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Abstract—The discernment of waveforms for the purpose of 
identifying the underlying wireless technologies and validating if 
observed transmissions are legitimate or not remains a challenge 
within the communications sector and beyond. Conventional 
techniques struggle to robustly process Signals under Test (SuTs) 
in real-time. A particular difficulty relates to the selection of an 
appropriate window size for the processed data when pertinent 
contextual information on SuTs is not known a priori. The 
disadvantage of applying a predetermined fixed window size is 
that of length and shape (i.e., coarse resolution). In contrast, an 
adaptive window size offers more optimally tuned resolution. 
Towards this end, we propose a novel approach that uses an 
Adaptive Resolution Transform (ART) to either maintain a 
constant (prespecified) resolution, via a Variable Window Size and 
Shape (VWSS), or adjust the resolution (again using the VWSS 
technique) to match latency requirements. Central to this 
approach is the utilization of Continuous Wavelet Transforms 
(CWTs), which do not substantively suffer from those energy 
leakage issues found in more commonly used transforms such as 
Discrete Wavelet Transforms (DWT). A robust numerical 
implementation of CWTs is presented via a particular class of 
Convolutional Neural Networks (CNNs) called Robust Convex 
Relaxation (RCR)-based Convolutional Long Short-Term 
Memory Deep Neural Networks (a.k.a., CLSTMDNNs or CLNNs). 
By employing small convolutional filters, this class leverages 
deeper cascade learning, which nicely emulates CWTs. In addition 
to its use for convex relaxation adversarial training, the RCR 
framework also improves the bound tightening for the successive 
convolutional layers (which contain the cascading of ever smaller 
“CWT-like” convolutional filters). In this paper, we explore this 
particular architecture for its discernment capability among the 
SuT time series being compared. To operationalize this 
architectural paradigm, non-conventional Nonnegative Matrix 
Factorization (NMF) and Multiresolution Matrix Factorization 
(MMF) is used in conjunction to facilitate the capture of the 
structure and content of the involved matrices so as to achieve 
higher resolution and enhanced discernment accuracy. The 
desired WT (a.k.a., Corresponding WT or CORWT) resulting 
from the MMF is implemented as a translation-invariant CWT 
PyWavelet to better illuminate the intricate structural 
characteristics of the SuT and facilitate the analysis/discernment 
of their constituent Waveforms of Interest (WoIs). A pre-
computed hash and lookup table is utilized to facilitate WoI 
classification and discernment in quasi-real-time. 

Keywords—Waveform discernment, signal classification, 
convolutional long short-term memory deep neural network, robust 
convex relaxation, mimicked signals, real-time spectral analysis, 
window weighting function. 

I. INTRODUCTION

Waveform discernment plays an important role in complex 
wireless environments. It endeavors to identify the underlying 
wireless technologies in a spectrum sharing scenario, e.g., Wi-
Fi/Long Term Evolution (LTE)/Fifth Generation (5G) sharing 
of the unlicensed 5/6 GHz bands [1], LTE/radar coexistence 
over the Citizens Broadband Radio Service (CBRS) band, etc. It 
also endeavors to identify the types of Radio Frequency (RF) 
interference over a channel. Certain exogeneous interference 
may be caused by benign spurious emissions; others may induce 
strong (albeit unintentional) interference. Yet some RF 
transmissions may be malicious, aiming to disrupt ongoing 
communications. To further complicate matters, “mimics” of 
valid waveforms may also be synthesized for the purpose of 
deceiving intended receivers and signal classifiers [2]. In 
mission-critical domains, such as secure military 
communications and autonomous vehicles, the ability to discern 
between valid and altered waveforms is central. A successful 
approach to this problem space should have a profound impact 
across not only these sectors (i.e., communications, autonomous 
systems), but also other critical infrastructure sectors (e.g., 
energy). 

Recently, many of the core functions needed to process SuTs 
and discern among their underlying WoIs have been 
modified/corrected to achieve more accurate and precise results; 
a sampling of the involved issues/bugs within various libraries, 
toolkits, and frameworks (e.g., Caffe, Caffe2, Julia, PyTorch, 
SciPy, TensorFlow, etc.) was delineated in [3]. The affected 
functions included, among others, Fast Fourier Transform 
(FFT), Inverse FFT (IFFT), Real-Valued FFT (RFFT), Inverse 
RFFT (IRFFT), Short-Time Fourier Transform (STFT), and 
Inverse STFT (ISTFT). By achieving sufficient precision (via 
resolution of the delineated issues/bugs) and the subsequent 
advent of more robust functions, the derived frequency-to-time 
mappings of WoIs are now potentially much more meaningful, 
particularly in the realm of 5G/B5G/6G waveform discernment. 

 Historically, spectrum analyzers that exhibit a high dynamic 
range have been utilized to analyze SuTs. However, waveform 
discernment in the frequency domain had limited success, as it 
has not been possible to recover exact time-domain amplitudes 
of the SuTs, which are approximated/averaged during the 
computational process. The limitations are exacerbated when 
the SuT is wideband, changing rapidly with time, or when 
pronounced differentiators appear at the higher-order 
harmonics. Various hybridized approaches have also been 
proposed, but have met with limited success. For example, the 



often-utilized STFT-based method of converting SuTs from the 
time domain to the time–frequency domain has the disadvantage 
of having a fixed window size [4, 5]. Specifically, a narrow 
window w[i], where i is the index of a time interval, might 
truncate and heuristically weight the SuT S[i] so as to produce a 
distorted representation dr[i]= S[i]·𝑤[i]. On the other hand, an 
overly-wide window might introduce overlapping issues; these 
overlapping issues preclude the leveraging of natural inverses 
(which can facilitate the design of optimized inverses), at the 
temporal gaps between  windows, which might better constrain 
the spread of time-frequency domain artifacts. Typically, a 
wider window provides a higher frequency resolution but lower 
time resolution, and vice versa. The limitations of a fixed 
window size reside not only in its predetermined dimensions but 
also its shape; the impact of shape is profound, as the artifact of 
spectral leakage can actually be somewhat controlled/mitigated 
by adjusting the shape of the window. Therefore, it should be of 
no surprise that the various approaches involving a fixed 
window size, such as experiments involving wide windows for 
higher frequency resolution and narrow windows for higher 
time-frequency resolution, have both, thus far, fallen short of 
achieving the requirements of robust SuT analysis. 

 To meet the aforementioned challenge, several STFT 
alternatives have been tried, including WT-based approaches 
[6]. Some studies describe how to bridge the gap between STFT 
and WT by deriving a transform that can be expressed as a 
variant of the STFT and, by way of example, as a discretization 
of the CWT [7]. Of significance, the WT of a lower-dimensional 
SuT results in a higher-dimensional scaleogram (a spectrogram 
generated by a WT), which can then provide insight into not 
only the period of, say, the largest oscillations, but also when 
these oscillations occurred. In addition to providing insight into 
the dynamic behavior of the SuT, scaleograms can also be 
utilized to discern among different SuTs and their constituent 
WoIs. The differences among the involved scaleograms equate 
to variations among the time series being compared, and CWT 
is preferred, as it is most suited for time series analysis due to its 
enhanced resolution and singularity illumination. 

 The preference of CWT over DWT is not limited to reasons 
of resolution alone. Spectral leakage is an inherent deficiency of 
DWT, which is subject to fixed windowing and limited 
sampling. An extension of the DWT, the Stationary Wavelet 
Transform (SWT) does not suffer from the spectral leakage 
problem, and it has a time-invariant property that somewhat 
preserves time-frequency characteristics through various levels 
of decomposition [8]. However, SWT tends to overcompensate 
(i.e., overdetermined) and often results in a redundant 
representation (hence, it is often referred to as the Redundant 
Wavelet Transform) of the original SuT. For these reasons, 
CWT is still the preferred WT embodiment. 

 This paper argues that it is possible to achieve meaningful 
waveform discernment through a specific logical progression: 
(1) transforming a lower-dimensional SuT to a higher-
dimensional scaleogram (ideal for discerning variations among
time series), (2) utilizing CWT (ideal for its enhanced resolution
and singularity) for the time series analysis, (3) deriving CWT
from a unique NMF/MMF amalgam (ideal for a Valid
Generative Model or VGM [i.e., a probabilistic model of the
input] approach), (4) implementing the desired ART/translation-

invariant CWT PyWavelet schema via cascading, smaller 
convolutional filters aboard a RCR-based CLNN (ideal for its 
bound tightening) to better discern the constituent WoIs of the 
original SuT, and (5) leveraging a pre-computed hash and 
lookup table for undertaking WoI classification/discernment in 
quasi-real-time. The novelty of the approach resides in the 
sequence/implementation of the transformations. 

The remainder of this paper is organized as follows. Section 
II discusses some of the waveform discernment 
challenges/limitations. Section III presents our approach for a 
robust waveform discernment system. Section IV features some 
of our experimentation findings, and Section V concludes the 
paper and outlines future work. 

II. WAVEFORM DISCERNMENT CHALLENGES

Waveform discernment has been applied in many 
disciplines (e.g., monitoring of industrial control systems, 
electric machines, etc.) for the purpose of detecting and 
isolating certain distinguishing aspects [9]. In the wireless 
domain, waveform discernment is used to classify WoIs that are 
generated by heterogeneous technologies (i.e., non-compatible, 
but coexisting) that share a given spectrum. To date, the 
challenge of developing mechanisms to achieve robust 
waveform discernment has been non-trivial, particularly when 
it pertains to attribution of the involved WoI (and its 
encompassing SuT), without decoding it, to one of several 
possible technologies, interference sources, and/or mimic 
sources (if applicable) [1]. Some of these challenges/limitations 
are discussed next. 

A. Limitations of FFT and DFT
The classification of WoIs typically involves the processing

of a SuT into its constituent WoIs and the decomposition of the 
WoIs into their constituent frequency components (such as by 
Fourier Transform or FT analysis). FT can be implemented, by 
way of example, as FFT or DFT. FFT is computationally faster 
than DFT, but it is constrained by the range (in contradistinction 
to size, which refers to the number of constituent bins utilized 
for dividing the involved window into equal segments) of data 
that can be transformed, which begets the need for a Window 
Weighting Function (WWF) — a smoothing window function 
that compensates for the “spectral leakage.” This leakage is due 
to windowing constraints of the data, and specifically the 
feeding of a non-integer number of cycles of the SuT to the FFT 
[10]. As the non-integer cycle frequency component of the SuT 
does not nicely correspond to spectrum frequency lines, in 
essence, the associated spectral leakage distorts the SuT 
measurement in such a way that energy from a given frequency 
component can “leak” or spread to the full bandwidth (i.e., 
across the various frequency lines and intervals or bins) [11]. 
This phenomenon is sometimes referred to as spectral smearing 
[12]. 

In contrast, DFT is not constrained by the range of data to 
be transformed (i.e., accommodates precise definition of the 
range over which to transform); hence, a WWF is not necessary. 
After applying DFT, by way of example, Spectral Analysis 
(SA) can be conducted to identify, in real-time, the frequency 



 

 

spectrum of fast rare/transient events [13]; however, a robust 
literature review affirms that, in many cases, the involved DSP 
“is inefficient at performing the requisite Real-Time Spectrum 
Analysis (RT-SA) over instantaneous frequency bandwidths 
above the sub-GHz range” or for tracking “spectral changes 
faster than a few microseconds” [14]. Clearly, this is a concern 
for 5G/B5G/6G systems given that a significant portion of their 
spectrum lies in the high-bands (24 to 53 GHz).  

B. Limitations of DSP-based RT-SA and Time-Mapped FT  
To aggravate matters, the intrinsic limitations of DSPs 

further degrade the resolution (e.g., blindspots, signal loss, etc.) 
of the aforementioned approaches. For example, due to the 
performance (e.g., speed) limitations of typical DSP engines, 
conventional approaches often leverage frequency-to-time 
mappings that enable RT-SA of short, isolated pulse-like 
signals; however, these approaches are not able to robustly 
handle non-pulse-like (i.e., continuous) signals. Hence, 
conventional DSP-based RT-SA approaches are limited to sub-
GHz bandwidths (e.g., < 500 MHz) and cannot readily intercept 
transients that are faster than a few microseconds. This begets 
the need for an approach vector that can achieve more robust 
RT-SA, particularly for wideband waveforms, in a continuous 
and gap-free fashion [14]. Of the various approaches utilized to 
address this problem, Time-Mapped FT (TM-FT) had been 
asserted to have promise. TM-FT maps the incoming SuT along 
the time domain (i.e., frequency-to-time mapping), and in a 
dispersion approach, different frequency components of the 
SuT travel at different speeds such that each spectral 
component can be mapped to a distinct and disparate time delay 
with a resultant TM-FT. This approach enables the capture of 
broadband spectral information, which includes the desired fast 
rare/transient events. 

Yet, according to [14], TM-FT is inherently constrained to 
implementing the static FT of a pulse-like waveform, in such a 
way that consecutive pulses (e.g., with changing spectra) must 
be temporally separated by a gap much longer than the pulse 
duration; consequently, in the most general case of continuous 
waveform analysis, the utilization of TM-FT will result in the 
SuT being truncated (as well as various downstream distortions 
due to SuT truncation-related miscalculations) along the time 
axis, leading to the loss of a substantial portion of the signal 
information that resides between consecutive truncated signal 
sections. For a conventional implementation of the method, it 
has been asserted that enabling FT with a number of points of 
~10 incurs a signal loss of over 90% [14].  

III. POSITED APPROACH TO ADDRESS THE CHALLENGE 
The authors in [13] presented experiments involving Fourier 

SA of highly time-varying waveforms with results of GHz-
bandwidth spectrograms (the SuT was captured at a speed of 
~5×109 FTs per second with ~5 ns duration frequency 
transients). From a technical perspective, they utilized a 
“combination of temporal sampling and dispersive delay so as 
to effectuate a ‘virtual’ temporal windowing of the input SuT” 
(i.e., Successive Analysis Windows or SAWs) and “subsequent 
FT computation without the need to implement an actual high-
speed time truncation” of the incoming SuT [13]. This was 

performed in such a way that the SAWs nicely overlap, thereby 
mitigating against signal loss (i.e., gap-free operation). To 
expound upon this, and as a fork from this prior work, this paper 
focused upon STFT as a starting point and moved beyond 
prototypical STFT approaches. Axiomatically, this would have 
a distinct advantage over the deficiency of FT (which can 
achieve high resolution in the frequency-domain, but not 
necessarily in the time-domain). 

By way of background information, prototypical STFT 
approaches utilize fixed-size time-shifted windows functions 
w(i) to obtain a transformation of the SuT, and ideally, the 
desired resolution is achievable given suitable splitting of 
various parts of a fixed size. However, this process introduces 
uncertainty, so it should be of no surprise that prototypical 
STFT approaches are deemed to have medium resolution in 
both the frequency and time domain. Moreover, prototypical 
STFT approaches are best suited for non-stationary data (which 
is not the case for SuTs). Hence, generally speaking, 
prototypical STFT approaches are construed to be fixed and 
single resolution approach. In reality, contending with SuTs 
requires a dynamic multi-resolution capability. Accordingly, 
approaches beyond prototypical STFT are needed. 

To achieve this, it is necessary to progress beyond 
prototypical implementations of STFT; many of these 
implementations (e.g., TensorFlow, SciPy, as well as other 
libraries/platforms, such as SciPy) can introduce variances that 
may have a profound impact on any ensuing processing and 
phase analysis [15]. Our chosen implementation, which has 
promise, involved Nonnegative Matrix Factorization (NMF) of 
the spectrogram of an STFT conjoined with Multiresolution 
Matrix Factorization (MMF); these implementation 
components are described in Sections IIIA and B next. 

A. NMF of the Spectrogram of an STFT  
 The ability to discern from among spectrograms is a 
lynchpin of the overarching posited approach. Prior research has 
been conducted regarding the NMF of spectrograms. NMF has 
become a prevalent unsupervised learning approach for the 
analysis of high-dimensional data, as it can facilitate feature 
extraction from very large sparse matrices [16], whereas existing 
algorithms are not readily able to process very large matrices 
due to various issues, such as missing entries or prolonged 
convergence. By way of example, let us take the case wherein a 
very large matrix A is factorized into, say, matrices B and C; the 
desire is that all the involved matrices have no negative elements 
[17]. However, if a prototypical method of matrix factorization, 
such as Singular Value Decomposition (SVD) is used, the 
resulting SVD-based low rank representation leads to images of 
both positive and negative elements (thereby violating the desire 
to have no negative elements), which makes interpretation 
difficult due to the ambiguity. In sharp contrast, NMF has the 
constraint that the factorized matrices have non-negative (i.e., 
positive) elements. Hence, NMF-based factorization facilitates 
a more robust interpretation of the original matrix data, as it 
articulates a clear and logical representation by parts. After all, 
the involved approximation/representation as the sum of 
positive elements (e.g., matrices, vectors, integers) is logical and 
natural (a.k.a., naturalistic) since images are simply matrices of 
positive integers representing pixel intensities. By leveraging 



 

 

the advantage of NMF’s non-negative element constraint, the 
high-level features of the spectrogram are more readily extracted 
from the interior layers (a.k.a., hidden layers) of the neural 
network, as the NMF-based approach is more naturalistic and 
reduces the need for feature engineering (i.e., a coarser approach 
of extraction). As the utilized CLNN architecture is already 
underpinned by a “white box” RCR approach (i.e., RCR-based 
CLNN) as discussed in [3], NMF can further facilitate the 
resultant outputs being more readily explained. 

B. SuT Synthesis Model (SSM) as a Non-Conventional NFM 
Approach, for Facilitating MMF 
STFT often serves as input to the NMF algorithm [18]. 

While prototypical NMF approaches are not able to provide a 
VGM of the STFT itself, the Gaussian Composite Model (GCM) 
is a VGM of the STFT and is depicted in Equation 1 [19],  

 𝑦!"	~	𝑁$&0, [𝑊𝐻]!"-, (1) 

where 𝑦!"		denotes the complex-valued coefficients of the STFT 
of the SuT, f denotes the index frequencies, n denotes the time 
frames, and 𝑁$	  denotes a subclass often used in signal 
processing — the circularly-symmetric complex normal (a.k.a., 
complex normal) that corresponds to the zero-relation matrix 
— wherein zero denotes 𝜇 = 0 and C = 0. Yet, while the GCM 
constitutes a generative model of the STFT, it is not yet a 
generative model of the raw SuT. In essence, it is still a proxy 
SuT Synthesis Model (SSM). Other operations fully transform 
the GCM to a fully formed SSM, which then segues to the MMF, 
its Corresponding WT (CORWT), and the resultant CWT. The 
described transformation progression is shown in Figure 1. 

 
Fig. 1. Transformation of raw SuT to CWT. 

To operationalize the transformation process, a non-
conventional NMF approach is needed in the form of a SSM, 
which facilitates the MMF (a method for finding the involved 
multiscale structure and the defining of the involved wavelets 
for a multi-resolution representation) [20] as well as, in turn, the 
determination of the MMF’s CORWT, and the ensuing CWT. 

C. MMF, CORWT, and Higher Resolution 
MMF can adequately capture the matrix structure and 

varied scales. It is a convenient alternative to prevailing low-
rank paradigms, such as Low-Rank Time-Frequency Structure 
(LRTFS), as the time-to-frequency transformation is reversible 
and the original SuT can be reconstructed by computing the 
Inverse Fourier Transform (IFT) [21, 22]). This should be of no 
surprise, as MMF is based on an approximate factorization of 
WT, as shown in equation (2): 

𝑊𝑇 ≈ 𝑊𝑇%&	𝑊𝑇'& …𝑊𝑇'&	𝐷	𝑊𝑇(𝑊𝑇()%𝑊𝑇%, (2) 

where 𝑊𝑇*  (𝑗 = 1,… , 𝑆) are sparse and orthogonal matrices, 
and D is close to the diagonal [23]. MMF’s CORWT provides 
an enhanced time-frequency representation. As pertinent 
contextual information, whereas FT may suffice for stationary 
paradigms, and windowed FT may suffice for non-stationary 
paradigms, windowed FT is — axiomatically — constrained, as 
the size of the time-frequency window is fixed. In contrast, 
CORWT has a flexible time-frequency window (i.e., adjustable 
resolution) [24], and the pathway from MMF -> CORWT -> 
CWT are a core component of our Adaptive Resolution 
Transform (ART). The CORWT of the SuT, which segues to 
the ensuing CWT, lends well to generating scaleograms and 
time-frequency representations with higher resolution than 
STFT [25]. Hence, the amalgam of NMF and MMF are central 
to operationalizing this paper’s posited implementation 
approach, and the pathway from NMF through CWT 
constitutes our ART. The hitherto RCR-based CLNN can now 
be expressed as an RCR-based CLNN-NMF/MMF construct, 
which is the engine that operationalizes our ART. 
 

However, there are implementation challenges to obtaining 
CORWT, such as the fact that widely varying WT 
implementations (e.g., PyTorch, Python, C, etc.) pervade the 
code base ecosystem.  In contrast to STFT (with its equally 
spaced time-frequency localization), WT provides high 
frequency resolution at low frequencies and high 
time resolution at high frequencies. In accordance with this 
fairly well-established characteristic, WT should be the favored 
pathway for the GHz range (despite the varied computational 
cost); this then segues to the implementation pathway of the 
WT onto the posited RCR-based CRT-CLNN-NMF/MMF 
construct. 

The varied WT implementations necessitate scrutinization. 
By way of background information, as the WT is not time-
invariant, supplanting the orthogonal WT with a translation-
invariant WT (e.g., cycle-spinning, which compensates for the 
lack of shift invariance for the WT by averaging over the 
involved denoised, cyclically-shifted versions [26]), is crucial 
for the task at hand. Adhering to this described translation 
invariance within the involved perceptrons (the utilized 
algorithms for the supervised learning of the binary classifiers) 
is critical, and a translation-invariant linear operator can readily 
be represented as a convolutional operator. Moreover, the 
multiscale structure (i.e., relevant features are comprised of 
combinations of smaller features), such as discerned by MMF, 
segues to the preference of deeper cascade learning (i.e., 
cascades of predictors/classifiers), via ever smaller 
convolutional filters (thereby resembling WT). Overall, the 
RCR-based CRT-CLNN-NMF/MMF construct is quite well 
suited for translation-invariant WT implementations (i.e., as 
WTs provide acceptable SuT representation in the time-
frequency plane and WTs are central for a constrained RCR-
based CRT-CLNN input discernment feature, such as by 
optimally utilizing segments of the coefficients [27]). The 
RCR-based CRT-CLNN-NMF/MMF construct nicely 
accentuates the distinction between the WT proficiency in 
contending with nonstationary SuTs and singularities as 
contrasted to the Fourier proficiency of stationary SuTs (and 
associated global features). This proficiency is particularly 



 

 

amplified when using Cross Wavelet Analysis (CWA). Given 
the varied time series x(ti) and y(ti) for the WoIs to be compared 
from the involved SuTs, discernment can be conducted via the 
wavelet coherency, which equates to the amplitude of the 
Wavelet Cross Spectrum (WCS) normalized to the involved 
Wavelet Power Spectrums (WPS), as shown in Equation 3. 

𝑊𝐶𝑆+(𝑠) =
|	𝑊𝐶𝑆+(𝑠)	|

=𝑊𝑃𝑆1+(𝑠)	𝑊𝑃𝑆2+(𝑠)
(3) 

There is yet another subtlety. By way of example, 
PyWavelets (a Python-based open-source WT library) contains 
Mother Wavelets (i.e., families of Wavelets, which encompass 
both DWT and CWT). Within each Wavelet family, there may 
be varied Wavelet subcategories. Generally, the subcategories 
are differentiated by the number of coefficients (i.e., the number 
of vanishing moments, which refers to the state wherein the 
Wavelet coefficients are zero for those polynomials with a 
degree of at most 𝑝−1, and the scaling function alone can be 
utilized to represent the function) as well as the level of 
decomposition. As the number of vanishing moments increases, 
the polynomial degree of the wavelet increases, and the 
involved graph becomes smoother. It turns out that the 
utilization of CWT enables the intricate structural 
characteristics of the SuT, within the transform space, to be 
better illuminated such that the set of WoIs are more amenable 
for analysis/discernment [28, 29]. The CWT is defined by 
Equation 4. 

CWT (𝛼, 𝛽) = ∫𝑆𝑢𝑇(𝑡)𝑀𝑊(𝑡)𝑑𝑡	 = %
√-
∫ 𝑆𝑢𝑇(𝑡)𝑀𝑊-

. (/)0
-

 ) 
𝑑𝑡                                                    (4) 

where 𝛼 is the scale factor, 𝛽 is the translation factor, 𝛾 is the 
complex conjugate, and MW(t) is the Mother Wavelet function 
[30]. To elaborate upon this aspect, and as a simple test, we take 
a chosen method of signal modulation (the encoding of 
information in a manner that is conducive for transmission), say, 
Multiple Frequency Shift Keying (MFSK), which is defined by 
Equation (5) 

 SuTMFSK (𝑡) = =𝑆𝑢𝑇1𝑒+2[(.56!)/5	85	9!] (5) 

where 𝑆𝑢𝑇1  is the SuT energy, 𝛾  is the carrier frequency, 
𝛿	is	the	frequency	variation	of	the	𝑛th	symbol, 𝜀  is the 
carrier initial phase, and 𝜁"	is	the	phase	factor	[31]. 
Substituting Equation 4 into Equation 3, we obtain Equation 6. 

 CWTMFSK (𝛼, 𝛽) = 𝑒+2[(.56!)05	85	9!)
"
#] (6) 

The discernment enablement of CWT can be seen, and it is now 
apropos to be more explicit, and the hitherto RCR-based CRT-
CLNN-NMF/MMF construct can now be expressed as an RCR-
based CRT-CLNN-NMF/MMF-CWT discernment engine. 

IV. EXPERIMENTATION FINDINGS  
 Sufficiently high resolution, particularly at the higher-order 
harmonics, is essential for waveform discernment in 
5G/B5G/6G systems. Conventional approaches to classifying 

5G/B5G/6G WoIs involve measurements under varied 
propagation conditions and blockage sensitivities. Analytical 
models, which consider the aforementioned conditions, and 
variations of directional beamforming have endeavored to 
contend with the challenges of waveform discernment. Our 
experimental RCR-based CRT-CLNN-NMF/MMF-CWT 
discernment engine leverages pre-computed hashes (which are 
assigned to each WoI previously encountered) and lookup table 
(which stores the pre-computed hashes) to facilitate incoming 
WoI classification and discernment in quasi-real-time. 
Regardless of the WoI, it can still be represented by a hash. 
Overall, the pre-computed hash and lookup table approach 
facilitates WoI classification and discernment. 

Clearly, these higher dimensional representational vectors 
(i.e., hashes) have speed advantages over traditional 
representational approaches. After all, the deluge of SuTs and 
their associated WoI sets often leads to billions, trillions, or 
more vectors. By the utilization of hashes, the SuTs can be 
organized into overarching spatiotemporal Entities of Interest 
(EoI). The significance of this is as follows. EoIs within, say, a 
Dense Base Station Network (DBSN) are more likely to contain 
SuTs and their constituent WoIs of particular characteristics 
(given particular propagation conditions and blockages) than 
those EoIs within, say, a Sparse Base Station Network (SBSN). 
Accordingly, given a query vector, both the superset of EoIs 
and subsets of WoIs that are in closest proximity to the query 
vector (in terms of Euclidean distance) as well as those that 
have the highest dot product with the query vector, are returned 
for this “maximum inner-product” search query. The involved 
ontological structure is shown in Figure 2.  

 

 
 

Fig. 2. DBSNs, SBSNs, EoIs, SuTs, and WoIs 



 A pre-indexing system, hereinafter known as a Pre-Indexing 
Module (PIM), containing known WoIs and their corresponding 
hashes, was utilized to facilitate quasi-real-time classification 
and discernment. The PIM undertakes classification into four 
core categories: (1) EOI_1, (2) EOI_2a, (3) EOI_2b, and (4) 
EOI_3. The WoIs in EOI_1 are “unlikely to be observed” (WoIs 
that occur infrequently). The WoIs in EOI_3 are “likely to be 
observed” (WoIs that occur frequently) on an ongoing basis. As 
further contextual information becomes available (e.g., the WoIs 
are found to be emanating from a DBSN as contrasted to a 
SBSN), some WoIs are further organized into EOI_2b, as the 
RCR-based CRT-CLNN-NMF/MMF-CWT discernment 
engine’s PIM deems particular WoIs to have a similar 
morphology to those WoIs known to have emanated from a 
DBSN); extraneous background WoIs are further organized into 
EOI_2a. Pursuant to the involved classifiers, EOI_2a WoIs can 
be migrated to EOI_1, and EOI_2b WoIs can be migrated to 
EOI_3. Once the EOI_3-related WoI Observational Space Set 
(WoI_OSS) — the ascertained set of WoIs — is determined, the 
PIM determines the top candidates for the ensuing virtual scope 
rendering of the SA to facilitate the hybridized time-frequency 
mappings (those that appear similar, but are actually distinct and 
disparate) of the higher dimensional scaleogram (the 
spectrogram generated by the WT of a lower dimensional SuT). 
The PIM workflow progression is shown in Figure 3. Due to the 
fact that EOI_2a and EOI_3 serve as interim repositories, they 
are collectively referred to as a “Sandbox Data Lake.” 

Fig. 3. RCR-CLNN-WT PIM workflow to obtain WoIOSS 

Overall, the described elements can facilitate the discerning 
of anomalous aspects of high-frequency signals that may not 
otherwise be apparent. In fact, a wideband spectrogram (i.e., 
with an appropriately adjusted Fourier analysis window) can 
facilitate the discerning of adjacent individual harmonics, 
including at the higher-order harmonic level. Hence, the 
approach (by leveraging scaleograms) not only provides insight 
into the dynamic behavior of the SuT and encompassing system 
(including EOIs), but it can also be utilized to robustly discern 
among the involved WoIs.  

Within the 5G/B5G/6G ecosystem, exemplar WoIs include 
Generalized Frequency Division Multiplexing (GFDM), Filter 
Bank Multicarrier (FBMC), Orthogonal Frequency Division 
Multiplexing (OFDM), Universal Filtered Multi-Carrier 
Modulation (UFMC), etc. In turn, there are variants of these 
waveform types. For example, FBMC has two principal 
variants: Quadrature Amplitude Modulation (QAM) and real 
valued Offset QAM (OQAM) (a.k.a. FBMC/OQAM). OFDM, 
which conjoins the advantages of QAM and Frequency 
Division Multiplexing (FDM), has an even greater number of 
variants. UFCM (a generalization of FBMC and OFDM) has 
greater variants still. Taking QAM as an example, to reflect the 
number of data bits transmitted per time interval (b/t), the form 
M-QAM (MQAM) is utilized; M represents the b/t. For
example, 2-QAM is the simplest form of QAM (a.k.a.
Quadrature Phase Shift Keying or QPSK). To reflect the
modulation wherein the data bits select one of M Phase Shift
versions of the carrier to transmit the data, the form M-PSK
(MPSK) is utilized. The magnitude of a normalized MPSK is
defined by Equation 7,

| CWTMPSK (𝛼, 𝛽) | = ;
.√-

𝑠𝑖𝑛'	(𝛾 -
;
	) (7) 

and the magnitude of a normalized MQAM WT is defined by 
Equation 8,  

| CWTMQAM (𝛼, 𝛽) | = ;
.√-

𝑠𝑖𝑛'	(𝛾 -
;
	) (8) 

wherein, for both, it should be self-evident that discernment is 
not viable by comparing these forms [31]. However, the 
“Variance of the Upper Envelope” (VUE) as pertains to the 
magnitude of the WT of a normalized CWTMFSK (hereinafter 
referred to as VUE1) will be greater than that for CWTMPSK or 

CWTMQAM.  In essence,   whereas | CWTMFSK (𝛼, 𝛽)  | is a 
multistep function, the other components of the equation are 
constant values [31]. Consequently, CWTMFSK can be clustered 
separately from CWTMPSK or CWTMQAM. Then, similarly (and 
iteratively), the VUE of a normalized CWTMQAM (hereinafter 
referred to as VUE2) will be greater than that of the others in its 
cluster. In essence, VUE (VUE1, VUE2, …VUEn) facilitates 
discernment. 

Preliminary experimentation has confirmed the potentiality 
of the posited implementation pathway described in this paper. 
As the two key metrics for gauging the practicality of a 
particular SuT/WoI processing pathway centers upon 
resolution (either maintaining a prespecified resolution or 
adjusting the resolution to meet proscribed latency 
requirements) and latency (i.e., sufficient computational 
speed), those preliminary findings will be presented first in 
Table 1. 



 

 

TABLE I.  PROCESSING PATHWAY CHARACTERISTICS FOR VARIOUS 
WAVELET TRANSFORM TYPES 

Wavelet 
Transform 
Type 

Processing Pathway Characteristics 
Sufficient 
Resolution 

Sufficient 
Speed Comments 

CWT  ü ü Characteristics of enhanced 
resolution and speed 

SWT ü û 
Characteristics of 
overcompensation, which 
increases latency 

DWT û ü 
Characteristics of spectral 
leakage, which decreases 
resolution 

 
As can be seen, CWT is the preferred wavelet transform type 
(as it has both the requisite resolution and speed) over SWT 
(which has a higher latency due to a propensity for 
overcompensation) and DWT (which has a lower resolution due 
to spectral leakage). 

Further preliminary experimentation involved performance 
benchmarking a CWT implementation aboard various classes 
of neural networks known to accommodate CWT 
implementations: Artificial Neural Networks (ANNs), Deep 
Convolutional Generative Adversarial Network (DCGANs), 
and CLNNs. The preliminary findings, which were anticipated, 
are presented in Table 2. 

TABLE II.  PERFORMANCE BENCHMARKS FOR VARIOUS NEURAL 
NETWORK TYPES WITH CWT IMPLEMENTATIONS 

Neural 
Network 
Type 

Performance Benchmarks 
Parameter 
Sharing/Optimal 
Number of 
Parameters to 
Learn/Best Fit 
Approximation 

Contextualizes 
Spatial and/or 
Temporal 
Information 

Computational 
Speed 

CLNN  ü ü ü 

RNN ü ü û 

ANN û û û 

 
As can be seen, CLNN (a particular class of CNN), exhibited 
superior performance over RNN and ANN with a CWT 
implementation. This was anticipated, as by employing a 
cascading set of ever smaller convolutional filters within an 
RCR architecture, the CLNN leverages deeper cascade 
learning, which nicely emulates CWTs.  

Additional preliminary experimentation centered upon 
benchmarking NMF against other techniques, such as SVD; 
NMF had superior interpretation results. Likewise, other 
preliminary experimentation centered upon benchmarking 
MMF against other techniques, such as LRTFS; MMF had 
superior reversibility characteristics. Given the page limitations 
of this paper, more quantitative comparisons will be provided 
in a subsequent paper for future work. 

V. CONCLUDING REMARKS AND FUTURE WORK 
Time-frequency representations provide powerful and 

intuitive features for the analysis and comparison of the 
involved time series for SuTs and their constituent WoIs [15, 

32]. The WT of a lower dimensional SuT results in a higher 
dimensional scaleogram, which is, in essence, the spectrogram 
generated by a WT. This can provide insight into, by way of 
example, not only the period of the largest oscillations, but also 
when these oscillations occurred. Hence, the scaleogram 
approach not only provides insight into the dynamic behavior 
of the SuT and encompassing system, but it can also be utilized 
to robustly discern among the various constituent WoIs 
(without the issues of truncation by fixed predetermined fixed 
window size approaches). After all, the RCR-based CRT-
CLNN-NMF/MMF-CWT discernment engine, as a specifically 
architected CNN, nicely succeeds WTs since WTs provide 
acceptable SuT representation in the time-frequency plane by 
optimally using only segments of the coefficients [33, 34]). 
Preliminary experimentation, involving the bespoke RCR-
based CRT-CLNN-NMF/MMF-CWT discernment engine, 
which utilized an amalgam of a non-conventional NMF (i.e., 
combining the utilization of more naturalistic nonnegative data 
vectors with an SSM approach) and MMF, indicates promise 
with regards to the classifying/baselining of WoIs (e.g., 
avoiding the loss of data) over time (for deep learning) for the 
ensuing more robust discernment of WoIs (by taking an 
alternative higher dimensionality representation pathway). This 
approach more fully captures the structure and content of the 
involved matrices so as to achieve higher 
resolution/discernment. Moreover, the CRT-CLNN-
NMF/MMF-CWT discernment engine construct is well suited 
for the desired translation-invariant CWT PyWavelet numerical 
implementation aboard the involved CNN. The CWT 
PyWavelet is the preferred embodiment of the desired 
scaleograms for time series comparison. Consequently, the 
ART approach (NMF -> GCM -> SSM -> MMF -> CORWT -
> CWT)  well illuminates VUE and shows promise in 
facilitating the analysis/discernment of WoIs.  

Future work will involve further refining the discernment 
engine architecture, such as by way of a particular treatment for 
the determination of the covariance matrix, which was 
previously addressed in [35]. For example, architecturally, to 
facilitate the requisite discernment, autodiff libraries (e.g., a 
C++ library that facilitate automatic differentiation of 
mathematical functions) are often utilized to enable large-scale 
tuning of a myriad of parameters defined by the involved 
numerical algorithm (e.g., https://github.com/pulver/autodiff), 
and the envisioned specialized workflow for refining the 
discernment engine architecture is comprised of enhancing the 
following: (1) iterative convolutions with ever smaller filters 
(wherein the filter depth is smaller than the input layer depth, 
such that kernel size is less than the channel size), (2) pointwise 
nonlinearities (which are relationships that are already 
equivariant to permutations of the input/output indices), and (3) 
constrained subsampling operations, such that, collectively, the 
resultant paradigm nicely bears semblance/emulates the WT 
(with complex normals — location parameter, relation matrix, 
and covariance matrix — at every scale) [36, 37].  
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