first estimates the

first- and second-order moment to correct the bias. The step

gradient is the same as in stochastic gradient descent (SGD),

but two more moment variables are added: s and q. The

estimated first moment is updated as s = ρ1s + (1 − ρ1)g.

Similarly, the estimated second moment can be updated as

q = ρ2q + (1− ρ2)g ∗ g, where ∗ operator is the element-

wise product of a matrix. To correct the initialization bias, we

introduce the correction terms of the first and second moments

which are given by: ŝ = s
1−ρ1

, and q̂ = q
1−ρ2

, where ρ1
and ρ2 is the exponential decay rate and can be decided in

the initial steps. We set ρ1 = 0.9 and ρ2 = 0.999 as the

default values. Then, the parameter update can be decided by

the moment estimation: Δθ = −ε ŝ√
q̂+δ

, where δ = 0.00001

is a small constant for stabilization, and ε is the step size (set

to 0.001). The momentum is incorporated into the update for

θ, and helps adapt the updating step according to the gradient.

Besides, this adaption also makes ADAM not too sensitive to

the initial learning rate, so it is more robust to the choice of

hyperparameters than SGD.

B. Bidirectional RNN Structure

Bidirectional RNNs connect two hidden layers of opposite

directions to the same output. With this form of generative

deep learning, the output layer receives information from the

past (backward) and future (forward) states simultaneously.

This leads to improved accuracy because classification is now

based on merging the results from both directions, i.e., chrono-

logical and inverse chronological orders. Such bidirectionality

makes the network non-causal, whereby future information can

influence the current decision. However, this non-causality is

applied only during the training of the RNN network. Once

the network has been trained, real-time classification (testing

part) is performed using only currently received samples.

In our case, outputs are possible signal protocols. The loss

function is obtained from the output of the hidden layer and

the actual value of y. Therefore, the output o can be regarded

as the unnormalized log probabilities of each possible value

of the labels. The total loss for a given sequence x and the

corresponding label y can be represented as the sum of losses

over all time steps:

L = L (x1, ..., xJ , y1, ..., yJ) =

J∑
1

Lj

=

J∑
1

log pmodel(yj |x1, ..., xj) (11)

where pmodel(yj |x1, ..., xj) is the probability loss calculated

from yj and model’s input x1, ..., xj . However, we still

consider a causal structure, where at the time j, only the

samples prior to j make contributions to f . Because the

signal waveform contains correlations from the sequences

after the current input xj , we include another intermediate

layer beginning from the end of the sequence, as drawn in

Figure 2(b). In this figure, hj is the state of the sub-recurrent

layer that moves forward and bj is the state of the sub-recurrent

layer that moves backward. Accordingly, the output unit can

benefit from both directions and compute the outcome based

on both the past and the future, i.e.,

oj = f(V
(h)
j hj , V

(b)
j bj) (12)

where f function is the mapping function that combines the

output sequences. In our proposed structure, the outputs for

both the forward and backward layers are calculated in a

recurrent way. Unlike (11), the backward weight matrix V
(b)
j

is updated by the input after time j, thus including the impact

of the future inputs.

Note that V
(h)
j hj and V

(b)
j bj are only used to train f with

parameter θ. When the training is finished, the predicted label

can be expressed as: ȳj = φ(f(xj ; θ)). For the predicted

label is only regarded to the current input xj , the testing

system is still causal. When applying a bidirectional RNN

network model for protocol classification in shared-spectrum

environments, the states of various cells need to be updated in

both directions simultaneously to ensure that each unit receives

updates from the whole sequence.

C. Further Enhancements

Our proposed multi-layer and bidirectional RNN structures

help capture more features in input sequences but they also

increase the complexity of the classifier. They may lead to a

over-fitting situation during the training process. Additionally,

RNNs in general may face a gradient exploding problem due

to the reuse of sequential states. As shown in (2) and (6),

the recurrent weight matrix U j at step j is updated using

nonlinear activation functions, which could result in weights

and gradients exploding when j is large. We propose several

further enhancements to constrain these side effects:

1) Regularization and Dropout: Regularization can be used

to tune the weight matrix by adding additional penalty terms

into the loss function. The added terms control excessively

fluctuating function values and associate with the weight co-

efficients such that the coefficients do not take extreme values.

Dropout refers to randomly deleting connections between

computational units (neurons) during the training process of a

DNN. It helps reduce the reliance on specific units and dilution

of the weights. Using both approaches, RNN can reduce the

generalization error between the evaluation set and the training

set.

2) Recurrent Weight Constraints: Recurrent weight con-

straints check the norm of the recurrent weights and rescale

them below a pre-defined threshold. Weight constraints are

per-variable projection functions, applied to the target weight

matrix after each gradient update during the training. Such

constraints force each hidden state to have a norm that is less

than or equal some desired value.

3) Learning Rate Halving: The learning rate is bounded

by the step size parameter ε. This setting is suitable at the

beginning of the training, but ε may be too large to detect

small changes well into the training process. Learning rate

halving can solve this problem, where we associate ε with the

epoch number. During the initial training epochs, the weight

matrix differs a lot from the desired one, allowing the back-

propagated gradients to be more significant. When updating

the weights, the weight matrix gets closer to the near-optimal

one, and the corresponding gradients will be limited to a

smaller value. This way, our RNN models can still update from

the small gradients even after many iterations in the training

process.

IV. PERFORMANCE EVALUATION

A. Data Generation

We use Matlab Communication and 5G Toolboxes to gen-

erate waveforms of LTE, Wi-Fi, and 5G NR protocols. A

set of signal features supported by Matlab, including channel

bandwidth, modulation schemes, I/Q imbalance, DC offset,

and subcarrier spacing are varied. Through these features,

we can generate diverse waveforms under different parameter

settings. Of the various possible features, we consider the

baseband I/Q samples at the receiver (with added noise) as

input to the classifier. I/Q samples can be easily obtained

before decoding the signal, and they provide a rich represen-

tation of the waveform. By applying a sliding window, these

samples are divided into multiple sequences, each consisting

of 512 I/Q pairs. These sequences are used as datasets to

train and test various classifiers. Approximately 15,000 of such

segments were obtained, split into 70% for training and 30%

for testing. In this paper, we assume all protocols operate

on the same center frequency and have a channel bandwidth

of 20 MHz. This classification problem is more challenging

because the frequency information or spectrogram can only

provide a limited contribution to distinguish signal types. In

addition, we assume an AWGN channel for all transmission.

The Wi-Fi waveform is transmitted by generating baseband

samples of 802.11ac (VHT) with BPSK modulation and 1/2
code rate. LTE waveforms are generated assuming downlink

reference measurement channel with R.9. This waveform uses

64 QAM modulation. We also generate 5G waveforms using

5G downlink fixed reference channel under QPSK modulation

and a code rate of 1/3, with a subcarrier spacing of 15 kHz.

B. Impact of Multi-layer Structure

Results in [9] indicate that the DNN classifier has the

highest accuracy when SNR is around 15 dB; therefore, we

conduct simulations under this SNR and test the multi-layer

RNN approach for up to 6 recursive layers. Note that we

control the gain of all types of signals to be 15 dB, which

means all the received signals in the database have the same

SNR. We first show the impact of using different optimizers.

The result are summarized in Figure 3, where we apply

the multi-layer LSTM networks with different layers as an

example. An SGD optimizer exhibits a better performance in

a shallower network. It outperforms the ADAM optimizer with

ε = 0.01 when the number of layer is less than three. However,

as more layers are integrated, the SGD’s accuracy drops

monotonously. In contrast, the ADAM optimizer with ε = 0.01

has low accuracy in shallow architecture, but its performance

improves when the network structure becomes deeper. The

accuracy stabilizes at 64% with some fluctuations when the

layer number is greater than three. An ADAM optimizer with

ε = 0.001 exhibits the best classification performance among

these three optimizers. For instance, with three RNN layers,

the classification accuracy enhances from 52.7% under SGD

to 90.8% under ADAM . This is because an ADAM optimizer

can individually adapt the learning step size for different θ by

estimating of the first and second moments of the gradients.

ADAM with ε = 0.001 suffers slightly when the number of

layer increases from three to six, but still outperforms other

optimizers. As shown in Figure 3, The ADAM optimizer with

ε = 0.001 has a similar accuracy with ε = 0.01 when the layer

number is six. These results also indicate that even with the

1 2 3 4 5 6
Number of Layers

0

20

40

60

80

100

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy

SGD
ADAM = 0.01
ADAM = 0.001

Fig. 3. Accuracy of multi-layer LSTM networks using different gradient
optimizers.

TABLE I
COMPARISON OF RNN MODELS WITH VARIOUS NUMBER OF LAYERS.

Model
Number of RNN Layers

1 2 3 4 5 6

SimpleRNN 51.8% 70.8% 70.3% 73.6% 70.9% 68.4%
LSTM 84.6% 91.6% 90.8% 88.7% 83.6% 67.5%
GRU 85.5% 89.9% 90.4% 83.8% 66.4% 66.2%

TABLE II
PRECISION AND RECALL FOR CLASSIFIED PROTOCOLS USING DIFFERENT

RNNS UNDER SNR=20 DECIBEL.

Metrics Protocol GRU Bi-GRU LSTM Bi-LSTM

Recall
Wi-Fi 82.00% 91.49% 83.34% 90.63%
LTE 81.73% 90.19% 81.32% 89.34%

5G NR 86.46% 85.58% 85.60% 91.09%

Precision
Wi-Fi 81.99% 86.00% 71.36% 88.00%
LTE 85.00% 91.99% 90.91% 93.09%

5G NR 83.01% 89.00% 88.18% 89.96%

same DNN structure, different optimizer settings still have an

impact on the performance of the neural networks.

Because the ADAM optimizer with ε = 0.001 outperforms

other optimizers, we apply it to the rest of RNN structures and

show the results in Table I. It can be observed that the accuracy

increases with the layer numbers for the first several layers

but decreases when more layers are added. Among all these

RNN-based classifiers, the LSTM network can achieve the

highest accuracy of 91.6% when there are two LSTM layers

stacked together. However, suffering from the layer increasing,

the accuracy of the LSTM network drops to 83.6% when the

layer number is five and to 67.5% when the layer number is

six. This can be explained by the fact that the backpropagation

of the gradient in deeper RNNs suffers more from exploding

and vanishing problems than shallow RNNs. The redundant

layers can also easily lead the model to overfit the training

data and to perform worse on the testing part. We also tested

different combinations of different types of RNN, and the

results show similar trends (e.g., the accuracy increases for

the first several layers and then decreases). These findings

indicate that stacking RNN layers can improve the classifier

performance but with certain limitations of the layer number.

C. Impact of Bidirectional Structure

We conduct simulations using the same dataset as before

but with SNR = 20 dB. To calculate the recall and precision

(a) LSTM network. (b) Proposed LSTM network.

Fig. 4. Confusion matrix comparison between the single-layer unidirectional
LSTM network and the multi-layer bidirectional LSTM network without
recurrent-weight constraints.

for each label, we first define the true positive (TP) as the

correct classification of the signal into such a label and the

true negative (TN) as classifying other signal types into other

labels. Accordingly, we also define two kinds of errors for

the classifier: The false positive (FP) when misclassifying

other types of signals into this label; the false negative (FN)

when misclassifying this signal into other labels. Therefore,

the precision can be written as TP
TP+FP and the recall can be

presented as TP
TP+FN . We then test the recall and precision of

the proposed bidirectional structure in the LSTM and GRU as

summarized in Table II. As shown above, the bidirectional

architecture successfully improves the classification perfor-

mance for both RNNs. The average recall improvement is

5.69% for GRU and 6.94% for LSTM, which indicates the

bidirectional structure is more sensitive to detect FN samples.

Meanwhile, the average precision improves 5.66% for GRU

and 6.87% for LSTM. Thus, it shows that the enhancement of

recall does not sacrifice precision performance. In other words,

the bidirectional structure can reduce two types of errors (FP

and FN) simultaneously. This improvement is because the

proposed structure can benefit from the two-direction layers

and help the RNN include the waveform dependencies from

both sides to improve the classification performance. As a

result, we consider combining the multi-layer structure with

the bidirectional design.

The confusion matrix for the proposed combined neural

network is depicted in Figure 4, where we use a three-layer

bidirectional LSTM network as the example. As shown in Fig-

ure 4(a), the average accuracy for a single-layer unidirectional

LSTM network is about 85%. It can detect the Wi-Fi signals

more accurately compared with LTE and 5G NR signals. This

is because the initial 5G NR launches depend on existing LTE

infrastructure in non-standalone (NSA) mode and is similar

to LTE protocol in 3GPP standardization. By introducing the

proposed structure, the average accuracy can achieve 92%, as

presented in Figure 4(b). Though LTE and 5G NR signals

show lower accuracy compared with the Wi-Fi signals, the

overall misdetections distribute more evenly in the proposed

model. As a result, the proposed multi-layer and bidirectional

LSTM network have a better classification performance than

the basic LSTM network.

V. CONCLUSION

In this paper, we developed RNN-based deep neural net-

works to detect coexisting signal types by I/Q samples without

having to decode them. With segmented sample sequences,

different types of recurrent neural networks were trained. The

classification result shows competitive accuracies by LSTM

and GRU networks. We then applied the multi-layer and

bidirectional structure to help capture long-term dependencies

in the signals. However, the increasing complexity of the RNN

can result in the over-fitting problem, so we proposed further

improvements to compensate for it, including regularization

and dropout, recurrent weight constraints, and learning rate

halving. The classification accuracy gets further enhanced by

the proposed structure. These results show that the proposed

deep neural architecture can achieve accurate results in the

signal protocol classification problems.

VI. ACKNOWLEDGEMENTS

This research was supported by the U.S. Army Small

Business Innovation Research Program Office and the Army

Research Office under Contract No. W911NF-21-C-0016, by

NSF (grants CNS-1563655, CNS-1731164, and IIP-1822071),

and by the Broadband Wireless Access & Applications Center

(BWAC). Any opinions, findings, conclusions, or recommen-

dations expressed in this paper are those of the author(s) and

do not necessarily reflect the views of NSF or ARO.

REFERENCES

[1] “IEEE standard for definitions and concepts for dynamic spectrum
access: terminology relating to emerging wireless networks, system
functionality, and spectrum management,” IEEE Std 1900.1-2019 (Re-
vision of IEEE Std 1900.1-2008) , vol., no., pp.1-78, 23 April 2019.

[2] C. Xin and M. Song, “Analysis of the on-demand spectrum access
architecture for CBRS cognitive radio networks,” IEEE Transactions
on Wireless Communications, vol. 19, no. 2, pp. 970-978, Feb. 2020.

[3] 3GPP, “Study on licensed-assisted access using LTE,” 3GPP Work Item
Description, RP-141664, Sep. 2014.

[4] G. Naik, J. -M. Park, J. Ashdown and W. Lehr, “Next generation Wi-Fi
and 5G NR-U in the 6 GHz bands: Opportunities and challenges,” IEEE
Access, vol. 8, pp. 153027-153056, 2020.

[5] W. C. Headley and C. R. C. M. d. Silva, “Asynchronous classification of
digital amplitude-phase modulated signals in flat-fading channels,” IEEE
Transactions on Communications, vol. 59, no. 1, pp. 7-12, January 2011.

[6] M. Hirzallah, W. Afifi and M. Krunz, “Full-duplex-based rate/mode
adaptation strategies for Wi-Fi/LTE-U coexistence: a POMDP ap-
proach,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 1, pp. 20-29, Jan. 2017

[7] W. Zhang, M. Feng, M. Krunz and A. Hossein Yazdani Abyaneh,
“Signal detection and classification in shared spectrum: A deep learning
approach,” in Proc. IEEE INFOCOM conference, May 2021 pp. 1-10

[8] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based
radio signal classification,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 1, pp. 168-179, Feb. 2018.

[9] T. J. O’Shea, J. Corgan, and T. C. Clancy,“ Convolutional radio
modulation recognition networks,” in Proc. International conference
on engineering applications of neural networks, 2016, pp. 213-226,
Springer.

[10] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders and S. Pollin, “Deep
learning models for wireless signal classification with distributed low-
cost spectrum sensors,” in IEEE Transactions on Cognitive Communi-
cations and Networking, vol. 4, no. 3, pp. 433-445, Sep. 2018

[11] W. Zhang, M. Krunz, and G. Ditzler, “Intelligent jamming of deep neural
network based signal classification for shared spectrum,” in Proc. IEEE
MILCOM Conference, San Diego, Nov. 29 – Dec. 2, 2021.

