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Abstract
Generative Adversarial Networks (GANs) have recently attracted considerable attention in 
the AI community due to their ability to generate high-quality data of significant statisti-
cal resemblance to real data. Fundamentally, GAN is a game between two neural networks 
trained in an adversarial manner to reach a zero-sum Nash equilibrium profile. Despite 
the improvement accomplished in GANs in the last few years, several issues remain to 
be solved. This paper reviews the literature on the game-theoretic aspects of GANs and 
addresses how game theory models can address specific challenges of generative models 
and improve the GAN’s performance. We first present some preliminaries, including the 
basic GAN model and some game theory background. We then present a taxonomy to clas-
sify state-of-the-art solutions into three main categories: modified game models, modified 
architectures, and modified learning methods. The classification is based on modifications 
made to the basic GAN model by proposed game-theoretic approaches in the literature. We 
then explore the objectives of each category and discuss recent works in each class. Finally, 
we discuss the remaining challenges in this field and present future research directions.

Keywords  Generative adversarial network (GAN) · Game theory · Multi-agent systems · 
Deep generative models · Deep learning

1  Introduction

Generative Adversarial Networks (GANs) represent a class of generative models that 
was originally proposed by Goodfellow et al. (2014b). These models have received wide 
attention in recent years due to their potential to model high-dimensional complex real-
world data (Hong et al. 2019). As generative models, GANs do not minimize a single 
training criterion. They are used to estimate the real data probability distribution. A 
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GAN usually comprises two neural networks: a discriminator and a generator, which are 
trained simultaneously via an adversarial learning technique. Such a GAN is more pow-
erful in both feature learning and representation (Fedus et al. 2017). The discriminator 
attempts to differentiate between real data samples and fake samples made by the gen-
erator, while the generator tries to create realistic samples that cannot be distinguished 
by the discriminator (Li et al. 2018), as shown in Fig. 1. In particular, many GAN mod-
els do not rely on any assumptions about the distribution of the real data they are trying 
to mimic. They can generate infinitely realistic new samples from latent space (Hong 
et al. 2019). This feature enables GANs to be successfully applied in various applica-
tions, ranging from image synthesis, computer vision, video and animation generation 
to cybersecurity (Alqahtani et al. 2021).

The core idea of GANs is inspired by a two-player zero-sum minimax game between 
the discriminator and the generator. In such a game, the total utilities of two players 
are zero, and each player’s gain or loss exactly balances by the loss or gain of the other 
player. GANs are designed to reach a Nash equilibrium at which each player cannot 
increase its gain without reducing the other player’s gain (Goodfellow et  al. 2014b; 
Wang et  al. 2017). To better comprehend this concept, we can view this two-player 
game as a student-teacher game, where the generator plays the role of a student, trying 
to draw a painting, and the discriminator plays as a teacher, trying to teach the student 
how to draw. To succeed in this game, the student must learn to make indistinguishable 
paintings from genuine artworks, and the teacher must learn to discriminate between 
real and fake paintings. In order to play at the Nash equilibrium, the two players need 
to continuously optimize their best response strategies to enhance the generating and 
the discriminating abilities, respectively. Figure 2 shows this game, considering players, 
strategy sets, and the payoffs. Players ( P1 and P2 ) are like the generator and the discrim-
inator in a GAN setup shown in Fig. 1. The strategy sets of players ( S1 and S2 ) is making 
indistinguishable paintings from genuine arts by the student and discriminate between 
real and fake paintings by the teacher. These strategies correspond to the weights of 
neural networks in GAN, i.e., choosing best weights � and � in discriminator ( D� ) and 
generator ( G� ) neural networks, respectively. Players attempt to maximize their payoff 
( u1 an u2 shown in Fig. 2) to reach a Nash equilibrium point.

Despite the significant success of GANs in many domains, applying them to certain 
real-world problems has been hindered by various challenges. The most significant of these 
problems is that GANs are hard to train and suffer from instability problems, such as mode 
collapse, non-convergence, and vanishing gradients. A GAN needs to converge to the Nash 
equilibrium during the training process, but such convergence has been shown to be chal-
lenging (Wang et al. 2019; Wiatrak and Albrecht 2019).

Fig. 1   GAN’s basic architecture (Wang et al. 2017)
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Since their introduction in 2014, GANs have been widely studied, and numerous meth-
ods have been proposed to address their challenges. However, to synthesize high-quality 
data using GANs, it is necessary to improve their underlying theory, which has been a 
major hindrance to developing GANs (Cao et al. 2018). As the basic principle of GANs is 
based on game theory, exploiting the game-theoretical techniques became one of the most 
discussed topics and attracted research efforts in recent years.

1.1 � Motivation and contribution

As we mentioned in Sect. 1, GANs are essentially a competition between a generator and 
a discriminator which are trained iteratively in an adversarial learning manner. Given the 
way the GANs are trained, the GAN frameworks are naturally modeled and analyzed as a 
two-players zero-sum game and the Nash equilibrium of the game is a saddle point where 
the generator has captured the distribution of real samples. Based on the basic relation 
between these two concepts, recently, researchers have made good progress in improving 
GAN results and mitigating challenges in this field by utilizing the concepts of the game 
theory. This primarily motivated us to review these researches. Another important motiva-
tion for focusing on game-theoretical progress in GANs is the absence of a comprehensive 
survey that addresses the recent advances in the GANs from a game-theoretic perspective. 
Other published surveys (e.g. Goodfellow 2016; Wang et al. 2017; Creswell et al. 2018; 
Hitawala 2018; Gonog and Zhou 2019; Hong et al. 2019; Bissoto et al. 2019; Zhang et al. 
2018a; Pan et al. 2019; Kumar and Jayagopal 2021; Salehi et al. 2020; Ghosh et al. 2020; 
Saxena and Cao 2020; Gui et  al. 2020; Jabbar et  al. 2020) considered other aspects of 
GANs, as explained later. To the best of our knowledge, this work is the first to explore the 
GAN advancement from a game-theoretic standpoint.

Our survey first introduces some background and key concepts in this field. Then we 
classify recently proposed games of GANs models into three major categories: (i) modified 
game models, (ii) modified architectures in terms of the number of agents, and (iii) modi-
fied learning methods. We then classify each group into several subcategories and review 
the main contributions of each work. We also address some existing problems in the dis-
cussed literature and highlight possible future research directions.

Fig. 2   Example of student-teacher game as a GAN: players, strategy sets, and payoffs
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1.2 � Paper structure and organization

The rest of this paper is organized as follows. Section 2 presents some background on game 
theory and GANs including the basic ideas, learning method, and challenges. In Sect. 3 we 
have a glimpse of the other surveys conducted in the field of GANs. We provide our pro-
posed taxonomy in Sect. 4 and review the research models in each category in this section. 
Section 5 is devoted to discussion and conclusions.

2 � Background and preliminaries

We start with an overview of game theory and then move toward GANs. Table 1 lists the 
acronyms and their definitions used throughout the paper.

2.1 � Game theory

Game theory aims to model the interactions between several decision-makers. These inter-
actions are called a “game” and decision-makers are called “players”. In each round of the 
game, players take actions from a set of actions called strategy set. It is usually assumed 
that players are rational, which means that each one of them tries to choose an action that 
maximizes its payoff with respect to the other players’ actions. So, each agent should have 
a belief about the other players (Osborne 2004).

Games can be categorized in different ways. We can classify games based on the timing 
of the players’ actions into two categories: simultaneous and sequential games. In simulta-
neous games, all players choose their actions concurrently, or, at least without knowing the 
actions chosen by other players. On the contrary, in sequential games one player decides 
on its course of action before the others do. To ensure that the discrepancy in time has no 
strategic impact, the other players must be aware of the first player’s decision. Every time a 
new step is taken, both players will be fully aware of how the previous ones went (Osborne 
2004).

One of the simplest games are two-player constant-sum games, which are games where 
the sum of the two players’ utilities is equal to this amount in all other states. When this 
amount equals zero, the game is called zero-sum game (Shoham and Leyton-Brown 2008).

Several solutions have been introduced for analyzing games and finding their points 
of equilibrium. One type of equilibrium is “Nash equilibrium (NE)” in which no player 
can increase its payoff by changing its strategy unilaterally. In the other words, Nash equi-
librium is a state where nobody regrets his/her choice given others’ strategies and with 
respect to his/her payoff (Shoham and Leyton-Brown 2008). NE in sequential games is 
known as Subgame Perfect (Nash) Equilibrium (SPNE), which is a Nash equilibrium with 
the characteristic that all players play their best moves after the history of each game (Bro-
cas et al. 2018). In the situation where the players assign a probability distribution to the 
strategy sets instead of choosing one strategy, the Nash equilibrium is called mixed Nash 
equilibrium (Shoham and Leyton-Brown 2008). Although Nash proved every finite game 
has a mixed NE, pure NE does not exist in all games (Osborne 2004).

Considering zero-sum games, we can define another solution concept named maximin 
or minimax strategy. In the maximin strategy, the decision maker maximizes its worst-
case payoff, which happens when all other players cause as much harm as they can to the 
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decision maker. In minimax strategy, the decision maker wants to cause harm to others by 
minimizing other players’ maximum payoff (Shoham and Leyton-Brown 2008). The value 
that players get in the minimax and maximin strategy method is called min–max (mini-
max) and max–min (maximin) value, respectively. In Neumann (1928), Neumann proved 
that in any finite, two-player, zero-sum game, all Nash equilibria coincide with min–max 
and max–min strategies of players. Furthermore, the min–max and max–min values are 
equal to the Nash equilibrium utility. This is the most crucial result of zero-sum games that 
applies to generative adversarial networks. Games and more specifically zero-sum games 

Table 1   Acronyms and 
corresponding full names 
appearing in the paper

Acronym Full name

AE Auto-encoder
ASRFB Averaging over decision variables
CS-GAN Cyclic-synthesized GAN
DDL Discriminator discrepancy loss
DDPG Deep deterministic policy gradient
FedGAN Federated GAN
FID Fréchet inception distance
GAN Generative adversarial network
IID Independent and identically distributed
IRL Inverse reinforcement learning
IS Inception score
JSD Jensen-Shannon divergence
KL Kullback-Leibler
L-GAN Latent-space GAN
MAD-GAN Multi-agent diverse GAN
MADGAN Multiagent distributed GAN
MolGAN Molecular GAN
MPM GAN Message passing multi-agent GAN
MS Multi-class minimax game based self-supervised tasks
NAS Neural architecture search
NE Nash equilibrium
OCR Optical character recognition
ODE Ordinary differential equation
ORGAN Objective-reinforced GAN
RNN Recurrent neural network
RL Reinforcement learning
SCH-GAN Semi-supervised cross-modal hashing GAN
Seq-GAN Sequence GAN
SGD Stochastic gradient descent
SNEP Stochastic nash equilibrium problem
SPE Subgame perfect equilibrium
SRFB Stochastic relaxed forward-backward
SS Self-supervised task
SVI Stochastic variational inequality
WGAN Wasserstein GAN
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can be extended to multiplayer mode. There are several ways to determine or approxi-
mately determine the NE of multi-player zero-sum games. For example, the authors in Cai 
and Daskalakis (2011) and Lv and Ren (2018) have presented different models to find the 
equilibrium solutions of these games.

2.2 � Generative adversarial networks

In this section, we give a brief description of the GAN by reviewing its basic idea, learning 
methods, and challenges.

2.2.1 � Generative models

The main purpose of a generative model is to generate synthetic data whose distribution 
captures the distribution of a real data set (i.e., the training set). Generative models can be 
divided into three types. In the first type, the model is trained using a training set with dis-
tribution pdata (unknown to model). The model generates data of distribution pmodel , which 
is an approximation of pdata . In the second type, the model is solely capable of producing 
samples from pmodel . The third type can do both. GANs concentrate on the second type, but 
it is also possible to design third type’s GANs  (Goodfellow 2016).

2.2.2 � GAN fundamentals

In 2014, Goodfellow et al. (2014a) introduced GANs as a framework in which two neural 
network (as players) play a zero-sum game. In this game, the players are called the genera-
tor G and the discriminator D. The generator is the one that produces the samples while the 
discriminator tries to distinguish training samples from the generator’s samples. The more 
indistinguishable the samples produced are, the better is the generative model (Goodfellow 
et al. 2014a). Any differentiable function, such as a multi-layer neural network, can rep-
resent generator and discriminator. The generator, denoted by G(z), takes as input a prior 
noise distribution ( pz ) and maps it to approximate training data distribution ( pg ). Discrimi-
nator, D(x), is a mapping of the input data distribution pdata into a real number in the inter-
val of [0, 1], which represents the probability that the sample is real and not a fake one (i.e., 
produced by the generator) (Gonog and Zhou 2019).

2.2.3 � GAN learning models

The generator and discriminator can be trained using an iterative process for optimizing 
an objective function. Goodfellow et  al. used the following objective function in their 
game (Goodfellow et al. 2014a):

where f0 and f1 take different forms, depending on the specific divergence metrics, as 
shown in Table 2. The first proposed GAN uses the Jensen-Shannon divergence metric.

To train the simple model, shown in Fig. 1, we first fix G and optimize D to make it dis-
criminate as accurately as possible. Next, we fix D and try to minimize the objective func-
tion. At the NE, discriminator  cannot distinguish between real and fake data. For example, 
under the Jensen–Shannon divergence metric, when pr(x)∕(pr(x) + pr(z)) = 0.5 , if both 

(1)min
G

max
D

V(G,D) = �x∼pdata(x)
[f0(D(x))] + �z∼pz(z)

[f1(1 − D(G(z)))]
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discriminator and generator work optimally, the game reaches the Nash equilibrium and 
the min-max and max–min values are the same (i.e., −log4 as shown in Table 2).

Finding mixed NE may be impossible since the GANs’ game can be represented as an 
endless game, as we will explain later. The fact that each generator or discriminator seeks 
to determine the best response to the action of the previous discriminator or generator, 
or, in other words, find a Subgame Perfect Nash Equilibrium, makes the GANs’ game a 
sequential game from a different point of view. In Farnia and Ozdaglar (2020), the authors 
showed that GANs might have no Nash Equilibrium. Consequently, various methods are 
used in order to help us converge to the NE from different perspectives. For multi-player 
GANs, though they are unable to reach the global optimum, numerous modes have been 
proposed as a result of various generator initial states (Lv and Ren 2018; Farnia and Ozd-
aglar 2020).

3 � Related surveys

As GANs became increasingly popular, numerous surveys have been presented (about 40 
surveys so far), which can be classified into three categories. The literatures in the first 
category (Goodfellow 2016; Wang et al. 2017; Creswell et al. 2018; Hitawala 2018; Gonog 
and Zhou 2019; Hong et al. 2019; Bissoto et al. 2019; Zhang et al. 2018a; Pan et al. 2019; 
Kumar and Jayagopal 2021; Salehi et al. 2020; Ghosh et al. 2020; Saxena and Cao 2020; 
Gui et al. 2020; Jabbar et al. 2020) explore a relatively broad scope in GANs, including 
key concepts, algorithms, applications, different variants and architectures. In contrast, the 
surveys in the second group (Lucic et al. 2017; Alqahtani et al. 2021; Wiatrak and Albrecht 
2019; Lee and Seok 2020; Pan et al. 2020) focus on a specific issue in GANs (e.g., regular-
ization methods, loss functions, etc) and address how researchers deal with such an issue. 
In the third category (Cao et al. 2018; Wang et al. 2019, 2020; Wu et al. 2017; Sorin et al. 
2020; Tschuchnig et al. 2020; Agnese et al. 2020; Jain and Jayaswal 2020; Sampath et al. 
2021; Yi et al. 2019; Yinka-Banjo and Ugot 2020; Ghosh et al. 2020; Di Mattia et al. 2019; 
Geogres-Filteau and Cirillo 2020; Gao et al. 2020; Shin et al. 2020) the surveys summarize 
the applications of GAN in a specific field, from computer vision and image synthesis to 
cybersecurity and anomaly detection. In the following, we briefly review surveys in each 
category and explain how our paper differs from them.

3.1 � GAN general surveys

In Goodfellow (2016), the author provides answers to the most frequently raised questions 
about GANs. Wang et al. (2017) reviewed theoretic and implementation models of GANs, 
their applications, and the advantages and disadvantages of this generative model. Creswell 

Table 2   Variant of GANs 
based on different divergence 
metrics (Ge et al. 2018)

Divergence metric f
0
(D) f

1
(D) Game value

Kullback–Leibler log(D) 1 − D 0
Reverse KL −D log(D) −1

Jensen–Shannon log(D) log(1 − D) − log 4

WGAN D −D 0
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et al. (2018) provided an overview of GANs, especially for the signal processing commu-
nity, by characterizing different methods for training and constructing GANs, and chal-
lenges in the theory and applications. In Ghosh et al. (2020) Ghosh et al. presented a com-
prehensive summary of the progression and performance of GANs along with their various 
applications. Saxena and Cao (2020) conducted a survey of the advancements in GANs 
design, and optimization solutions proposed to handle GANs challenges. Kumar and Jaya-
gopal (2021) presented state-of-the-art research on GANs, their applications, evaluation 
metrics, challenges, and benchmark datasets. In Salehi et al. (2020) two new deep genera-
tive models, including GA, were compared, and the most remarkable GAN architectures 
were categorized and discussed.

Gui et al. (2020) provided a review of various GANs methods from an algorithmic, the-
oretic, and applicative perspectives.  Jabbar et al. (2020) reviewed different GAN variants, 
applications, and several training solutions. Hitawala in Hitawala (2018) presented differ-
ent versions of GANs and provided a comparison between them in some aspects, such as 
learning, architecture, gradient updates, objective function, and performance metrics. Simi-
larly, Gonog et al. in Gonog and Zhou (2019) reviewed the extensional variants of GANs, 
and classified them in terms of how they optimized the original GAN or changed its basic 
structure, as well as their learning methods. In Hong et al. (2019) Hong et al. discussed 
the details of the GAN from the perspective of various object functions, architectures, and 
the theoretical and practical issues in training the GANs. The authors also enumerate the 
GAN variants applied in different domains. Bissoto et  al. (2019) conducted a review of 
GAN advancements on six fronts, including architectural contributions, conditional tech-
niques, normalization and constraint contributions, loss functions, image-to-image transla-
tions, and validation metrics. Zhang et al. (2018a) surveyed twelve extended GAN models 
and classified them in terms of the number of game players. Pan et al. (2019) analyzed the 
differences among different generative models and classified them from the perspective of 
architecture and objective function optimization. They also discussed the training tricks 
and evaluation metrics and presented GANs applications and challenges.

3.2 � GAN challenges

In the second group of surveys, Lucic et al. (2017) conducted an empirical comparison of 
GAN models, with a focus on unconditional variants.

Alqahtani et al. (2021) focused on potential applications of GANs in different domains. 
They attempted to identify advantages, disadvantages and major challenges for success-
ful implementation of GANs. Wiatrak and Albrecht (2019) surveyed current approaches 
for stabilizing the GAN training procedure, and categorizing various techniques and key 
concepts. In Lee and Seok (2020), Lee et  al. reviewed the regularization methods used 
in the stable training of GANs, and classified them into several groups by their operation 
principles. Pan et al. (2020) performed a survey for the loss functions used in GANs, and 
analyzed the pros and cons of these functions. As differentially private GAN models pro-
vide a promising direction for generating private synthetic data, Fan et al. (2020) surveyed 
the existing approaches presented for this purpose.

3.3 � GAN applications

The authors in (Cao et  al. 2018; Wang et al. 2019, 2020; Wu et al. 2017; Sorin et  al. 
2020; Tschuchnig et  al. 2020; Agnese et  al. 2020; Jain and Jayaswal 2020; Sampath 
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et al. 2021; Yi et al. 2019) conducted reviews of different aspects of GAN progress in 
the field of computer vision and image synthesis.

Cao et  al. (2018) reviewed recent GAN models and their applications in computer 
vision. Cao et  al. (2018) compared the classical and stare-of-the-art GAN algorithms 
in terms of the mechanism and visual results of generated samples. Wang et al. (2019) 
structured a review toward addressing practical challenges relevant to computer vision. 
They discussed the most popular architecture-variant, and loss-variant GANs, for tack-
ling these challenges. Wu et  al. (2017) presented a survey of image synthesis, image 
editing, and video generation with GANs. They covered recent papers that leverage 
GANs in image applications, including texture synthesis, image inpainting, image-to-
image translation, image editing, and video generation. Along the same lines, Wang 
et al. (2020) reviewed the recent research on GANs in the field of image processing, and 
categorized them in four fields including image synthesis, image-to-image translation, 
image editing, and cartoon generation.

Surveys such as Agnese et  al. (2020) and Jain and Jayaswal (2020) focused on 
reviewing recent techniques to incorporate GANs in the problem of text-to-image syn-
thesis. In Agnese et al. (2020), Agnese et al. proposed a taxonomy to summarize GAN-
based text-to-image synthesis papers into four major categories: Semantic Enhancement 
GANs, Resolution Enhancement GANs, Diversity Enhancement GANs, and Motion 
Enhancement GANs. Different from the other surveys in this field, Sampath et al. (2021) 
examined the most recent developments of GANs techniques for addressing imbalance 
problems in image data. The real-world challenges and implementations of synthetic 
image generation based on GANs are covered in this survey.

In Yi et  al. (2019); Sorin et  al. (2020); Tschuchnig et  al. (2020), the authors dealt 
with the medical applications of image synthesis by GANs. Yi et al. (2019) described 
the promising applications of GANs in medical imaging and identified some remain-
ing challenges that need to be solved. Another paper on this subject, Sorin et al. (2020) 
reviewed GANs’ application in image denoising and reconstruction in radiology. 
Tschuchnig et al. (2020) summarized existing GAN architectures in the field of histo-
logical image analysis.

The authors of Yinka-Banjo and Ugot (2020) and Ghosh et al. (2020) provided reviews 
on the application of GANs in cybersecurity. Yinka-Banjo and Ugot (2020) surveyed stud-
ies where the GAN plays a key role in the design of security or adversarial system. Ghosh 
et al. (2020) focused on the various ways in which GANs have been used to provide both 
security advances and attack scenarios to bypass detection systems.

Di Mattia et al. (2019) surveyed the principal GAN-based anomaly detection methods. 
Georges-Filteau and Cirillo (2020) reviewed the published literature on Observational 
Health Data to uncover the reasons for the slow adoption of GANs for this subject. Gao 
et al. (2020) addressed the practical applications and challenges relevant to spatio-temporal 
applications, such as trajectory prediction, events generation, and time-series data imputa-
tion. The recently proposed user mobility synthesis schemes based on GANs are summa-
rized in Shin et al. (2020).

According to the classification provided for review papers, our survey falls into the 
second category. We focus specifically on the recent progress of the application of game-
theoretical approaches toward addressing the GAN challenges. While several surveys for 
GANs have been presented to date, to the best of our knowledge, our survey is the first to 
address this topic. Although the authors in Wiatrak and Albrecht (2019) presented a few 
game-model GANs, they have not done a comprehensive survey in this field, and many 
new pieces of research have not been covered. We hope that our survey will serve as a 
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reference for interested researchers on this subject, who would like to extend GANs with 
leverage on game-theoretical approaches.

4 � Games of GANs: a taxonomy

In this section, we present a taxonomy for classifying GANs into three main categories, 
by focusing on how these works extended the original GAN As we mentioned in Sect. 2.1, 
three main elements that make a game are players, strategy sets, and payoffs. Changing 
each of these elements can affect the game results such as equilibrium points and the play-
ers’ profits. As GANs basically model a game between the generator and the discriminator, 
these changes cause the  result and metrics of GANs to be affected. Different papers have 
utilized these changes to mitigate the mode collapse, or improve GAN’s stability and con-
vergence. In this regard, in our taxonomy, we have considered which game elements have 
changed and how literature utilized these factors to improve GAN features.

Our taxonomy is done in terms of (1) modified game mode, (2) architecture modifica-
tion, and (3) modified learning algorithms. In the first category, we focus on the litera-
ture that models  the interaction between the generator and the discriminator by the other 
game types, such as Stackelberg rather than a basic model which is zero-sum. Modify-
ing the game model, which is considered in this category, changes the strategy chosen by 
the players at the Nash equilibrium points, and in subsequent, the equilibrium points of 
GANs. In the second category, we review papers that have changed the GAN architec-
ture in a way that extends the idea of using a single pair of the generator and the dis-
criminator to the multi-agent setting. This change leads the two-player game to transform 
into the multiple games or multi-agent games. The GAN’s structure is important as it has 
a significant impact on the stability and also the performance. In the third category, we 
cover articles that changed the learning algorithm of the players from a best-response in 
the original GAN model to other ones, such as No-regret, or Fictitious play. As we men-
tioned in Sect. 2, generally, in game theory, a player chooses a strategy which is the best 
response given the other players’ strategies. However players can change their strategies by 
applying other learning algorithms. For example, instead of maximizing their profit in the 
best-response case, choose strategies that minimize their regret by a regret minimization 
algorithm.

We further classify each category into several subsets, as shown in Fig. 3. In the follow-
ing subsections, we explain each category in detail and discuss the recent advances in each 
group.

The authors in the reviewed papers have used different metrics to evaluate their pro-
posed GAN models. Table  3 presents all these metrics and indicates which ones were 
used in each of the papers. Metrics range from quantitative to qualitative ones. The most-
reported metrics are Inception Score (IS) and Fréchet Inception Distance (FID). However, 
metrics are not limited to these ones. Given recent progress in GAN and its application, 
new measures have emerged. Borji reviews about 30 quantitative and qualitative measures 
for evaluating generative models with an emphasis on GAN-derived models, and discusses 
their pros and cons in Borji (2019).
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Fig. 3   Proposed taxonomy of GAN advances by game theory
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4.1 � Modified game model

As we mentioned in Sect.  2.2.2, the core of all GANs is a competition between a gen-
erator and a discriminator, which are modeled as a game. Therefore, game theory plays a 
key role in this context. However, most GANs relying on the basic model, formulating it 
as a zero-sum (minimax) game, but some research utilized other game variants to tackle 
the GANs’ challenges. In this section, we review these literature. Based on the proposed 
methods, we classify the works under this category into three subcategories. Section 4.1.1 
presents researches that cast the training process as a stochastic game. Research works 
presented in Sect. 4.1.2 apply the idea of leader-follower of the Stackelberg game in the 
GANs. Finally Sect. 4.1.3 presents GANs models as a Bi-affine game. A summary of the 
reviewed researches in the modified game model category is shown in Table 4.

4.1.1 � Stochastic game

One of the main issues for GANs is that these neural networks are very hard to train 
because of the convergence problems. Franci et  al. in Franci and Grammatico (2020) 
addressed this problem by casting the training procedure as a stochastic Nash equilibrium 
problem (SNEP). The SNEP will recast as a stochastic variational inequality (SVI) and 
target the solutions that are SNE. The advantage of this approach is that there are many 
algorithms for finding the solution of an SVI, like the forward-backward algorithm, also 
known as gradient descent. Franci et al. proposed a stochastic relaxed forward–backward 
(SRFB) algorithm and a variant with an additional step for averaging over decision vari-
ables (aSRFB) for the training process of GANs. For proving convergence to a solution, we 
need monotonicity on the pseudogradient mapping, which is defined by Eq. (2), where Jg 
and Jd are the payoff functions of the generator and the discriminator.

Table 3   Metrics which are reported for results in the reviewed papers

Metrics Reference

IS Stackelberg GAN Zhang et al. (2018c), Farnia and Ozdaglar (2020), Franci and 
Grammatico (2020), MGAN Hoang et al. (2018), DDL-GAN Jin et al. (2020), 
GMAN Durugkar et al. (2016), MD-GAN Hardy et al. (2019), Arora et al. (2017), 
DRAGAN Kodali et al. (2017), Fictitious GAN Ge et al. (2018), Tian et al. (2020), 
D2GAN Nguyen et al. (2017)

FID Stackelberg GAN Zhang et al. (2018c), DDL-GAN Jin et al. (2020), Microbatch 
GAN Mordido et al. (2020), MD-GAN Hardy et al. (2019), Tran et al. (2019), 
FedGAN Rasouli et al. (2020), Tian et al. (2020)

Chi-square MAD-GAN Ghosh et al. (2018)
KL MAD-GAN Ghosh et al. (2018)
Reverse KL Chekhov GAN Grnarova et al. (2017)
P-value SeqGAN Yu et al. (2017)
Human scores Diversity-promoting GAN Xu et al. (2018), SeqGAN Yu et al. (2017)
Classification scores Fan and Liu (2020), Zhang et al. (2018a), Aghakhani et al. (2018), CS-GAN Li et al. 

(2018)
Others Fan and Liu (2020), ORGAN Guimaraes et al. (2017), OptiGAN Hossam et al. 

(2020)
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If pseudogradient mapping of the game is monotone and the increasing number of sam-
ples is available, the algorithm converges to the exact solution but with only finite, fixed 
mini-batch samples, and by using the averaging technique, it will converge to a neighbor-
hood of the solution.

4.1.2 � Stackelberg game

One of the main issues for GAN is the convergence of the algorithm. Farnia et al. in Farnia 
and Ozdaglar (2020) showed that ”GAN zero-sum games may not have any local Nash 
equilibria” by presenting certain theoretical and numerical examples of standard GAN 
problems. Therefore, based on the natural sequential type of GANs, where the generator 
moves first and follows the discriminator (leader), this problem can be considered as a 
Stackelberg game and focused on subgame perfect equilibrium (SPE). For solving the con-
vergence issue, the authors tried to find the equilibrium called proximal equilibrium which 
enables traversing the spectrum between Stackelberg and Nash equilibria. In a proximal 
equilibrium, as shown in Eq. (3), we allow the discriminator to optimize locally in a norm-
ball nearby the primary discriminator. To keep the D̃ close to D, they penalize the distance 
among the two functions by � , as � goes from zero to infinity, the equilibria change from 
Stackelberg to Nash.

Farnia et  al. also proposed proximal training which optimizes the proximal objective 
V
prox

�
(G,D) instead of the original objective V(G, D) that can apply to any two-player GAN. 

With respect to dimensions of the network, the proximal training improves WGAN-WC 
from 10 to 60%. Zhang et al. (2018c) also used Stackelberg game and presented Stackel-
berg GAN to tackles the instability of GANs training process. Stackelberg GAN is using a 
multi-generator architecture and the competition is between the generators (followers) and 
the discriminator (leader). We discussed the architecture details in Sect. 4.2.1.

4.1.3 � Bi‑affine game

Hssieh et al. in Hsieh et al. (2019) examined training of GANs by reconsidering the prob-
lem formulation from the mixed NE perspective. In the absence of convexity, the theory 
focuses only on the local convergence, and it implies that even the local theory can break 
down if intuitions are blindly applied from convex optimization. In Hsieh et al. (2019) the 
mixed Nash Equilibria of GANs are proposed. They are global optima of infinite-dimen-
sional bi-affine games. Finite-dimensional bi-affine games are also applied for finding 
mixed NE of GANs. They also show that we can relax all current GAN objectives into 
their mixed strategy forms. Eventually, in this article, it’s experimentally shown that their 
method achieves better or comparable performance than popular baselines such as SGD, 
Adam, and RMSProp.

(2)� =

[
�[∇xg

Jg(xg, xd)]

�[∇xd
Jd(xd, xg)]

]

(3)V
prox

𝜆
(G,D) ∶= max

D̃∈D
V(G, D̃) −

𝜆

2
‖D̃ − D‖2
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4.2 � Modified architecture

As we mentioned in Sect. 2, GAN is a framework for producing a generative model through 
a two-player minimax game; however, in recent works, this idea is extended by using more 
than two players.

In this section, we review literature in which proposed GAN variants have modified the 
architecture in such a way that we have GANs with a mixture of generators, and/or discrim-
inators and show how applying such methods can provide better convergence properties 
and prevent mode collapse. The majority of the works in this category focus on introducing 
a larger number of generators and/or discriminators. But, in some papers, the number of 
generators and discriminators has not been changed, and a new agent has been added con-
verting the problem into a multi-agent scenario.

In Sect. 4.2.1, we will discuss GAN variants which extended the basic structure from a 
single generator to many generators. In Sect. 4.2.2, we are going to review articles that deal 
with the problem of mode collapse by increasing the number of discriminators in order to 
force the generator to produce different modes. Section  4.2.3 is dedicated to discussing 
papers that develop GANs with multiple generators and multiple discriminators. Articles 
will be reviewed in Sects. 4.2.4 and 4.2.5 extend the architecture by adding another agent, 
which is a classifier (Sect. 4.2.4 ) or an RL agent (Sect. 4.2.5), to show the benefits of add-
ing these agents to GANs. The methodologies, contributions as well as the pros and cons 
of reviewed papers are summarized in Table 5.

4.2.1 � Multiple generators, one discriminator

The minimax gap is smaller in GANs with multi-generator architecture and more stable 
training performances are experienced in these GANs (Zhang et al. 2018c). As we men-
tioned in Sect.  4.1.2, Zhang et  al. (2018c) tackled the problem of instability during the 
GAN training as a result of a gap between minimax and maximin objective values. To 
mitigate this issue, they designed a multi-generator architecture and modeled the competi-
tion among agents as a Stackelberg game. Results have shown the minimax duality gap 
decreases as the number of generators increases. In this article, the mode collapse issue is 
also investigated and showed that this architecture effectively alleviates the mode collapse 
issue. This model reduces the FID by 21.52% compared to Ghosh et al. (2018) and 14.61% 
compared to Hoang et al. (2018). One of the significant advantages of this architecture is 
that it can be applied to all variants of GANs, e.g., Wasserstein GAN, vanilla GAN, etc. 
Additionally, with an extra condition on the expressive power of generators, it is shown 
that Stackelberg GAN can achieve �-approximate equilibrium with Õ(1∕𝜖) generator Zhang 
et al. (2018c).

Furthermore, Ghosh et  al. (2018) proposed a multi-generator and single discrimina-
tor architecture for GANs named Multi-Agent Diverse Generative Adversarial Networks 
(MAD-GAN). In this paper, different generators capture varied, high probability modes, 
and the discriminator is designed such that, along with finding the real and fake sam-
ples, identifies the generator that generated the given fake sample (Ghosh et al. 2018). It 
is shown that at convergence, the global optimum value of −(k + 1) log(k + 1) + k log k is 
achieved, where k is the number of generators.

Comparing the presented models in Ghosh et  al. (2018) and Zhang et  al. (2018c), in 
MAD-GAN (Ghosh et  al. 2018) multiple generators are combined with the assumption 
that the generators and the discriminator have infinite capacity, but in the Stackelberg 
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GAN (Zhang et al. (2018c) there is no assumption on the model capacity. Also, in MAD-
GAN (Ghosh et al. 2018) the generators share common network parameters, although, in 
the Stackelberg GAN (Zhang et al. 2018c) various sampling schemes beyond the mixture 
model are allowed, and each generator has free parameters.

The assumption that increasing generators will cover the whole data space is not valid 
in practice. So Hoang et al. (2018), in contrast with Ghosh et al. (2018), approximated data 
distribution by forcing generators to capture a subset of data modes independently of those 
of others instead of forcing generators by separating their samples. Thus, they established 
a minimax formulation among a classifier, a discriminator, and a set of generators. The 
classifier determines which generator generates the sample by performing multi-class clas-
sification. Each generator is encouraged to generate data separable from those produced by 
other generators, because of the interaction between generators and the classifier. In this 
model, multiple generators create the samples. Then one of them will be randomly picked 
as the final output similar to the mechanism of a probabilistic mixture model. Therefore 
they theoretically proved that, at the equilibrium, the Jensen–Shannon divergence (JSD) 
between the final output and the data distribution is minimal. In contrast, the JSD amongst 
generators’ distributions is maximal, hence the mode collapse problem is effectively 
avoided. Moreover, the computational cost that is added to the standard GAN is minimal 
in the suggested model by applying parameter sharing. The proposed model can efficiently 
scale to large-scale datasets as well and improve the Inception Score by about 16% to 38% 
compared to Nguyen et al. (2017) and Durugkar et al. (2016), respectively.

Ke and Liu (2020) proposed a new architecture, named multiagent distributed GAN 
(MADGAN). In this framework, the discriminator is considered a leader, and the generator 
is considered a follower. Moreover, this proposal is based on the social group wisdom and 
the influence of the network structure on agents. MADGAN can have a multi-generator and 
multi-discriminator architecture (e.g., two discriminators and four generators) as well as 
multiple generators and single discriminator architecture, which is our discussed topic in 
this section. As one of the vital contributions of MADGAN, it can train multiple generators 
simultaneously, and the training results of all generators are consistent.

Furthermore, in Message Passing Multi-Agent Generative Adversarial Networks 
(Ghosh et al. 2016b), the authors proposed that with two generators and one discriminator, 
communicating through message passing, better image generation can be achieved, and the 
amount of classification error can be reduced by about 24% compared to DCGAN. In this 
paper, there are two objectives such as competing and conceding. The competing is based 
on the fact that the generators compete with each other to get better scores for their gener-
ated data from the discriminator. However, the conceding is based on the fact that the two 
generators try to guide each other in order to get better scores for their generations from the 
discriminator and ensure that the message sharing mechanism guides the other generator to 
generate better than itself. Generally, in this section, innovative architectures and objectives 
aimed at training multi-agent GANs are presented. Figure 4 presents a schematic view of 
GANs’ structure reviewed in this section.

4.2.2 � One generator, multiple discriminators

The multi-discriminators are constructed with homogeneous network architecture and 
trained for the same task from the same training data. In addition to introducing a multi-
discriminators schema, Durugkar et  al. (2016), from the perspective of game theory, 
showed that discriminators act like each other; thus, they will converge to similar decision 
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boundaries. In the worst case, they may even converge to a single discriminator. So, Jin 
et al. (2020) by discriminator discrepancy loss (DDL), the multiplayer minimax game uni-
fies the optimization of DDL and the GAN loss, seeking an optimal trade-off between the 
accuracy and diversity of multi discriminators. In addition, improve the IS and FID by 1% 
to 3% in comparison to Durugkar et al. (2016). Compared to Durugkar et al. (2016), Hardy 
et  al.  (2019) distributed discriminators over multiple servers. Thus, they can train over 
datasets that are spread over numerous servers.

Aghakhani et  al. (2018) proposed FakeGAN. The GAN model uses two discrimi-
nators and one generator. The discriminators use the Monte Carlo search algorithm 
to evaluate and pass the intermediate action-value as the reinforcement learning (RL) 
reward to the generator. The generator is modeled as a stochastic policy agent in RL 

Fig. 4   A schematic view of GAN variants with multiple generators and one discriminator, presented in 
Sect. 4.2.1. D: Discriminator, G: Generator, z: Noise, x: Real data, Pz : Latent space, Px : Data distribution, 
Gi(z) : Fake data generated by generator i, C: Classifier, E: Encoder
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(Aghakhani et al. 2018). Instead of one batch in Jin et al. (2020), Mordido et al. (2020) 
divided generated samples into multiple micro-batch. Then update each discrimina-
tor’s task to discriminate between different samples. Samples coming from its assigned 
fake micro-batch and samples from the micro-batches assign to the other discriminator, 
together with the real samples. This proposed idea improved the IS by 10% to 15% com-
pared to Durugkar et al. (2016).

Unlike Durugkar et  al. (2016), Nguyen et  al. (2017) combined the Kullback–Leibler 
(KL) and reverse KL divergence (the measure of how one probability distribution is dif-
ferent from a second) into a unified objective function. Combining these two measures can 
exploit the divergence’s complementary statistical properties to diversify the estimated 
density in capturing multi modes effectively cover almost 59% more modes than Goodfel-
low et al. (2014b). From the perspective of game theory in Nguyen et al. (2017), there are 
two discriminators and one generator with the analogy of a three-player minimax game. In 
this case, there exist two pairs of players which are playing two minimax games simultane-
ously. In one of the games, the discriminator rewards high scores for samples from data 
distribution (i.e., reverse KL divergence, in Eq. (4)), while another conversely rewards high 
scores for samples from the generator, and the generator produces data to fool two discrim-
inators (i.e., KL divergence, in Eq. (5)).

where in the above equations hyperparameters �, � are being used to control and stabilize 
the learning method.

Minimizing the Kullback–Leibler (KL) divergence between data and model distribu-
tions covers multiple modes but may produce completely unseen and potentially undesir-
able samples. In reverse KL divergence, it is observed that optimization towards the reverse 
KL divergence criteria mimics the mod seeking process where the Pmodel concentrates on a 
single mode of Pdata while ignoring other modes. Figure 5 presents a schematic view of the 
GANs reviewed in this section.

4.2.3 � Multiple generators, multiple discriminators

The existence of equilibrium has always been considered one of the open theoretical prob-
lems in this game between generator and discriminator. Arora et al. (2017) turned to infinite 
mixtures of generator’s deep nets in order to investigate the existence of equilibria. Unsur-
prisingly, equilibrium exists in an infinite mixture. Therefore, they showed that a mixture 
of a finite number of generators and discriminators can approximate the min-max solution 
in GANs. This implies that an approximate equilibrium can be achieved with a mixture 
(not too many) of generators and discriminators. They also proposed a heuristic approxi-
mation to the mixture idea to introduce a new framework for training called MIX+GAN: 
use a mixture of T components, where T is as large as allowed by the size of GPU memory 
(usually T ≤ 5). In fact, a mixture of T generators and T discriminators are trained which 
share the same network architecture but have their own trainable parameters. Maintaining 
a mixture represents maintaining a weight wui

 for the generator Gui
 which corresponds to 

the probability of selecting the output of Gui
 . These weights for the generator are updated 

(4)min
G

max
D1

�(G,D1) = � ×
∑

x∼Pdata

[logD1(x)] +
∑

z∼Pz

[−D1(G(z))],

(5)min
G

max
D2

�(G,D2) =
∑

x∼Pdata

[−D2(x)] + � ×
∑

z∼Pz

[logD2(G(z))],
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by backpropagation. This heuristic can be applied to the existing methods like DCGAN, 
W-GAN, etc. Experiments show that the MIX + GAN protocol improves the quality of 
several existing GAN training methods and can lead to more stable training.

As we mentioned earlier, one of the significant challenges in GAN algorithms is their 
convergence. Referring to Rasouli et al. (2020), this challenge is a result of the fact that 
cost functions may not converge using gradient descent in the minimax game between 
the discriminator and the generator. Convergence is also one of the considerable chal-
lenges in federated learning. This problem becomes even more challenging when data 
at different sources are not independent and identically distributed. Therefore, Rasouli 
et al. proposed an algorithm for multi-generator and multi-discriminator architecture for 
training a GAN with distributed sources of non-independent-and-identically-distributed 
data sources named Federated Generative Adversarial Network (FedGAN)  (Rasouli 

Fig. 5   Schematic view of GANs with one generator and multiple discriminators, reviewed in Sect. 4.2.2. D: 
Discriminator, G: Generator, z: Noise, x: Real data, Pz : Latent space, Px : Data distribution, G(z): Fake data 
generated by the generator
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et al. 2020). Local generators and discriminators are used in this algorithm. These gen-
erators and discriminators are periodically synchronized via an intermediary that aver-
ages and broadcasts the generator and discriminator parameters. In fact, results from 
stochastic approximation for GAN convergence and communication-efficient SGD for 
federated learning are connected in this article to address FedGAN converge. One of 
the notable results in Rasouli et al. (2020) is that FedGAN has similar performance to 
general distributed GAN while it converges and reduces communication complexity as 
well.

In Ke and Liu (2020) proposed a multi-agent distributed GAN (MADGAN) framework 
based on the social group wisdom and the influence of the network structure on agents, 
in which the discriminator and the generator are regarded as the leader and the follower, 
respectively. The multi-agent cognitive consistency problem in the large-scale distributed 
network is addressed in MADGAN. In Ke and Liu (2020) the conditions of consensus are 
presented for a multi-generator and multi-discriminator distributed GAN by analyzing the 
existence of stationary distribution to the Markov chain of multiple agent states. The exper-
imental results show that the generation effect of the generators trained by MADGAN can 
be comparable to that of the generator trained by GAN. Moreover, MADGAN can train 
multiple generators simultaneously, and the training results of all generators are consistent.

4.2.4 � One generator, one discriminator, one classifier

One of the issues that GANs face is catastrophic forgetting in the discriminator neural 
network. Self-Supervised (SS) tasks were planned to handle this issue, however, these 
methods enable a seriously mode-collapsed generator to surpass the SS tasks. In Tran 
et al. (2019), Tran et al. proposed new SS tasks, called Multi-class minimax game based 
Self-supervised tasks (MS) which are based on a multi-class minimax game, including a 
discriminator, a generator, and a classifier. The SS task is a 4-way classification task of 
recognizing one among the four image rotations (i.e., 0, 90, 180, and 270 degrees). The 
discriminator SS task is to train the classifier C that predicts the rotation applied to the 
real samples and the generator SS task is to train the generator G to produce fake samples 
for maximizing classification performance. The SS task helps the generator learn the data 
distribution and generate diverse samples by closing the gap between supervised and unsu-
pervised image classification. The theoretical and experimental analysis showed that the 
convergence of this approach has progressed.

The authors in Mullick et al. (2019) and Dam et al. (2022) focused on the class imbal-
ance classification problem and get helped from GAN to propose a method for handling 
this challenge. Mullick et al. seek to build a classifier that can work with an imbalanced 
dataset in Mullick et  al. (2019). To make such a classifier, they use a convex generator 
that generates new samples from the minority classes as convex combinations of existing 
instances. They model the interaction between the convex generator, the multi-class clas-
sifier that aims to correctly classify the data points, and a conditional discriminator as a 
three-player adversarial game. Different from the existing GAN models where the genera-
tor works in harmony with the classifier to fool the discriminator, in this model, the genera-
tors attempts to fool both the discriminator and the classifier into misclassifying the gen-
erated samples. Dam et al. present an end-to-end deep generative classifier in Dam et al. 
(2022). They propose a domain-constraint AE to preserve the latent-space as prior for a 
generator, which plays an adversarial game with two other deep networks, a discriminator 
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and a classifier. The authors replaced convex generators used in Mullick et al. (2019) with 
a neural network generator.

In  Li et  al. (2018), Liu et  al. also used a classifier to generate categorized text. The 
authors proposed a new framework Cyclic-Synthesized GAN (CS-GAN), which uses GAN, 
RNN, and RL to generate better sentences. The classifier position is to ensure that the gen-
erated text contains the label information and the RNN is a character predictor because 
the model is built at the character level to limit the large searching space. We can divide 
the generation process into two steps, first adding category information into the model 
and making the model generate category sentences respectively, then combining category 
information in GAN to generate labeled sentences. CS-GAN acts strongly in supervised 
learning, especially in the multi-categories datasets. Figure 6 presents the architecture of 
GANs reviewed in this subsection.

4.2.5 � One generator, one discriminator, one RL agent

With an RL agent, we can deploy fast and robust control over the GAN’s output or input. 
Moreover, such architecture can be used to optimize the generation process by adding an 
arbitrary (not necessarily differentiable) objective function to the model.

In De Cao and Kipf (2018), Cao et al. used this architecture for generating molecules 
and drug discovery. The authors encoded the molecules as the original graph-based repre-
sentation, which has no overhead compared to similar approaches like SMILES (Weininger 
1998), which generates a text sequence from the original graph. For the training part, the 
authors were not only interested in generating chemically valid compounds, but also tried 
to optimize the generation process toward some non-differentiable metrics (e.g., how likely 
the new molecule is water-soluble or fat-soluble) using an RL agent. In Molecular GAN 
(MolGAN), an external software will compute the RL loss for each molecule. The linear 
combination of RL loss and WGAN loss is utilized by the generator.

Weininger (1998) tackled the same problem. Compared to De  Cao and Kipf (2018), 
they encoded the molecules as text sequences by using SMILES, the string representation 
of the molecule, not the original graph-based one. They presented Objective-Reinforced 
Generative Adversarial Networks (ORGAN), which is built on SeqGAN (Yu et al. 2017). 

Fig. 6   Schematic view of GANs with one generator, one discriminators, and one classifier reviewed in 
Sect. 4.2.4. D: Discriminator, G: Generator, z: Noise, x: Real data, Pz : Latent space, Px : Data distribution, 
G(z): Fake data generated by the generator
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Their RL agent uses REINFORCE (Williams 1992), a gradient-based approach. However, 
MolGAN (De Cao and Kipf 2018) uses deep deterministic policy gradient (DDPG) (Lil-
licrap et  al. 2015), an off-policy actor-critic algorithm. MolGAN gains better chemical 
property scores compared to ORGAN, but this model suffers from mode collapse because 
both the GAN and the RL objective do not encourage generating diverse outputs; alterna-
tively, the ORGAN RL agent depends on REINFORCE, and the unique score is optimized 
penalizing non-unique outputs.

For controlling the generator, we can also use an RL agent. In Sarmad et al. (2019), 
Sarmad et  al. presented RL-GAN-Net, a real-time completion framework for point 
cloud shapes. Their suggested architecture is the combination of an auto-encoder (AE), 
a reinforcement learning (RL) agent, and a latent-space generative adversarial network 
(l-GAN). Based on the pre-trained AE, the RL agent selects the proper seed for the 
generator. This idea of controlling the GAN’s output can open up new potentialities to 
overcome the fundamental instabilities of current deep architectures. Figure 7 presents 
the structure of GAN variants, described in this section.

Fig. 7   Schematic view of GANs with one generator, one discriminators, and one RL agent reviewed in 
Sect. 4.2.5. In b G is trained to maximize a weighted average of the objective, and the discriminator. In c 
the reward network approximate the reward function of a sample and optimize molecule generation using 
RL. It assigns a reward to each molecule to match a score provided by an external software. D: Discrimina-
tor, G: Generator, z: Noise, x: Real data, Pz : Latent space, Px : Data distribution, G(z): Fake data generated 
by the generator, Objectives: domain-specific metrics
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4.3 � Modified learning algorithm

This category covers methods in which the proposed improvements involve modifi-
cation in learning methods of GANs from game theory perspective. In more details, 
in this section, we turn our attention to the literature which combine the other learn-
ing approaches of game theory such as fictitious play and reinforcement learning with 
GANs. It is worth noting that despite the significant progress in the field of learning 
algorithms, especially in deep learning and the presentation of various learning meth-
ods such as continual learning (CL) which have also been applied in or improve GANs 
(for e.g. Ebrahimi et  al. 2020; Mariani et  al. 2018; Zhao et  al. 2022), our focus in 
this category is on those learning methods that are used in multi-agent systems which 
model the interaction between agents as a game.

Different variations of GANs which are surveyed in Sect. 4.3.1 study GAN training 
process as a regret minimization problem instead of the popular view which seeks to 
minimize the divergence between real and generated distributions. As another learning 
method, Sect. 4.3.2 utilizes fictitious play to simulate the training algorithm on GAN. 
Section 4.3.3 provides a review on the proposed GAN models that are used a federated 
learning framework which trains across distributed sources to overcome the data limi-
tation of GANs. Researches in Sect.  4.3.4 seek to make a connection between GAN 
and RL. Table  6 summarizes the contributions, pros and limitations of the literature 
reviewed in this section.

4.3.1 � No‑regret learning

The best response algorithms for GAN are often computationally intractable, and they 
do not lead to convergence and have cycling behavior even in simple games. How-
ever, the simple solution, in that case, is to average the iterates. Regret minimization is 
the more suitable way to think about GAN training dynamics. In Kodali et al. (2017), 
Kodali et al. proposed studying GAN training dynamics as a repeated game that both 
players use no-regret algorithms. Moreover, the authors showed that the GAN game’s 
convex-concave case has a unique solution. If G and D have enough capacity in the 
non-parametric limit and updates are made in the function space, the GAN game is 
convex–concave. The convergence (of averaged iterations) can also be guaranteed 
using no-regret algorithms. With standard arguments from game theory literature, the 
authors show that the discriminator does not need to be optimal at each step.

In contrast to Kodali et  al. (2017), much of the recent developments (Goodfellow 
2016) are based on the unrealistic assumption that the discriminator is playing opti-
mally; this corresponds to at least one player using the best-response algorithm. But in 
the practical case with neural networks, these convergence results do not hold because 
the game objective function is non-convex. In non-convex games, global regret mini-
mization and equilibrium computation are computationally hard. Moreover, Kodali 
et  al. (2017) also analyzed GAN training’s convergence from this point of view to 
understand mode collapse. They showed that mode collapse happens because of unde-
sirable local equilibria in this non-convex game (accompanied by sharp gradients of 
the discriminator function around some real data points). Furthermore, the authors 
showed that a gradient penalty scheme can avoid the mode collapse by regularizing the 
discriminator to constrain its gradients in the ambient data space.
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In Grnarova et al. (2017), Grnarova et al. used regret minimization. They provided 
a method that provably converges to an MN equilibrium. Because the minimax value 
of pure strategy for the generators is always higher than the minimax value of the mix 
equilibrium strategy of generators; thus, the generators are more suitable. This con-
vergence happens for semi-shallow GAN architectures using regret minimization pro-
cedures for every player. Semi-shallow GAN architectures are architectures that the 
generator is any arbitrary network, and the discriminator consists of a single layer net-
work. This method is done even though the game induced by such architectures is not 
convex-concave. Furthermore, they show that the minimax objective of the generator’s 
equilibrium strategy is optimal.

4.3.2 � Fictitious play

GAN is a two-player zero-sum game with a repeated game as the training process. If the 
zero-sum game is played repeatedly between two rational players, they try to increase their 
payoff. Let sn

i
∈ Si show the action taken by player i at time n and {s0

i
, s1

i
,… , sn−1

i
} are pre-

vious actions chosen by player i. So player j can choose the best response, assuming player 
i is choosing its strategy according to the empirical distribution of {s0

i
, S1

i
,… , sn−1

i
} . Thus, 

the expected utility is a linear combination of utilities under different pure strategies. So 
we can assume that each player plays the best pure response at each round. In game theory, 
this learning rule is called fictitious play and can help us find the Nash equilibrium. The 
fictitious play achieves a Nash equilibrium in two-player zero-sum games if the game’s 
equilibrium is unique. However, if there exist multiple Nash equilibria, other initialization 
may yield other solutions.

By relating GAN with the two-player zero-sum game, Ge et al. designed a training algo-
rithm to simulate the fictitious play on GAN and provide a theoretical convergence guaran-
tee in Ge et al. (2018). They also showed that by assuming the best response at each update 
in Fictitious GAN, the distribution of the mixture outputs from the generators converges 
to the data distribution. The discriminator outputs converge to the optimum discriminator 
function. The authors in Ge et al. (2018) used two queues D and G, to store the historically 
trained models of the discriminator and the generator. They also showed that Fictitious 
GAN can effectively resolve some convergence issues that the standard training approach 
cannot resolve and can be applied on top of existing GAN variants. Furthermore, they 
could achieve almost 10% improvement in IS score than Durugkar et al. (2016).

4.3.3 � Federated learning

Data limitation is a common drawback in deep learning models like GANs. We can solve 
this issue by using distributed data from multiple sources, but this is difficult due to some 
reasons like privacy concerns of users, communication efficiency and statistical heteroge-
neity, etc. This brings the idea of using federated learning in GANs to address these sub-
jects (Rasouli et al. 2020; Fan and Liu 2020).

Rasouli et al. (2020), proposed a federated approach to GANs, which trains over distrib-
uted sources with non-independent-and-identically-distributed data sources. In this model, 
for every K time step of the local gradient, agents send their local discriminator and gen-
erator parameters to the intermediary and receive back the synchronized parameters. Due 
to the average communication per round per agent, FedGAN is more efficient compared 
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to general distributed GAN. Experiments also proved FedGAN is robust by increasing K. 
For proving the convergence of this model, the authors connect the convergence of GAN to 
convergence of an Ordinary Differential Equation (ODE) representation of the parameter 
updates (Mescheder et al. 2017) under equal or two time-scale updates of generators and 
discriminators. Rasouli et al. showed that the FedGAN ODE representation of parameters 
update asymptotically follows the ODE representing the parameter update of the central-
ized GAN. So by using the existing results for centralized GAN, FedGAN also converges.

Fan et al. also proposed a generative learning model using a federated learning frame-
work in Fan and Liu (2020). The aim is to train a unified central GAN model with the 
combined generative models of each client. Fan et al. examined four kinds of synchroniza-
tion strategies, synchronizing each of the central models of D and G to every client (Sync 
D & G) or simply syncing the generator or the discriminator (Sync G or Sync D) or none 
of them (Sync None). In situations where communication costs are high, they recommend 
syncing G while losing some generative potential, otherwise, synchronizing both D and G. 
Fan and Liu (2020) results showed that federate learning is commonly robust to the number 
of agents with Independent and Identically Distributed (IID) and fairly non-IID training 
data. However, for highly skewed data distribution, their model performed abnormality due 
to weight divergence.

4.3.4 � Reinforcement learning

Cross-modal hashing tries to map different multimedia data into a common Hamming 
space, realizing fast and flexible retrieval across different modalities. Cross-modal hash-
ing has two weaknesses: (1) Depends on large-scale labeled cross-modal training data. (2) 
Ignores the rich information contained in a large amount of unlabeled data across different 
modalities. So Zhang et al. (2018b) proposed Semi-supervised Cross-modal Hashing GAN 
(SCH-GAN) that exploits a large amount of unlabeled data to improve hashing learning. 
The generator takes the correlation score predicted by the discriminator as a reward and 
tries to pick margin examples of one modality from unlabeled data when giving another 
modality query. The discriminator tries to predict the correlation between query and cho-
sen examples of the generator using Reinforcement learning.

An agent trained using RL is only able to achieve the single task specified via its reward 
function. So Florensa et al. (2018) provided Goal Generative Adversarial Network (Goal 
GAN). This method allows an agent to automatically discover the range of tasks at the 
appropriate level of complexity for the agent in its environment with no prior knowledge 
about the environment or the tasks being performed and allows an agent to generate its 
own reward functions. The goal discriminator is trained to evaluate whether a goal is at the 
appropriate level of difficulty for the current policy. The goal generator is prepared to gen-
erate goals that meet these criteria.

GAN has limitations when the goal is for generating sequences of discrete tokens. First, 
it is hard to provide the gradient update from the discriminator to the generator when the 
outputs are discrete. Second, The discriminator can only reward an entire sequence after 
generation; for a partially generated sequence, it is non-trivial to balance how well it is 
now and how well it will be in the future as the whole sequence. Yu et al. (2017) proposed 
Sequence GAN (SeqGAN) and modeled the data generator as a stochastic policy in rein-
forcement learning (RL). The RL reward signal comes from the discriminator decided on 
a complete sequence and, using the Monte Carlo search, is passed back to the intermedi-
ate state-action steps. So in this method, they care about the long-term reward at every 
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timestep. The authors consider not only the fitness of previous tokens but also the resulted 
future outcome. “This is similar to playing the games such as Go or Chess, where players 
sometimes give up the immediate interests for the long-term victory” (Silver et al. 2016).

The main problem in Yu et al. (2017) is that the classifier’s reward cannot accurately 
reflect the novelty of text. So, in Xu et al. (2018) in comparison to Yu et al. (2017), Yu 
et al. assigned a low reward for repeatedly generated text and a high reward for “novel” and 
fluent text, encouraging the generator to produce diverse and informative text, and propose 
a novel language-model based discriminator, which can better distinguish novel text from 
repeated text without the saturation problem. The generator reward consists of two parts, 
the reward at the sentence level and that at the word level. The authors maximized the 
reward of real text and minimize fake text rewards to train the discriminator. The reason 
for minimizing the reward of generated text is that the text that is repeatedly generated by 
the generator can be identified by the discriminator and get a lower reward. The motivation 
for maximizing the reward of real-world data lies in that not only the uncommon text in the 
generated data can get a high reward, but also the discriminator can punish low-quality text 
to some extent. This method could increase the human score by 6% compared to Yu et al. 
(2017).

The same notion of SeqGAN can be applied in domains such as image captioning. 
Image captioning’s aim is to describe an image with words. Former approaches for image 
captioning like maximum likelihood method suffer from a so-called exposure bias problem 
which happens when the model tries to produce a sequence of tokens based on previous 
tokens. In this situation, the model may generate tokens that were never seen in training 
data (Bengio et al. 2015). Yan et al. (2018) used the idea of SeqGAN to address the prob-
lem of exposure bias. In this scheme, the image captioning generator is considered as the 
generator in the GAN framework whose aim is to describe the images. The discriminator 
has two duties, the first is to distinguish the real description and generated one and the 
second is to figure out if the description is related to the image or not. To deal with the dis-
creteness of the generated text, the discriminator is considered as an agent which produces 
a reward for the generator. Although, lack of intermediate reward is another problem which 
solves by using the Monte Carlo roll-out strategy same as SeqGAN.

Finding new chemical compounds and generating molecules are also challenging tasks 
in a discrete setting. Guimaraes et al. (2017) and De Cao and Kipf (2018) tackled this prob-
lem and proposed two models that rely on SeqGAN. The main difference is adding an RL 
component to the basic architecture of GAN, which we discussed in Sect. 4.2.5.

The idea behind SeqGAN has also been applied to generating sentences with certain 
labels. Li et al. (2018) introduced CS-GAN, which consists of a generator and a descriptor 
(discriminator and classifier). In this model, the generator takes an action, and the descrip-
tor task is to identify sentence categories by returning the reward. Details of this model are 
explained in Sect. 4.2.4.

Aghakhani et al. (2018) introduced a system that for the first time expands GANs for 
a text classification task, specifically, detecting deceptive reviews (FakeGAN). Previous 
models for text classification have limitations: (1) Biased problems like Recurrent NN, 
where later words in a text have more weight than earlier words. (2) Correlation with the 
window size like CNN. Unlike standard GAN with a single Generator and Discriminator, 
FakeGAN uses two discriminators and one generator. The authors modeled the genera-
tor as a stochastic policy agent in reinforcement learning (RL) and used the Monte Carlo 
search algorithm for the discriminators to estimate and pass the intermediate action-value 
as the RL reward to the generator. One of the discriminators tries to distinguish between 
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truthful and deceptive reviews, whereas the other tries to distinguish between fake and real 
reviews.

Ghosh et  al. (2016a) used GANs for learning the handwriting of an entity and com-
bine it with reinforcement learning techniques to achieve faster learning. The generator can 
generate words looking similar to the reference word, and the discriminator network can 
be used as an OCR (optical character recognition) system. The concept of reinforcement 
learning comes into play when letters need to be joined to form words, such as the spacing 
between characters and strokes from one note to another, and provide suitable rewards or 
penalties for the generator to learn the handwriting with greater accuracy.

The optimized generation of sequences with particular desired goals is challenging in 
sequence generation tasks. Most of the current work mainly learns to generate outputs that 
are close to the real distribution. However, in many applications, we need to generate data 
similar to real ones and have specific properties or attributes. Hossam et al. (2020) intro-
duced the first GAN-controlled generative model for sequences that address the diversity 
issue in a principled approach. The authors combine GAN and RL policy learning benefits 
while avoiding mode-collapse and high variance drawbacks. The authors show that if only 
pure RL is applied with the GAN-based objective, the realistic quality of the output might 
be sacrificed for the cause of achieving a higher reward. For example, in the text-genera-
tion case, by generating sentences in which few words are repeated all the time, the model 
could achieve a similar quality score. Hence, combining a GAN-based objective with RL 
promotes the optimization process of RL to stay close to the actual data distribution. This 
model can be used for any GAN model to enable it to optimize the desired goal according 
to the given task directly.

A novel RL-based neural architecture search (NAS) methodology is proposed for GANs 
in Tian et  al. (2020) by Tian et  al. Markov decision process formulation is applied to 
redefine the issue of neural architecture search for GANs in this article, therefore a more 
effective RL-based search algorithm with more global optimization is achieved. Addition-
ally, data efficiency can be improved due to better facilitation of off-policy RL training 
by this formulation (Tian et al. 2020). On-policy RL is used in most of the formerly pro-
posed search methods employed in RL-based GAN architecture, which may have a signifi-
cantly long training time because of limited data efficiency. Agents in off-policy RL algo-
rithms are enabled to learn more accurately as these algorithms use past experience. This 
approach improves FID by 57% in comparison to Hoang et al. (2018). However, using off-
policy data can lead to unstable policy network training because these training samples are 
systematically different from the on-policy ones (Tian et al. 2020). A new formulation in 
Tian et al. (2020) supports the off-policy strategy better and lessens the instability problem.

5 � Open problems and future work

We conducted this review of recent progresses in GANs using game theory which can 
serve as a reference for future research. Comparing this survey to the other reviews in the 
literature, and considering the many published works which deal with GAN challenges, 
we emphasize on the theory aspects of GAN and not GAN applications. This is all done 
through the taking of a game theory perspective based on our proposed taxonomy.

Although there are various studies that have explored different aspects of GANs, but, 
several challenges still remain should be investigated. In this section, we discuss such 
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challenges, especially in the discussed subject, game of GANs, and propose future research 
directions to tackle these problems.

While GANs achieve the state-of-the-art performance and compelling results on vari-
ous generative tasks, but, these results come at some challenges, especially difficulty in the 
training of GANs. Training procedure suffers from instability problems. While reaching 
to Nash equilibrium, generator and discriminator are trying to minimize their own cost 
function, regardless of the other one. This can cause the problem of non-convergence and 
instability because of minimizing one cost can lead to maximizing the other one’s cost. 
Another main problem of GANs which needs to be addressed is mode collapse. This prob-
lem becomes more critical for unbalanced data sets or when the number of classes is high. 
In other hand, when discriminator works properly in distinguishing samples, generators 
gradients vanishes. This problem which is called vanishing gradient should also be con-
sidered. Compared with other generative models, the evaluation of GANs is more difficult. 
This is partially due to the lack of appropriate metrics. Most evaluation metrics are qualita-
tive rather than being quantitative. Qualitative metrics such as human examination of sam-
ples, is an arduous task and depends on the subject.

More specifically, as the authors in Cao et al. (2018) expressed one of the most impor-
tant future direction is to improve theoretical aspects of GANs to solve problems such 
as model collapse, non-convergence, and training difficulties. Although there have many 
works on the theory aspects, most of the current training strategies are based on the optimi-
zation theory, whose scope is restricted to local convergence due to the non-convexity, and 
the utilization of game theory techniques is still in its infancy. At present, the game theory 
variant GANs are limited, and much of them are highly restrictive, and are rarely directly 
applicable. Hence, there is much room for research in game-based GANs which are involv-
ing other game models.

From the convergence viewpoint, most of the current training methods converge to a 
local Nash equilibrium, which can be far from an actual and global NE. While there is vast 
literature on the GAN’ training, only few researches such as Hsieh et al. (2019) formula-
tion the training procedure from the mixed NE perspective, and investigation for mixed NE 
of GANs should be examined in more depth. On the other hand, existence of an equilib-
rium does not imply that it can be easily find by a simple algorithm. In particular, training 
GANs requires finding Nash equilibria in non-convex games, and computing the equilibria 
in these game is computationally hard. In the future, we are expected to see more solutions 
tries to make GAN training more stable and converge to actual NE.

Multi-agent models such as Zhang et  al. (2018c), Ghosh et  al. (2016b, 2018), Hoang 
et al. (2018), Durugkar et al. (2016), Jin et al. (2020), Hardy et al. (2019), Aghakhani et al. 
(2018), Mordido et  al. (2020), Nguyen et  al. (2017), Arora et  al. (2017), Rasouli et  al. 
(2020) and  Ke and Liu (2020) are computationally more complex and expensive than two-
player models and this factor should be taken into account in development of such vari-
ants. Moreover, in multi-generator structures the divergence among the generators should 
be considered such that all of them do not generate the same samples.

One of the other directions that we expect to witness the innovation in the future is 
integrating GANs with other learning methods. There are a variety of methods in multi-
agent learning literature which should be explored as they may be useful when applying 
in the multi-agent GANs. In addition, it looks like much more research on the relationship 
and combination between GANs and current applied learning approach such as RL is still 
required, and it also will be a promising research direction in the next few years. Moreo-
ver, GAN is proposed as unsupervised learning, but adding a certain number of labels, 
specially in practical applications, can substantially improve its generating capability. 
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Therefore, how to combine GAN and semi-supervised learning is also one of the potential 
future research topics.

As the final note, GAN is a relatively novel and new model with significant recent pro-
gress, so the landscape of possible applications remains open for exploration. The advance-
ments in solving the above challenges can be decisive for GANs to be more employed in 
real scenarios.
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