
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 1

Latency Estimation and Computational Task
Offloading in Vehicular Mobile Edge Computing

Applications
Wenhan Zhang, Student Member, IEEE, Mingjie Feng, Student Member, IEEE, Marwan Krunz, Fellow, IEEE

Abstract—Mobile edge computing (MEC) is a key enabler
of time-critical vehicle-to-everything (V2X) applications. Under
MEC, a vehicle has the option to offload computationally in-
tensive tasks to a nearby edge server or to a remote cloud
server. Determining where to execute a task necessitates accurate
estimation of the end-to-end (E2E) offloading delay. In this paper,
we first conduct extensive measurements of the round-trip time
(RTT) between a vehicular user and edge/cloud servers. Using
these measurements, we present a latency-estimation framework
for optimal task offloading. The propagation delay, measured
by the RTT, is divided into two components: one that follows a
trackable trend (baseline) and the other (residual) that is quasi-
random. For the baseline component, we first cluster measured
RTTs into several groups, depending on signal strength indica-
tors. For each group, we develop a Long Short-Term Memory
(LSTM) regression model. A statistical approach is provided
for predicting the residual component, which combines the
Epanechnikov Kernel and moving average functions. Predicted
propagation delays are incorporated into virtual simulations to
estimate the transmission, queuing, and processing delays, hence
accounting for the E2E delay. Based on the estimated E2E delay,
we design a task offloading scheme that minimizes the offloading
latency while maintaining a low packet loss rate. Simulation
results show that the proposed offloading strategy can reduce
the E2E delay by approximately 60% compared to a random
offloading scheme while keeping the packet loss rate below 3%.

Index Terms—V2X applications, mobile edge computing, task
offloading, latency prediction, LSTM, E2E delay.

I. INTRODUCTION

Intelligent transportation systems (ITS), including con-
nected and autonomous vehicles (CAV), have recently been at
the forefront of research in both academia and industry. CAV

Manuscript received January 2, 2023; revised June 22, 2023 and September
25, 2023; accepted November 5, 2023. This work was supported in part by
NSF (grants CNS-2229386, CNS-1910348, CNS-1813401, and IIP-1822071)
and by the Broadband Wireless Access & Applications Center. Any opinions,
findings, conclusions, or recommendations expressed in this paper do not nec-
essarily reflect the views of NSF.An abridged version of this paper appeared in
proceeding of the GLOBECOM’20 Conference, Dec. 2020 [1]. The review of
this paper was coordinated by Prof. Hung-Yun Hsieh. (Corresponding author:
Wenhan Zhang.)

Copyright (c) 2021 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

W. Zhang and M. Krunz are with the Department of Electrical and Com-
puter Engineering, University of Arizona, Tucson, AZ, 85721 USA. M. Feng is
with Wuhan National Laboratory for Optoelectronics, Huazhong University of
Science and Technology, Wuhan, 430074 China. He was with the Department
of Electrical and Computer Engineering, University of Arizona, Tucson,
AZ, 85721 USA. Email: wenhanzhang@arizona.edu, mzf0022@auburn.edu,
krunz@arizona.edu.

Digital Object Identifier 10.1109/TVT.2023.XXXXXXX

communications include vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), vehicle-to-network (V2N), and vehicle-
to pedestrian (V2P), which are collectively referred to as
vehicle-to-everything (V2X) [2]. V2X enhances the situational
awareness of vehicles, facilitating both beyond line of sight
(BLOS) safety applications, such as accident/merge alerts and
collision prevention, as well as non-safety applications, such as
cruise control, multimedia services, and self-parking, among
others.

In many instances, V2X applications involve executing com-
putationally intensive tasks in near-real-time. For example, ob-
ject detection (e.g., of pedestrians, bikes, vehicles, etc.) often
involves extensive, real-time processing by deep learning [3],
[4]. However, such processing would be prohibitive for the
in-vehicle embedded processor [5]. Instead, computationally
intensive V2X tasks may be offloaded to a remote cloud server
with sufficient computing resources. However, the end-to-end
(E2E) communication latency between the vehicle and the
remote server can be excessively high, as the connection tra-
verses multiple hops with varying network dynamics and states
of congestion. As an alternative, the task may be offloaded
to a nearby edge server [6], [7]. Exploiting edge servers
close to base stations (BS) or roadside units (RSUs) can
significantly reduce the communication latency. However, such
servers are unlikely to have the same computational capacity
of a full-fledged data center. To minimize the E2E latency, the
offloading decision should take into consideration the servers’
availability, computing capacities, and task attributes.

Determining where to execute a V2X task necessitates accu-
rately predicting its communication and computing latencies.
While the computing latency can be estimated based on the
task size and processing power, estimating the communication
latency is more challenging due to the fluctuating conditions of
the network path. In most existing works, the communication
latency is approximated by the transmission time [8], [9], ob-
tained from the task size and link rate. Such an approximation
overlooks the channel’s access latency between a connected
vehicle and an edge/cloud server. As demonstrated in our
measurements, the access delay can be pretty significant and
is highly dynamic. Unlike the transmission latency, which
can be estimated a priori, there is no apparent relationship
between the access latency and the task size. A measurement-
based forecasting approach would be more appropriate for
estimating such latency. After a packet arrives at an edge or
cloud server, it is queued before processing, so the load of the
selected server clearly impacts the queueing time. Moreover,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 2

the processing latency at a given server usually varies and
affects the queueing time. We study both the queueing and
the processing latencies to determine the overall computing
latency.

The differences between edge and cloud servers in com-
puting capacity, network latency, storage limitation, and other
features accentuate the importance of the offloading strategy
and its impact on reducing the E2E latency. Previous research
on this topic (e.g., [10]–[12]) neglects that packets of offloaded
tasks may be queued at the server. Given that an edge server
has much fewer computational and storage resources than a
cloud server, packets received by an edge server may end
up being discarded due to buffer overflow. In reality, due to
traffic dynamics, the load of a server can be higher than its
computational capacity, so analyzing the queueing process is
essential for evaluating the offloading performance. Our la-
tency analysis considers communication and computing delays
(i.e., queueing and processing) associated with the offloading
decision. The proposed offloading scheme reduces the E2E
delay while maintaining a low packet loss rate.

In this paper, we first propose a prediction framework for
the round-trip times (RTTs), which combines Long Short-Term
Memory (LSTM) with statistical regression approaches. Our
techniques rely on extensive measurements of the RTTs of
‘ping’ messages sent from an in-vehicle mobile phone to either
an edge server or a data center. Preliminary modeling and
analysis of the latency measurements were performed in [1]. In
the underlying paper, we expand on such analysis by reporting
the RTT statistics for different fixed locations, driving routes,
and times of day. In addition, we analyze the correlations
between the latency and signal-strength indicators, and cluster
the measured data points using the K-medoids approach. By
projecting the clustered data from a high-dimensional space
onto 2D space using distributed stochastic neighbor embedding
(t-SNE), we show that the data points are separable based on
signal strength features.

We combine the predicted RTT with transmission, process-
ing, and queueing delays for each task to come up with an es-
timate of the end-to-end (E2E) delay. Our model incorporates
the task size, task complexity, and the transmission/processing
rates of cloud/edge servers. Based on this model, we study the
success rate and task latency under various settings. Finally,
we propose a task offloading scheme based on the estimated
E2E delay. The proposed scheme enables vehicular users to
dynamically select between a cloud or edge server so as to
reduce the overall E2E delay. We compare the performance
of the proposed offloading scheme with three other offloading
schemes. The main contributions of this paper are summarized
as follows:

• We use a customized smartphone app called Delay Ex-
plorer to collect thousands of traces of the access delay
(the “RTT”) between an in-vehicle mobile device and
an edge/cloud server. These traces were collected at two
different fixed locations and over two driving routes. We
provide comprehensive statistical analysis of the collected
data and highlight important trends.

• By applying an appropriate filter, we split the captured
data into two parts: A trackable baseline part and a resid-

(a)

Route 1

Route 2

Fixed Locations

(b)

Fig. 1. (a) Interface of Delay Explorer app. (b) locations and routes of our
measurements.

ual part. Mechanisms are provided for online estimation
of each part. For the baseline part, the data is first clus-
tered into groups according to received signal indicators.
Then, an LSTM network is trained and used to predict
future baseline values of each cluster. For the residual
part, we propose a hybrid statistical prediction approach
that combines Epanechnikov Kernel function-based prob-
abilistic sampling and moving average function-based
prediction.

• The proposed latency prediction method is compared with
five other prediction methods. The results indicate 45%
reduction in the prediction error compared with a sample-
mean predictor. Relative to the Kalman filter-based and
particle filter-based predictors, our approach is shown to
reduce the prediction error by around 15%.

• We augment our communication-latency prediction
model with predictions of the queuing and processing
delays so as to estimate the E2E delay of a given
task. Based on the estimated E2E delay, we propose an
adaptive task offloading scheme that aims at minimizing
the total delay. The proposed offloading scheme is shown
to reduce the latency by 60% compared with a random
server-selection method while maintaining the packet loss
rate (due to buffer overflow) below 3%.

II. RELATED WORK

In an MEC system, a user may choose to be served by
a cloud node1 (CN) or an edge node (EN). The latency
of edge systems has been modeled and analyzed in various
previous works. The authors in [13] aimed to reduce the user-
experienced delay through prediction, assuming a fixed end-
to-end propagation delay. In [14], the authors estimated the
network latency by solving a Matrix Completion problem.
The authors in [15] estimated network latency using partial

1in this paper, we use ‘cloud node’ to refer to a server located in a remote
data center.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 3

measurements, thereby reducing the computational complex-
ity. However, these works assumed that the latency depends
only on a fixed set of parameters (e.g., transmission rate,
distance between nodes, and packet size) and overlooked the
real dynamics of the network. Our measurements show that
even for packets with the same parameters, the latency varies
constantly, and the network dynamics can significantly impact
the delay experienced by users. In contrast to the above papers,
we consider the uncertainty in communication and computing
latencies and propose an LSTM-based model to capture the
latency dynamics. Although LSTM models have been applied
in several time-series prediction problems (e.g., [16], [17]),
their application in V2X latency prediction is not straightfor-
ward. In our work, an LSTM-based frame is used to learn the
temporal dependency in observed latencies and intelligently
combine long- and short-term information. Therefore, it is
expected to improve prediction accuracy compared to time-
invariant models such as those in [15] and [18].

Several previous works investigated offloading schemes
for MEC systems and attempted to optimize the latency
experienced by the user. In [20], the authors developed a
fault-tolerance methodology for latency-aware edge computing
applications based on checkpointing and replication. In [21],
the author formulated a non-convex mixed-integer nonlinear
programming problem with the objective of minimizing energy
consumption under delay constraints. Finally, in [22], the
authors proposed joint incentive design and resource allocation
for edge computing based on Lyapunov optimization. How-
ever, the authors in [20]–[22] mainly focused on minimizing
the task execution and transmission delay, oversimplifying
the queueing delay at the edge server, which did not fully
analyze and optimize the E2E delay. In addition, the authors
in [19]–[22] rely on the underlying assumption that the various
components of E2E latency can be accurately estimated, while
the interaction between latency estimation and task offloading
was overlooked. In our work, we use the estimated E2E delay
to design an adaptive task offloading strategy. The proposed
strategy enables vehicular users to dynamically select between
the mobile cloud and edge server so as to reduce the overall
E2E delay.

III. LATENCY MEASUREMENTS

To obtain real measurements of the communication latency
between a vehicle and edge/cloud servers, we use a customized
smartphone application called Delay Explorer. This app sends
a stream of ping packets to the IP addresses of the edge and
cloud nodes, and records the feedback from these IPs. The
interval between two consecutive ping packets is set to 500
ms, and these packets are sent via an AT&T LTE network.
Ping packets are usually small in size, and their transmission
and processing times are neglectable compared to normal V2X
packets. Furthermore, when the destination IP address receives
a ping packet, it will immediately send an acknowledgement
back to the user. Therefore, the RTTs of these ping packets
can be used to estimate the RTT between a user and a server in
delay-sensitive applications. Because edge servers are typically
located close to mobile users, the IP address of the first node

TABLE I
STATISTICS OF MEASURED LATENCY (IN MSEC) FOR EDGE AND CLOUD

NODES

Types Statistics L1 L2 Ave. R1 R2 Ave.

Edge
Latency

Mean 75.66 86.45 81.05 70.49 72.94 71.71
STD 15.85 26.15 21.00 17.48 17.51 17.49

STD/Mean (%) 20.95 30.25 25.91 24.80 24.01 24.39
Median 76.73 75.13 75.93 72.22 72.17 72.19

Conf. 90% 90.02 113.23 101.62 86.72 86.19 86.45

Cloud
Latency

Mean 80.92 96.41 88.66 81.36 80.49 80.92
STD 14.68 26.41 20.54 16.4 15.28 15.84

STD/Mean (%) 18.14 27.39 23.17 20.16 18.98 19.57
Median 77.45 99.31 88.38 77.82 77.81 77.81

Conf. 90% 97.09 118.85 107.97 94.31 90.1 92.21

that responds to the ping message can be regarded as the
location of the edge server. In our measurements, the cloud
node is an Amazon Web Server (AWS), located at the Amazon
cloud service center. Delay Explorer also records other useful
parameters besides RTT, including received signal indicators,
velocity, GPS information, and others. In our prediction frame-
work, we use the LTE Signal Strength (SS), the Reference
Signal Received Power (RSRP), and the Reference Signal
Received Quality (RSRQ) to classify a V2X message and
predict its latency. These metrics will be discussed later in
Section V. Fig. 1(a) shows the interface of Delay Explorer.

We collected more than 1,600,000 RTT measurements both
at fixed locations and while driving. The fixed-location sce-
narios include an office and an apartment (see Fig. 1(b)). For
the mobile scenarios, latency measurements were taken while
driving along the routes in Fig. 1(b). These measurements
represent realistic vehicular conditions, including node and
traffic densities, as well as channel conditions that vary along
the route. In addition, to provide a good representation of prac-
tical use cases, data collection was conducted at different time
periods, including weekdays, weekends, mornings, afternoons,
etc.. The measurements are divided into training and testing
parts, with the latter part used to evaluate the performance of
the proposed predictors. Fig. 2 shows the distributions and key
statistics of measured RTTs. As expected, the edge server has
a lower mean RTT than the cloud server, but it also has a
higher standard deviation (STD).

A. Impact of Locations and Routes

Table I depicts the mean, STD, and median of the RTT for
two fixed locations (L1, representing an office on campus,
and L2 representing an apartment), as well as two major
driving routes (R1 and R2, as shown in Fig. 1(b)). It can
be observed that the RTTs of different network nodes can
vary significantly in some locations/driving routes. However,
the mean and median values of latency for the edge node are
always lower than those of the cloud node. In addition, the
edge node usually has a higher STD than the cloud node.
To evaluate the latency tolerance, we define confidence as
the latency value where a particular fraction of measured
latencies is below. For example, a 90% confidence value
for L1 edge latency is 90.02 ms, which means 90% of the
measured edge latencies for L1 are less than 90.02 ms. We
observe that the confidence for mobile cases is less than

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 4

(a) Fixed location 1 (b) Fixed location 2 (c) Route 1 (d) Route 2

Fig. 2. Probability density distribution and kernel density estimation comparison between the cloud-node latency and edge-node latency at different locations
and during different routes.

(a) The time-series trends (b) Auto-correlation

Fig. 3. Continuous measurements over five weekdays (Monday to Friday) at
the fixed location 2.

for fixed-location cases. This is because the measurements
during driving were taken along with the main roads for urban
areas; however, the fix-location measurements were always in
indoor environments (i.e., campus and apartment). We plot
the probability density distribution for L1, L2, R1, and R2 in
Fig. 2. The PDFs vary significantly for different locations, as
shown in Fig. 2(a) and (b), which may be attributed to the
difference in the base station configurations at these locations.
In contrast, the PDFs of measured latencies along the routes
in Fig. 2(c) and (d) look similar, which may be justified by
the fact that the two paths are close to each other.

To explain the observed latency fluctuations, we normalized
the STD by the corresponding mean latency at different
locations and routes, and added the resulting metric in Table
I. For EN latency, L1 has the lowest normalized STD of
20.95%, which is lower than R1 (24.80%) and R2 (24.01%).
L2 has the highest normalized STD of 30.25%. A similar
relationship is observed for the cloud latencies. In other words,
the normalized STD of the latency at fixed location L1 is lower
than its mobile counterpart for both EN and CN. The higher
fluctuations for L2 are attributed to two peaks in the histogram.

B. Peaks and Periodicity

For scenarios L1, R1, and R2, the histogram for the RTT
depicts one peak and one bulge at around 70 ms and 110 ms,
respectively. In contrast, for L2 we observe two peaks at 67
ms and 106 ms, and two bulges at 144 ms and 190 ms. The
gap between successive peaks/bulges is around 40 ms, which
corresponds to the periodicity of the Scheduling Request (SR)
and Hybrid ARQ (HARQ) messages in LTE systems [7], [24].
Specifically, in a synchronized LTE system, radio resources
are divided into frames of 10 ms each. The resource block
for a certain function is usually assigned to a subframe within

the frame. If the UE does not receive an acknowledgment
(ACK) from the base station (BS), it has to wait and resend
the request in the next period. The 40 msec periodicity due to
SR messages and HARQ retransmissions was also observed
by other researchers (see, for example, the measurements in
[7], [24]).

The two peaks in Fig. 2(b) are caused by the fact that the
measurements in scenario L2 were taken over a time span that
includes late afternoons, evenings, night hours, and mornings.
During night hours, the traffic load is generally light, so the
BS may switch to sleep mode to reduce energy consumption
by deactivating certain units [25], [26]. If the UE sends its
request during such times, the BS may fail to respond on
time, and the UE has to resend such a request in the next
period. Accordingly, in the case of scenario L2, a relatively
high density of requests will end up with about 40 ms of
additional delay, creating a second peak at 106 ms.

We also observed that the heights of the peaks differ for EN
and CN. In our measurement setting, we assume the first-hop
node is an EN. When the ping request arrives at the EN, the
response is sent from the BS immediately. However, when we
ping the CN, the BS has to wait for the response from the
cloud before sending feedback to the UE. This results in a
higher latency for the CN. Therefore in Fig. 2(b), there is less
density around the first peak in the case of cloud latency than
in the case of the edge latency in Fig. 2(b).

C. Impact of Time Period
To better show the statistics and patterns of latency, we plot

in Fig. 3 the latency during five continuous weekdays. The
figure indicates that the average value of latency varies over
time during the day. This may be caused by the changes in the
traffic of user devices or the signal power. We also plot the au-
tocorrelation of the weekly measurements in Fig. 3(b), where
a periodical pattern is seen over the days. The autocorrelation
drops quickly to around 0.3 as the lag increases to larger than
1. It then slowly decreases to a negative value after about
20,000 points (about 12 hours) and then starts to increase. It
achieves another peak at about 40,000 points (about 24 hours),
then drops again periodically. Note that when the lag is 40,000,
the latency in Fig. 3(a) also shows a high expected value.
Such peaks and dips intersect with periodical lags, indicating
that the latency is correlated with the time of the day. The
autocorrelation diminishes to zero when the lag is large. The
observed periods indicate the trends behind the raw data, and
we can use them to estimate the actual latency over time.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 5

IV. OVERVIEW OF PREDICTION FRAMEWORK

Two key observations can be made based on our analysis
of the latency measurements. First, the measurements show
significant fluctuations that closely follow a Gaussian distri-
bution or a combination of multiple Gaussian distributions.
Second, when viewed over long intervals, the data depict daily
trends. These two features were also observed in [28]. Based
on these observations, we propose to filter the data first and
use an LSTM network to learn the temporal dependencies of
such trends. Given that the latency is non-stationary and its
distribution is not in closed form, we apply weighted sum of
statistical predictors to model the residual part of the measured
latencies.

Fig. 4(a) depicts the autocorrelation of the raw data. It can
be seen that the correlation of the raw data is not significant.
Therefore, we apply moving average-based filter functions to
process the data, which facilitates the extraction of correlation.
Fig. 4(b)–(d) depicts the autocorrelation of the traces obtained
after applying filters with three window sizes: 10, 100, and
1000. We observe that the temporal dependencies increase by
applying these filters. In other words, the filtered component
becomes more trackable in the time domain. Therefore, we
apply a filter function and decompose the latency into two
components (see Fig. 5): one that exhibits a trackable pattern
over time (which we call a baseline) and another that behaves
like correlated random noise, i.e., colored noise, which we call
residuals.

A time-series LSTM model is designed to predict the base-
line. Even with an LSTM prediction model, the accuracy is
still limited. Accordingly, we exploit the dependency between
received signal indicators and access latency to cluster the
data and apply a per-cluster LSTM predictor. We show that
such clustering strategy results in improving the prediction
accuracy in Section V. The second component, the residuals,
is predicted using a hybrid statistical approach that combines
several predictors. These predictors are based on sampling the
approximated pdf of measured residuals obtained by Epanech-
nikov Kernel functions. The final prediction of the residual is
a weighted sum of these predictors, and the coefficients can
be adapted in an online fashion according to the instantaneous
prediction error.

V. LSTM-BASED PREDICTION OF BASELINE LATENCY

To predict the baseline component, we design a clustering-
based LSTM network that utilizes the received signal indica-
tors to improve prediction accuracy. In a wireless environment,
the received signal strength is a good indicator of channel
conditions. We first depict the correlations between the latency
and other measured parameters in Fig. 6. In contrast to
signal-strength-related metrics that show strong correlations
with latency, the impact of the vehicle’s speed on latency
is negligible, i.e., the correlation coefficient is quite low.
Thus, we focus on using the signal strength indicator to
assist the latency estimation. The signal strength depends more
on the receiver’s environment (e.g., reflections, diffraction,
and scattering from buildings and blocks) and fluctuates at
a slower pace. Therefore, we adopt three signal strength

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n

0 2 4 6 8 10 12 14 16 18 20

Lag

(a) Raw data

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n

0 2 4 6 8 10 12 14 16 18 20

Lag

(b) Filtered data with W = 10
sample points

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n

0 2 4 6 8 10 12 14 16 18 20

Lag

(c) Filtered data with W = 100
sample points

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e

A
ut

oc
or

re
la

tio
n

0 2 4 6 8 10 12 14 16 18 20

Lag

(d) Filtered data with W = 1000
sample points

Fig. 4. Autocorrelation of raw and filtered data (baseline component) for a
representative trace.

Fig. 5. Architecture of the proposed LSTM-integrated latency prediction
framework.

indicators as the criteria for data clustering before performing
latency prediction. K-medoids algorithm is used to group the
collected data. After data clustering, multiple LSTM networks
are trained independently for different groups. During the
testing phase, the input is clustered based on the same criteria,
and then assigned to the corresponding trained LSTM network
for prediction.

A. Correlation Between Latency and Signal Strength Indica-
tors

We use RSRP as an example to show that the strength of the
received signal is correlated to latency. In Fig. 7, we plot the
measured latency vs. RSRP for a segment of dataset. We can
see that the latency values mainly fall in the range between 65
and 85 ms, and they roughly follow a Gaussian distribution.
In contrast, the RSRP values mainly fall in the range between

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 6

Fig. 6. Correlation between the latency and other metrics.

Fig. 7. Joint distribution between the latency and RSRP.

-110 and -70 dBm, with a larger variation than the latency.
Based on these observations, we draw a linear-regression line
according to the root mean square error minimization rule. We
can observe that most points are distributed near the regression
line, and the point with a lower RSRP has a higher expected
latency. This indicates that signal strength is correlated with
the latency and can be used to approximate the latency.

We consider three metrics that are related to signal strength.
SS measures the received power of the LTE signal from
the serving BS. RSRP is the average power of cell-specific
reference signals over multiple LTE resource blocks within
the measurement frequency band. Thus, RSRP represents the
signal power over the bands of interest. RSRQ is ratio of the
carrier power to the interference power. RSRQ is an important
parameter for handover decision. However, the correlation be-
tween the latency and any single metric (SS, RSRP, or RSRQ)
is only about 0.4, which is not sufficient to be employed as a
feature for time series prediction. To take advantage of these
strength metrics from different measurement perspectives, we
propose to preprocess the data using SS, RSRP, and RSRQ.

B. Data Clustering for Latency Prediction

We apply the K-medoids [29] approach to classify the
latency measurements according to their corresponding SS,

RSRP, and RSRQ. K-medoids is a distance-based clustering
technique that splits the input dataset S into K groups, as
follows:

1) Randomly generate K medoids and compose the
medoids set M in the three-dimensional dataset S,
according to SS, RSRP, and RSRQ of the input;

2) Calculate the Euclidean distances between all the data
points in S and the medoids in M. Then, cluster each
data point to the medoid with the minimum distance;

3) In each cluster, test each data point as a potential medoid
and calculate if the average distance is reduced;

4) If so, reassign data points in S to the updated M;
5) Repeat steps 2 through 4 until the minimum average dis-

tance between each point and the corresponding medoid
is achieved.

By employing the K-medoids algorithm, the input dataset
S is clustered into K groups according to SS, RSRP, and
RSRQ. In contrast to traditional supervised machine learning
methods (e.g., support vector machine (SVM) and multi-
layer perceptron (MLP) [30]), the K-medoids algorithm can
split data without prior knowledge of their labels. Therefore,
such an unsupervised learning algorithm is more suitable
for preprocessing the data and finding the best clustering
strategy in dynamic network environments. Fig. 8(a) depicts an
example of applying the K-medoids clustering approach with
K = 5. It can be seen that the three signal strength parameters
are consistent, i.e., the signal becomes stronger when going
from the lower left to the upper right. The clusters with a
better signal quality are more likely to achieve lower latency
(e.g., the cluster with yellow triangles has lower latency values
than other clusters).

We also use the t-distributed stochastic neighbor embedding
(t-SNE) [31] approach to project the feature and visualize
the clusters in 2D space. T-SNE is a statistical method for
visualizing high-dimensional data by giving each data point
a location in a low-dimensional map. Therefore, T-SNE pro-
jection only changes the relationship between the point and
cluster, and does not change the point distribution. By t-SNE
with cluster number of five, we observe that data points with
similar features form distinct clusters, as shown in Fig. 8(b).
This indicates intrinsic differences in the collected data and
justifies the use of clustering.

C. Impact of Clustering Number

We also illustrate the points distribution in the projected
t-SNE dimensions in the case of two clusters. In this case,
the yellow-colored points in Fig. 8(b) are merged into another
cluster in Fig. 8(c), although the points in the merged cluster
are not close to each other. This indicates that clustering
measured data into two groups is insufficient. To quantify the
impact of cluster number K, we introduce two coefficients
to evaluate the impact of clustering: Silhouette Clustering
Coefficient [32] and Davies–Bouldin Index [33]. The silhouette
coefficient measures how similar an object is to its cluster
(cohesion) compared to other clusters (separation). The sil-
houette coefficient ranges from -1 to +1, where a high value
indicates that the object is well matched to its cluster and

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 7

(a) Original features with five clusters (b) Projected features with five clusters (c) Projected features with two clusters

Fig. 8. Clustering latencies according to RSRP, RSRQ, and SS (K-medoids algorithm) and projection of signal strength metrics with t-SNE.

(a) Silhouette Clustering Coefficient (b) Davies–Bouldin Index

Fig. 9. The clustering coefficients vs. cluster number K.

poorly matched to neighboring clusters. The Davies–Bouldin
index is denoted as the ratio of the within cluster scatter, to
the between cluster separation. Thus, clusters farther apart and
less dispersed will result in a lower score. The minimum score
is zero, with lower values indicating better clustering.

We consider a range of cluster numbers from two to ten,
and calculate the corresponding two coefficients. We repeat
the simulation ten times and depict the boxplot that shows
the 25% − 75% confidence interval and the mean value. In
Fig. 9(a), the Silhouette coefficient has larger mean values
when K = 3 and 5. In Fig. 9(b), the expected Davies–Bouldin
index first decreases when K < 6 and increases with K
afterward. Based on the observation in Fig. 9(a), K = 5 is the
best choice for our case. In addition to the above observation,
we also find that compared to other K values, the clustering
coefficients have a more significant change when K increases
from 2 to 3. This indicates intrinsic differences in the collected
data and necessitates the clustering. When ranging K from 2 to
5, the Silhouette coefficient is increased from 0.391 to 0.438
while the Davies–Bouldin index is decreased from 1.042 to
0.725, showing that our clustering approach can effectively
separate the data.

To further compare different settings of cluster number
K, we use the average distance between any point and its
corresponding center as the metric. Fig. 10(a) depicts the
average distance under different cluster numbers. The distance
decreases as K increases, with a slower rate when K is larger.
This indicates that increasing K will not significantly reduce
the average distance after K reaches a certain value. Note that
the average distance is only one of many metrics that is related
to the prediction performance. To show the prediction accuracy

(a) Average distance vs. cluster
number

1 2 3 4 5 6 7

Cluster Number K

0

0.05

0.1

0.15

R
M

S
E

(b) RMSE vs cluster number

Fig. 10. K-medoids distance and the prediction error of LSTM network under
different cluster numbers.

under varying values of K, we use the Root Mean Square
Error (RMSE) to measure the errors between the actual and
predicted value for LSTM networks. In Fig. 10(b), we show
the RMSE of the LSTM predictor under different numbers of
clusters (K). The prediction error is reduced when the K is
between two and five but increases when K > 5, which is
resulted from overfitting. Accordingly, we set K = 5 in our
prediction model.

D. LSTM Network Design

Our measurements reveal that the latency at a given time is
impacted by both short-term and long-term historical values,
and it follows a trackable pattern over time once the small-
scale variations are filtered out. This motivates us to employ
an LSTM network, a kind of recurrent neural network (RNN)
architecture, to estimate the latency. A initial attempt at
designing such a model was presented in [1]. In here, we
fine-tune this design and study its transient behavior.

The LSTM network stores the memory in the cell states
and controls the information flow (i.e., determines what to
remember and what to forget) by adapting the parameters of
several gating functions, and can have a shallower structure
compared to other deep neural networks, such as convolutional
neural networks (CNNs) and multi-layer perceptron (MLP). In
our case, we can achieve a prediction accuracy of less than
10% of the RMSE with only 20 LSTM cells. Let xi be the
ith measured latency, and n the total number of measurements.
Let g(·) be the cluster function, which can be expressed as:

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 8

Fig. 11. Architecture of an LSTM cell.

g(xi) = xk,i, if xi belongs to cluster k, k = 1, 2, ...,K. After
clustering, inputs are divided into K groups: X1, X2,..., XK .
During the training phase, K different LSTM networks are
trained using Xk, k = 1, 2, ...,K. During the testing phase,
the clustering algorithm decides which cluster to use and
then selects the corresponding LSTM network to predict the
latency.

A typical LSTM network consists of multiple LSTM cells
that are used to learn f(·) during the training phase. Fig. 11
shows the architecture of one LSTM cell. At each time step
t, g(xt) is the classified input and ht is the cell’s output. The
cell’s output from the previous time step, ht−1, is combined
with the current input g(xt) and fed into the current cell. We
further denote the cell state as Ct. This state records the cell
parameter and updates at each step. Several gates, including
an input gate (it), output gate (ot), and forget gate (ft),
are applied to alleviate the gradient vanishing and exploding
impacts on the RNN. These gates employ sigmoid (σ) as the
activation function, which generates an output between zero
and one. The output of an intermediate cell state at time t
(C̃t) updates similarly with gates. The current inputs g(xt)
and previous cell state Ct−1 are processed by a hyperbolic
tangent function that generates an output between −1 and 1:

C̃t = tanh(Wcg(xt) + Ucht−1 + bc) (1)

where, Wc is the weight for the cell state, Uc is the recurrent
weight, and bc is the bias. The element-wise product of the
updated C̃t and it is regarded as the first part to update Ct.
The other part comes from the multiplication of Ct−1 and ft.
With this structure, the cell state can adjust the impact of the
current input and the previous state with the input and forget
gates, and generate the output of the cell ht, which will be
used for the next time step:

ht = ot ∗ tanh(it ∗ C̃t + ft ∗ Ct−1). (2)

E. LSTM Network Training and Testing

The training process involves hyperparameter tuning, which
is performed offline. After training is completed, the prediction
will be conducted online using the trained LSTM networks.
Before feeding the data into the neural network, we normalize
them as follows:

xi
′ =

xi − x̄∑n
i=1

1
n (xi − x̄)2

, for i = 1, 2, ..., n (3)

Fig. 12. Relative prediction error under different numbers of clusters using
100 LSTM cells.

where x̄ is the sample mean latency of the input data. The
normalized data are then split into 80% for training and 20%
for testing. Our model is a sequential model and the latency
prediction depends only on historical latency data. The initial
learning rate is set to 0.005 and the learning rate drop factor
is set to 0.2, so that we can limit the impact of the first several
samples in case these samples do not represent the common
feature.

We first set K independent LSTM networks, where each
network is trained using data from one of the clusters produced
by the K-medoids algorithm. The number of cells for each
network is set to 20. Then, we train this model to find the
optimal regression parameter and predict the latency based on
input sequences. The difference between the prediction and the
actual latency can be regarded as the loss function L. Thus, in
each training iteration, the weights and bias can be updated by
the back-propagated gradients calculated from L. We finally
monitor the loss of RMSE and stop the training when L cannot
be further reduced.

We study the prediction error under different numbers of
cells and clusters for the given group in a controlled way, as
shown in Fig. 12. In particular, we fix the number of LSTM
cells at 100, which matches the total number of cells of the
five-cluster predictor. We can observe that even though the
error decreases as K increases from 1 to 4, this error is still
higher than the one in the benchmark case. The error rebounds
to a higher value when K = 10. Therefore, for the rest of the
paper, we use K = 5 and 20 cells in each LSTM network.

F. Transient Behavior Analysis for LSTM Network

In the conventional machine learning algorithm, the training
and the testing data usually share some common features.
We train the neural network to learn these features from the
training dataset and then use the trained model to evaluate
the testing dataset. However, the communication environment
could be various, especially in mobile edge computing sys-
tems, and such changes can degrade the prediction accuracy
of the LSTM network. For the time series regression problem,
a machine learning algorithm usually uses historical data as
the input to predict the value for the next step(s). Since the
data are aligned in chronological order, the first point in the
testing dataset usually relies on the previous data. Nonetheless,
such an assumption is only sometimes true in the mobile case.
The point in the testing part could have a different feature

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 9

from the previous measurements. As a result, we consider
using zero instead of historical data at the beginning of the
testing and changing the testing data by adding noise with
different deviations to evaluate the transient behavior of the
LSTM network in Section VIII.

VI. PREDICTION OF THE RESIDUAL COMPONENT

A. Predictor Design

The residual component that remains after subtracting the
baseline is modeled using a hybrid statistical approach that
combines three predictors.

1) PDF Approximation: The distributions of the RTT la-
tency between the user and the edge/cloud servers, previously
shown in Fig. 2, can be approximated by a kernel density.
The latency shows a higher density when it is closer to
the mean value and becomes more sparse when it is further
away. Accordingly, we propose a prediction approach based
on the sampled value of the kernal-based PDF. However,
such a PDF evolves as new measurements are received; thus,
the real distribution is hard to capture at a given time. We
investigate and evaluate several methods for finding good
density estimation of the measured latency. Specifically, the
probability that the latency equals to x is calculated using the
following Epanechnikov Kernel function:

f̂D(x) =
1

N

N∑
i=1

KD (x− xi) =
1

ND

N∑
i=1

K
(
x− xi

D

)
(4)

where xi is the ith data point, N is the number of samples
used to generate the PDF approximation, and KD is a scaled
Epanechnikov Kernel function with a smoothing parameter D.
By using the Kernel function, we obtain the PDF of x as a
continuous variable.

From (4), we see that f̂D(x) depends on N and the selection
of the sample set (i.e., x1, x2,..., xN). Data used to compute
f̂D(x) is obtained by sliding a window over the measurement
trace. Because more recent samples contain more valuable
information, we include two predictors that take advantage of
both short- and long-term information: ySTS and yLTS. These
predictors are defined based on the given sampling range.

2) Moving Average: The above sampling-based approach
cannot fully capture dependencies in the observed latencies
(i.e., the autocorrelations between samples). Therefore, we
augment them with an exponentially weighted moving average
(EWMA) predictor:

yi = yi−1 + α(xi − yi−1) (5)

where yi is the prediction at time i and α is the weight
parameter. This α can be determined by α = 2

N+1 . We denote
the EWMA predictor by yMA.

B. Combining Predictors

From the measurements, we observed that the accuracy of
different predictors varies with the measuring periods. For
example, ySTS can have better performance than the other
two when the latency fluctuates significantly. This is because

recent latencies have more impact on the current latency
than yLTS, and the fluctuation further drops the accuracy
of the EWMA approach. Hence, we propose to combine
these three predictors through dynamic weights a, b, and c,
i.e., the weights (coefficients) can be adapted based on their
relative importance and reduction in the prediction error by
one predictor. Note that ySTS, yLTS, and yMA are relatively
independent in the prediction. As a result, the final prediction
value can be denoted as:

yi = a ySTS + b yLTS + c yMA. (6)

Where a+ b+ c = 1.

C. Adaptation of Coefficients

To improve the prediction accuracy under various dynamic
environments, we update the coefficients a, b, and c with
time. Specifically, at each time step i, we first set a potential
coefficient set including J groups of coefficient vectors and
calculate the possible predictions yi,1, yi,2, ...yi,j , ..., yi,J as
follows:

[
ySTS, yLTS, yMA

]
·

a1 a2 ... aj ... aJ
b1 b2 ... bj ... bJ
c1 c2 ... cj ... cJ

 . (7)

Where (aj , bj , and cj) is the possible coefficient vector (a,
b, and c) at time i. Then, we calculate the error vector[
E1, E2,, EJ

]
between yi,j and real latency xi, and

find j′ ∈ {1, 2, ..., J} that minimizes Ej :

j′ = arg min
j′∈{1,2,3,...,J}

Ej (8)

Finally, we update {ai+1, bi+1, ci+1} = {aj′ , bj′ , cj′} for the
next step prediction.

VII. LATENCY ESTIMATION-BASED TASK OFFLOADING

In a V2X system, a user usually keeps sending packets
before receiving results from the server. For example, an
autonomous vehicle may collect data from different sensors
(e.g., camera, lidar, or radar) in real-time while these data
are being processed. The vehicle continues to offload tasks
to the server. As a result, tasks offloaded to the same server
can create a queue, whose delay contributes to the E2E delay.
The previous section aims at predicting the RTT, which only
includes access and propagation delays. To model the total
packet delay in the V2X system, other latency components,
including transmission delay, queuing delay, and processing
delay, should also be incorporated. Fig. 13 shows the offload-
ing process. The propagation and transmission time accounts
for the packet delivery time, while the queueing and processing
time depends on the type of offloaded tasks and the server.

A. Latency Model

In our model, the E2E delay consists of multiple delay
components. Since the typical size of a ping packet is only
56 bytes, we ignore the transmission and processing times of
the ping packet, and use the measured RTT to represent the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 10

Fig. 13. Latency components of the communication between UE and the
server.

propagation delay (τprop). A packet offloaded to the remote
server traverses more hops than a packet sent to an edge server,
so the average transmission time to the CN is expected to be
larger than the EN. Formally, we define the transmission delay
(τtran) as the total time required to transmit the data associated
with a task to the designated server.

Let τ
(C)
tr and τ

(E)
tr be the average transmission delay for

cloud and edge nodes, respectively. Define the node selection
parameter:

δi ≜

{
1, if the ith packet is offloaded to the edge node
0, otherwise.

(9)
Accordingly, the transmission delay for the ith packet is τ

(C)
tr,i

if offloaded to the CN and is τ
(E)
tr,i if offloaded to the EN.

Therefore, the overall transmission delay for the ith packet is
given by:

τtran,i = (1− δi)τ
(C)
tr,i + δiτ

(E)
tr,i . (10)

These transmission delays can be calculated with the times-
tamps already contained in the packet’s header by CN/EN [34].
In the simulation, we assume that the transmission time (τ (C)

tr,i

and τ
(E)
tr,i) varies but follows an exponential distribution with

effective link rate parameters R(C)
tr and R

(E)
tr , where 1

R
(C)
tr

and
1

R
(E)
tr

are the mean transmission time for the unit size packet.

After a packet arrives the server, the queuing delay (τqueue)
is the time that the packet/task waits in a queue at a CN/EN
before its processing begins. We build two virtual queues for
the EN and CN to simulate the packets processing at the
server. Packets will be queued to the EN or CN by offloading
decisions. In our problem setting, variations in the queuing
delay are caused by the randomness of the offloading process
between the CN and EN and the variation of service time for
different tasks. We assume that the CN has a sufficiently large
buffer size such that there is no overflow, whereas the EN has a
relatively small buffer size. We further assume first-come-first-
serve (FCFS) service discipline. The interarrival time between
two tasks is set to 500 ms, which is the same as the one used
in the latency measurements. The service times are modeled
as i.i.d. exponentially distributed random variables with rate
ν (ν is the inverse of the mean service time). Note that the
packet arriving rate interacts with the estimated queueing and

Algorithm 1 Latency estimation-based offloading algorithm

Input: M⃗ , R(E)
tr , R(C)

tr , P , R(E)
pr , R(C)

pr

Output: δ⃗
initialization:
Round r = 1, Time i = 0, τ⃗ (E)

prop,r, τ⃗
(C)
prop,r ← pred (M⃗),

τ⃗
(E)
tran,r, τ⃗

(C)
tran,r, τ⃗

(E)
queue,r, τ⃗

(C)
queue,r, τ⃗

(E)
proc,r, τ⃗

(C)
proc,r ← 0⃗,

δ⃗r−1 ← −1⃗, δ⃗r ← 0⃗, R = Max Iteration
1: for r = 1 to R do
2: if H(δ⃗r−1, δ⃗r) ≥ αL then
3: δ⃗r ← δ⃗r−1

4: for i = 0 to L− 1 do
5: if τ (E)

totl,r,i ≤ τ
(C)
totl,r,i then

6: δr,i = 1
7: else
8: δr,i = 0
9: end if

10: τ
(E)
tran,r,i+1, τ

(E)
queue,r,i+1, τ

(E)
proc,r,i+1 ← sim (EN, δ⃗r)

11: τ
(C)
tran,r,i+1, τ

(C)
queue,r,i+1, τ

(C)
proc,r,i+1 ← sim (CN, δ⃗r)

12: τ
(E)
totl,r,i+1 = τ

(E)
prop,r,i+1+ τ

(E)
trans,r,i+1+ τ

(E)
queue,r,i+1+

τ
(E)
proc,r,i+1

13: τ
(C)
totl,r,i+1 = τ

(C)
prop,r,i+1+ τ

(C)
trans,r,i+1+ τ

(C)
queue,r,i+1+

τ
(C)
proc,r,i+1

14: end for
15: else
16: return δ⃗r
17: end if
18: end for
19: return δ⃗r

processing time in our queueing system, so the queue is not
a M/M/1 model. Thus, we can not rely on the numerical
results from the existing queueing models. Instead, we need
to dynamically simulate the packets arriving associated with
the offloading schemes to model the waiting time.

The actual service time is represented by the processing
delay (τproc), which can be calculated from the packet size Pi,
the task computational complexity zi, and the processing rate
Rpr, as: τproc = Pizi

Rpr
. Thus, for the ith packet, the processing

delay can be written by:

τproc,i =
Pizi

(1− δi)R
(C)
pr,i + δiR

(E)
pr,i

(11)

where zi represents the required CPU cycles for processing
one bit of data. R(C)

pr,i and R
(E)
pr,i are the actual computational

capabilities for Pi at CN and EN, respectively, which are mea-
sured in CPU cycles per second. Similar to the transmission
time setting, the processing time (1

R
(C)
pr,i

and 1

R
(E)
pr,i

) is modeled

as i.i.d. exponentially distributed random variables with rate
R

(C)
pr and R

(E)
pr .

Combining all delay components, the total delay for the ith
packet can be determined: τtotl,i = τprop,i+τtran,i+τqueue,i+
τproc,i, where τprop,i, τtran,i, and τproc,i are determined by the
selected server, while τqueue,i is determined by the number of
packets in the queue (which is impacted by the offloading

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 11

choices of all connected devices). All the timestamps and
rate parameters are available either in the received packet or
on the server side. The simulation results for each received
packet will be fed back to the user when the server sends
the acknowledgment. It is evident that node selection plays
an important role in determining network latency. Therefore,
we design an algorithm for the node selection based on the
approximated E2E delay, aiming to reduce overall latency.

B. Task Offloading based on Latency Prediction

To estimate the queueing delay of a sequence of packets,
we extend the proposed prediction approach and predict the
next L time slots propagation delay τ⃗prop. After that, we
model two queues at the CN and EN, and simulate the delays
under different offloading schemes. We use the vector τ⃗prop to
present {τprop,1, τprop,2,..., τprop,L} which includes the delay
at each time slot within L. Based on the predicted τ⃗prop, we
simulate τ⃗trans, τ⃗queue, and τ⃗proc and propose the computation
offloading algorithm that aim to reduce vehicle user’s E2E
delay.

The propagation delay vector for CN τ⃗
(C)
prop and for EN

τ⃗
(E)
prop are predicted based only on historical measurements
M⃗ . Therefore, τ⃗

(C)
prop and τ⃗

(E)
prop will not change with the

simulation iteration r (i.e., the propagation delay vectors for
EN and CN at round r will be the same with round r + 1:
τ⃗
(E),(C)
prop,r =τ⃗ (E),(C)

prop,r+1). In the first round for node selection, we
only consider τ⃗

(E),(C)
prop,r for there is no prior knowledge about

the queueing tasks in EN/CN. Thus, we always choose the
node with the lower τprop between τ

(E)
prop,r,i and τ

(C)
prop,r,i and

offload packets to this node for i = 1, 2, ..., L. Based on the
node selection vector at round r (δ⃗r), we create two queues,
one for CN and the other for EN. Then, τ⃗ (E),(C)

trans,r , τ⃗ (E),(C)
queue,r , and

τ⃗
(E),(C)
proc,r for these queues at round r can be simulated. Similar

with round 1, we let each packet choose a node with lower
τtotl between τ

(E)
totl,r,i and τ

(C)
totl,r,i and find the latency-optimal

selection vector δ⃗r for these L time slots at round r.
The simulation stops when there is no change in δ⃗r or when

a certain number of iterations is reached. Note that τproc,r,i is
a exponentially distributed random variable and may lead to
a variation in δr,i during the iteration. This can result in the
permutation of elements in δ⃗r and make the algorithm hard
to converge. In this case, we relax the stopping condition as
the difference between δ⃗r and δ⃗r+1 less than the tolerance:
H(δ⃗r, δ⃗r+1) < αL. Where H is the Hamming distance as
defined in [35], α is the tolerance rate, and L is the length
of the selection vector. In our simulation, we set α and L as
0.05 and 100, respectively. The threshold is set to 500.

We assume that the server monitors the number of packets
in the queues and feed back such information to the UE every
time receiving them. For example, suppose that in round r−1,
the 10th packet is to be offloaded to the CN, i.e., δr−1,10 = 0.
P10 also knows the queuing decisions of the first 9 packets.
In such a situation, if there are 3 packets queueing at the CN
but only 1 packet queueing at the EN, UEs will have a high
probability to choose EN as the offloading node to reduce the
latency. Then, we need simulate the E2E delay for the cloud

TABLE II
PARAMETERS SETTING

Parameters Settings
Transmission interval, τint 500 ms

Input data size, Pi [500− 3000] KB
Computational complexity, zi 2000 CPU cycle/bit
EN transmission rate, R(E)

tr 5 Mbps
CN transmission rate, R(C)

tr 50 Mbps
EN computation rate, R(E)

pr 2× 1010 CPU cycle/s
CN computation rate, R(C)

pr 8× 1010 CPU cycle/s

node τ
(C)
totl,r,10 and for the edge node τ

(E)
totl,r,10 based on the

current queues. If τ
(E)
totl,r,10 < τ

(C)
totl,r,10, the selection variable

δr,10 will be updated to 1. Note that the update of δr,10 will
influence the queues in the future moments. Therefore, we
need to evaluate the impact on the whole sequence of selection
vector, i.e., from δr,1 to δr,L. After that, the node selection
vector will be updated from δ⃗r to δ⃗r+1. The latency prediction-
based offloading algorithm is summarized in Algorithm 1.

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
latency prediction approach and the corresponding offloading
scheme. The access delay is measured by Delay Explorer as
described in Section III. We first predict the propagation delay.
The mean and STD for the prediction error are compared with
other estimation techniques. To show the impact of modeling
the propagation delay using two components, the accuracy of
different window sizes is studied. After predicting the prop-
agation delay, we simulate the offloading procedure between
UE, CN, and EN, where we set the CN’s a computational
capacity to 8×1010 CPU cycles/s and the EN’s computational
capacity to 2 × 1010 CPU cycles/s. The data size per task
ranges from 500 KB to 3000 KB. Other simulation parameters
are referred to [10], [11] and given in Table II. Under this
setting, we simulate the transmission delay, queuing delay,
and processing delay. We then calculate the corresponding
offloading profile, as in Algorithm 1. The few works in the
literature that considered tasks’ queueing delay (e.g., [9]) did
not incorporate E2E latency estimation in task assignment.
Hence, to evaluate our proposed scheme, we compare it with
CN-only, EN-only, and random selection schemes, considering
the average E2E delay and the probability of the successful
transmission.

A. Impact of Filter Settings

For we extract the trends component from our RTT measure-
ments by a window-based average filter, we first evaluate the
impact of such window size. Fig. 14 shows the RMSE for the
predicted RTT under different window sizes. For the baseline
part, the RMSE decreases quickly with the window size and
then stabilizes. This is because the filter removes the rapidly
varying component from the original data and makes the trends
hidden under the data more trackable. In addition to the mean
RMSE drop, the variation of RMSE also reduces with window

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 12

0 10 10^2 10^3 10^4
Filter Window Size

0

0.2

0.4

0.6

0.8

1

R
M

SE
 in

 B
as

el
in

e

(a) Baseline part

0 10 10^2 10^3 10^4
Filter Window Size

0

0.2

0.4

0.6

0.8

1

R
M

SE
 in

 R
es

id
ua

l

(b) Residual part

Fig. 14. RMSE for predicted propagation delay under different window sizes.

size, which indicates that our prediction performs more stable.
Fig. 14(b) presents the impact of window size for the residual
component. The RMSE decreases and then rebounds after the
window size exceeds 1000. This is because the average over
large window size cannot remove the short-term fluctuations
of the data. By separating the noisy component from the trend,
we remove the irrelevance and simplify the regression problem
for the LSTM network. The refined data is more trackable
and requires fewer computational resources. As a result, we
design the lightweight LSTM network with high accuracy but
a shallow structure.

B. Study of Transient Behavior on the LSTM Network

We study the transient behavior of the LSTM network while
latency data are being measured during driving. Recall that we
apply the LSTM predictor using an input window size of 100,
and train it in a sequence-to-sequence fashion. We use the
last value of the output sequence to make a latency prediction
for the next step. Thus, the transient behavior occurs at the
beginning of the prediction process due to the lack of historical
data. In our previous testing results, the missing historical data
were replaced by training data, until the first 100 latency values
have been captured. To study the transient behavior due to
this initialization process, we have conducted new experiments
where we initialize the unknown data points during testing
with zeros (i.e., we assume the predictor does not initially
have any historical data). In this case, the first 100 predictions
may be inaccurate. However, such impact is limited to the
initialization phase. As new measurements become available
to the predictors, they can be used for subsequent predictions.
We visualize the differences between the two initialization
schemes (i.e., are initialized with actual data and the other
with zeros) in Fig. 15(a). We can observe that the impact
of the transient behavior becomes quite negligible as time
goes by. We also plot the distribution of the prediction errors
for both initialization, in Fig. 15(b). We can see that the
error distributions are very similar. In particular, the average
difference in error is only 0.127 ms.

In addition, we study the impact of sudden changes in the
observed latencies on the predictor’s performance. To inject
sudden changes in the data, we periodically add a Gaussian
random noise into the testing data. We use 1000 data points
during the testing phase as an example. The 1000 data points
are divided into four sets of 250 points. For each set, we set
200 data points as ordinary data and we add Gaussian noise

(a) Discrepancy between predictions
when the LSTM predictor is initial-
ized with zeros or with training data

(b) Distribution of the RMSE for the
two initialization schemes

Fig. 15. Impact of the transient state during the testing of time-series latency
prediction.

(a) Prediction error vs. time for dif-
ferent AWGN STDs

(b) RMSE comparison under dif-
ferent STDs

Fig. 16. Impact of sudden changes in the network environment during testing
time-series latency prediction.

to the remaining 50 data points to emulate sudden changes.
We repeat this process for all four sets, so the testing data end
up with four sudden changes. We fix the mean of the added
Gaussian noise to zero to rule out bias, and then vary the
STD to simulate different dynamics of change. The prediction
error is defined as the difference between the predicted and real
(measured) latency, and is visualized in Fig. 16(a). Expectedly,
the prediction error increases when there is a sudden change
in the data. This trend extends beyond 50 data points, to about
100 additional points. The reason is that the LSTM predictor
will use the 50 noisy points as part of the input for predicting
the next 100 latency values. We also observe that the prediction
error is larger as the STD of noise increases. We summarize
the RMSE under various STDs in Fig. 16(b). The RMSE
approximately has a near-linear relationship with the STD of
the noise.

C. Evaluation of the Proposed Prediction Approach

1) Metrics: To test the accuracy of our prediction approach,
we set aside a fraction of the measurements. Measured la-
tencies are collected at a fixed location and during drivings,
as described previously. Both the mean prediction error (e)
and error STD (θ) are reported. We compare all the methods
with a sample-mean predictor. For convenience, we define the
ratio between e of the proposed method and the sample-mean
predictor as ϵ, and denote the ratio between θ of the proposed
method and the sample-mean predictor as µ.

2) Benchmarks: We developed a Kalman filter-based and
particle filter-based models [36] to predict the latency. The
Kalman Filter (KF) is the optimal Minimum Mean Square
Error (MMSE) state estimator for linear Gaussian stochastic

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 13

systems [37], [38]. We denote r is the measured latency
samples and x is the predicted latency model, so we estimate
xk in time step k using the measured latency history from time
step 1 to k − 1. We first derive the distribution p (xk |r1:k)
using the following standard Bayes rule

p (xk |r1:k) =
p (rk |xk) p (xk |r1:k−1)

p (rk |r1:k−1)
(12)

where p (xk |r1:k−1) is given by

p (xk |r1:k−1) =
∑

p (xk |xk−1)p (xk−1 |r1:k−1) , (13)

and p (rk |r1:k−1) and p (rk |xk) p (xk |r1:k−1) is calculated
from the histogram of our latency measurements.

The KF algorithm can now be rewritten as the following
recursive

p (xk−1 |r1:k−1) = N
(
xk−1;mk−1|k−1 ,Pk−1|k−1

)
,(14)

p (xk |r1:k−1) = N
(
xk;mk|k−1 ,Pk|k−1

)
, (15)

p (xk |r1:k) = N
(
xk;mk|k ,Pk|k

)
, (16)

whereN (x;m,P) is the Gaussian distribution with argument
x, mean m and covariance P defined as

Pk = E
(
(xk −mk) (xk −mk)

T
)
. (17)

Our preliminary model is a a linear system given by

rk = Hxk +wk, (18)

where H is the observation transition matrix. w is the mea-
surement noise assumed to follow a Gaussian distribution with
zero-mean and covariance matrix R.

The prediction step of KF is shown as follows

x−
k

= Fxk−1 + vk−1, (19)

P−
k

= FPkF
T +Q, (20)

where F is the state-transition matrix, v is the noise and
assumed to be zero-mean Gaussian, and Q is the covariance
matrix of the process noise.

The update step of KF is shown as follows

Kk = P−
k H

T
(
HP−

k H
T +R

)−1
, (21)

xk = x−
k
+Kk

(
rk −Hx−

k

)
, (22)

Pk = (I−KkH)P−
k , (23)

where Pk is the state covariance matrix. Kk is the Kalman
Gain matrix which corrects the predicted prior state pdf for
deriving the posterior. x−

k
and P−

k
are the prior state and

covariance.
One shortcoming of KF is that it assumes the noise of

measurement and observation to be Gaussian, which does
not necessarily apply to our collected data. To overcome this
limit, we apply the Particle Filter (PF) [39]–[41], to estimate
the posterior density of state variables with given observation
variables. In contrast to the KF in Equations (12)–(16), let
{xi

0:k, w
i
k}

Ns
i=1 denote a random measure that characterizes the

posterior pdf p(x0:k|r1:k), where {xi
0:k, i = 1, ..., Ns} is a set

of support particles with associated weights {wi
k, 1, ..., Np}

and x0:k = {xj , j = 0, ..., k} is the set of all states up to time

(a) Relative mean error (ϵ) compar-
ison

(b) Relative error STD (µ) compari-
son

Fig. 17. Prediction error vs. window size under different prediction methods
using measured traces.

k. The weights are normalized such that
∑

i w
i
k = 1. Then,

the posterior density at can be approximated as:

p(x0:k|r1:k) ≈
Ns∑
1

wi
kδ(x0:k − xi

0:k). (24)

Where δ(·) is the Dirac delta measure. We end up with
a discrete weighted approximation to the true posterior,
p(x0:k|r1:k). More details about PF approach can be found
in references [39]–[41].

3) Results Comparison: Relative prediction error e and
STD µ of different methods are compared in Fig. 17. The
structured LTS and STS methods have similar performance
and can reduce ϵ by around 20%, but both methods raise µ
about 8%. It indicates weak performance if we depend only on
sampling predictors. Conventional approaches such as Kalman
Filter (KF) and Particle Filter (PF) can achieve lower ϵ and
µ than the sampling methods. However, µ for both predictors
is still high and can reach around 85%, indicating that their
prediction may not be steady in all scenarios. Our proposed
approach can reduce ϵ by 45% compared to the sample-
mean predictor. In addition, µ of the proposed approach is
approximately 10% less than KF and PF, showing that our
approach can achieve the best performance in terms of both
precision and stability among all structured methods.

D. Analysis for Components in E2E Delay

We plot in Fig. 18 the fraction of each type of latency,
relative to the total delay. The propagation delay represents
about 40% of the total delay when the packet size is 500 KB.
As the packet size increases, the propagation delay becomes
less significant. When the packet size reaches 3000 KB,
the propagation only takes about 10% of the total delay. In
contrast, the queueing delay becomes more significant with
the increase in the packet size. This is because the packet
with a larger size requires more time to be processed under
a given processing capacity, which forces latter packets to
be queued before being served. The queueing delay’s portion
reaches almost 80% of the total delay when the packet size
is around 3000 KB. The processing and transmission delays
represent about 20% together, which is steady over different
packet sizes. The results show that each component of the E2E
delay takes a considerable percentage and is not neglectable.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 14

500 1000 1500 2000 2500 3000

Packet Size (KB)

0

10

20

30

40

50

60

70

80

90

100

Fr
ac

tio
n

of
 D

el
ay

 (
%

)

Propagation Delay
Processing Delay
Transmission Delay
Queueing Delay

Fig. 18. The percentage of each type of latency in the total delay.

E. Evaluation of the Proposed Offloading Scheme

After predicting τprop, we apply the proposed algorithm
to select between the CN and EN and reduce E2E delay,
as described in Section VII. The CN is assumed to have
infinite buffer size, while the EN has a maximum buffer size
(Bmax) of 7500 KB. The results are summarized in Fig. 19.
As can be observed, for small data packets, the average E2E
delay increases fast with the packet size 2 for the edge-only
scheme. This is because the edge server has limited computing
capacity, which makes its delay performance more sensitive
to the packet size compared with the cloud server. As the
packet size increases beyond 1500 KB, the E2E delay slows
down. This indicates that the packets in the queue is getting
close to Bmax. In other words, most incoming tasks need
to wait Bmax packets to be processed in the queue. Given
that the received packets exceed Bmax will be discarded, the
maximum queueing time will be achieved when packet size
is large enough. In our case, queueing time approaches 6.5
seconds when packet size is 3000 KB. In contrast to the EN,
the CN has a larger computing capacity. The E2E latency
of the cloud-only scheme has a very low E2E delay when
the packet size is less than 2000 KB. After that, the E2E
latency starts to increase rapidly, which implies the computing
capability cannot support the higher incoming rate, and the
queueing delay plays a more important role than the processing
delay. The random selection scheme selects the CN/EN servers
randomly. It outperforms the cloud-only scheme only when the
packet size exceeds the cloud server’s computing capacity. In
contrast to these schemes, our proposed approach can decide
the offloading server based on the predicted latency. When the
packet size is small, it has a similar E2E delay as the cloud-
only scheme. When the packet size is large, our scheme can
make use of the EN when CN is busy. This helps reduce the
burden on the CN when there are packets queueing for service
at the cloud server. The E2E latency of the proposed scheme
is also more robust to variations in the packet size.

Fig. 20 shows the probability of success for different
schemes. We say a transmission is successful when the data
packet of a task is not discarded by the server. The CN has
an infinite queueing capacity, so there no packets will be
discarded. Therefore, the cloud-only scheme achieves 100%

2For simplicity, we use the term ‘packet size’ to refer to the size of the
data associated with a given task.

500 1000 1500 2000 2500 3000

Paket Size (KB)

0

1

2

3

4

5

6

7

A
ve

ra
ge

 E
2E

 D
el

ay
 (

Se
co

nd
)

Cloud-only Scheme
Edge-only Scheme
Proposed Scheme
Random Scheme

Fig. 19. Average E2E delay vs. packet size under different offloading schemes.

success probability no matter how large the packet size is.
Although the CN does not discard the packet, its average E2E
delay suffers significantly when packet size grows. This is
because the later arrived packets have to wait for the server
to process all the prior packets in the queue, and τqueue is
almost linearly increasing with the queued packet size. We
indicate this trend in Fig. 19. As the packet size grows from
500 to 2000 KB, the EN’s computing capability cannot serve
requests on time, so data packets will be queued. The increase
in the queue length results in reduced probability of success.
The random scheme is greatly affected by the EN, for it still
has 50% likelihood to choose the edge server even though the
server has a low success rate. Contrary to a random choice, the
proposed scheme can choose the server that is expected to have
a shorter waiting time. Our scheme reduces the average E2E
delay especially when packet size is large, without sacrificing
too much on the probability of success. For example, when
the packet size is 3000 KB, the proposed scheme has an
average E2E delay of 1.5 seconds but the cloud-only one
has an average delay of 5.5 seconds. The proposed scheme
reduce the E2E delay by 72.7%. However, it only reduces
about 3% probability of success compared to the cloud-only
one. It means our scheme can efficiently make use of the CN to
relieve the EN’s computational burden. The results in Fig. 19
and Fig. 20 show that the proposed approach can maintain a
lower average E2E delay and a higher probability of success
at the same time. In our simulation, we found out that the
proposed scheme results in an average E2E delay of about
38% of the random scheme when the packet size is between
1000 and 3000 KB.

IX. CONCLUSIONS

In this paper, we proposed a latency estimation-based of-
floading scheme for edge applications. We developed the app
Delay Explore to conduct the real-time measurements on a
mobile phone, considering both fixed and mobility scenarios
in an LTE-based MEC network. The app sends ping streams
to the EN and CN and collects the feedback as RTT data.
In addition, our app can also collect other parameters, such
as signal strength indicators, vehicle speed, and location
information. Based on observed RTTs, the data is split into

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 15

500 1000 1500 2000 2500 3000

Paket Size (KB)

20

30

40

50

60

70

80

90

100
Pr

ob
ab

ili
ty

 o
f

Su
cc

es
s

(%
)

Cloud-only Scheme
Edge-only Scheme
Proposed Scheme
Random Scheme

Fig. 20. Probability of success vs. packet size under different offloading
schemes.

the trend and the residual by appropriate filtering. We first
proposed a K-medoids clustered LSTM network to predict
the trend part, assisted by RSRP, RSRQ, and SS. We then
combined Epanechnikov Kernel function-based probabilistic
sampling with the average function to predict the residual part.
Performance tested on real-time collected data shows that the
proposed integration approach can achieve lower prediction
error and higher stability than sampling- and filtering-based
predictors.

After obtaining the prediction of the propagation delay, we
extended our work by simulating the transmission, queueing,
and processing delays and accounted for the E2E delay.
The E2E delay is analyzed under different settings of the
server, including the task size, task complexity, and transmis-
sion/computation rates. We also considered the impact of the
buffer sizes of CN/EN, where tasks that arrive at the full buffer
are discarded and are denoted as failed transmissions. We
then designed an offloading algorithm that allows a vehicular
user to select the cloud/edge server and reduce the E2E delay
based on the estimated E2E delay. The simulation shows that
the proposed approach can reduce the average E2E delay
by around 60% compared with a random node selection
offloading scheme while maintaining the probability of success
of more than 95% even when the packet size is large.

REFERENCES

[1] W. Zhang, M. Feng, M. Krunz, and H. Volos, “Latency Prediction for
Delay-sensitive V2X Applications in Mobile Cloud/Edge Computing
Systems,” in Proc. IEEE GLOBECOM’20, pp. 1-6, Dec. 2020

[2] NGMN Alliance, “V2X white paper,” June 2018.
[3] D. Feng, C. Haase-Schütz, L. Rosenbaum, H. Hertlein, C. Glaeser,

F. Timm, W. Wiesbeck, and K. Dietmayer, “Deep multi-modal object
detection and semantic segmentation for autonomous driving: Datasets,
methods, and challenges,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 22, no. 3, pp. 1341-1360, Mar. 2021.

[4] M. Wu, F. R. Yu, and P. X. Liu, “Intelligence networking for autonomous
driving in beyond 5G networks with multi-access edge computing,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 6, pp. 5853-
5866, June 2022.

[5] 5GAA, “Toward fully connected vehicles: Edge computing for advanced
automotive communications,” White Paper, Dec. 2017.

[6] Y. Xiao, M. Krunz, H. Volos, and T. Bando, “Driving in the fog: Latency
measurement, modeling, and optimization of LTE-based fog computing
for smart vehicles,” in Proc. IEEE SECON’19, Boston, MA, June 2019,
pp. 1–9.

[7] Y. Xiao and M. Krunz, “AdaptiveFog: A modelling and optimization
framework for fog computing in intelligent transportation systems,”
IEEE Transactions on Mobile Computing, pp. 1-15, May 2021.

[8] M. K. Abdel-Aziz, S. Samarakoon, C. Liu, M. Bennis, and W. Saad,
“Optimized age of information tail for ultra-reliable low-latency com-
munications in vehicular networks,” IEEE Transactions on Communica-
tions, vol. 68, no. 3, pp. 1911-1924, March 2020.

[9] C. -L. Chen, C. G. Brinton, and V. Aggarwal, “Latency minimization
for mobile edge computing networks,” IEEE Transactions on Mobile
Computing, pp. 1-15, Oct. 2021.

[10] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11158-11168, Nov. 2019.

[11] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Technol., vol.
68, no. 5, pp. 5031–5044, May 2019.

[12] M. Feng, M. Krunz, and W. Zhang, “Task partitioning and user associ-
ation for latency minimization in mobile edge computing networks,” in
Proc. of the IEEE Conference on Computer Communications Workshops,
2021, pp. 1-6

[13] Z. Hou, C. She, Y. Li, L. Zhuo, and B. Vucetic, “Prediction and commu-
nication co-design for ultra-reliable and low-latency communications,”
IEEE Transactions on Wireless Communications, vol. 19, no. 2, pp.
1196-1209, Feb. 2020

[14] R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency estima-
tion for personal devices: A matrix completion approach,” IEEE/ACM
Trans. Netw., vol. 25, no. 2, pp. 724-737, April 2017.

[15] R. Tripathi and K. Rajawat, “Adaptive network latency prediction
from noisy measurements,” IEEE Trans. Netw. Service Manag., doi:
10.1109/TNSM.2021.3051736.

[16] Y. Wang, Y. Shen, S. Mao, X. Chen, and H. Zou, “LASSO & LSTM
integrated temporal model for short-term solar intensity forecasting,”
IEEE Internet Things J., vol.6, no.2, pp.2933–2944, Apr. 2019.

[17] X. Wang, Z. Yu, and S. Mao, “Indoor localization using magnetic
and light sensors with smartphones: A deep LSTM approach,” Mobile
Networks and Applications Journal, vol.25, pp. 819–832, Apr. 2020.

[18] J. Cheng, Y. Liu, Q. Ye, H. Du, and A. V. Vasilakos, “DISCS:
A distributed coordinate system based on robust nonnegative matrix
completion,” IEEE/ACM Transactions on Networking, vol. 25, no. 2,
pp. 934-947, Apr. 2017.

[19] M. Feng, M. Krunz, and W. Zhang, “Joint task partitioning and user as-
sociation for latency minimization in mobile edge computing networks,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 8108-
8121, Aug. 2021

[20] M. Mudassar, Y. Zhai, and L. Lejian, "Adaptive fault-tolerant strategy
for latency-aware IoT application executing in edge computing environ-
ment," in IEEE Internet of Things Journal, vol. 9, no. 15, pp. 13250-
13262, Aug. 2022.

[21] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz, and H. Bogucka,
"Task allocation for energy optimization in fog computing networks with
latency constraints," in IEEE Transactions on Communications, pp.1-15,
Oct. 2022.

[22] S. Yuan, J. Li, H. Chen, Z. Han, C. Wu, and Y. Zhang, "JIRA: Joint
incentive design and resource allocation for edge-based real-time video
streaming systems," in IEEE Transactions on Wireless Communications,
pp.1-15, Oct. 2022.

[23] 3GPP, “3GPP radio resource control (RRC) (Release 10),” 3GPP PS
36.331, v10.14.0, Sep 2014.

[24] I. Hadžić, Y. Abe, and H. C. Woithe. “Edge computing in the ePC: a
reality check,” Proc. of ACM/IEEE Symposium on Edge Computing, pp.
1–10, New York, NY, USA, 2017.

[25] D. Renga, Z. Umar, and M. Meo, “Trading off delay and energy saving
through advanced sleep modes in 5G RANs,” IEEE Transactions on
Wireless Communications, pp. 1-12, March 01, 2023.

[26] M. Feng, S. Mao, and T. Jiang, “Base station ON-OFF switching
in 5G wireless networks: Approaches and challenges,” IEEE Wireless
Communications, vol. 24, no. 4, pp. 46-54, Aug. 2017.

[27] K. Chen and L. Huang, “Timely-throughput optimal scheduling with
prediction,” in IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2457-2470,
Dec. 2018.

[28] H. Volos, T. Bando, and K. Konishi, “Latency modeling for mobile edge
computing using LTE measurements,” IEEE VTC’18, Chicago, IL, pp.
1–5.

[29] E. Schubert and P. J. Rousseeuw. “Faster k-Medoids clustering: im-
proving the PAM, CLARA, and CLARANS algorithms.” in Proc. In-

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2023 16

ternational Conference on Similarity Search and Applications, Springer,
Cham, pp. 171-187, 2019.

[30] F. O. Olowononi, D. B. Rawat, and C. Liu, “Resilient machine learning
for networked cyber physical systems: A survey for machine learning
security to securing machine learning for CPS,” IEEE Communications
Surveys & Tutorials, vol. 23, no. 1, pp. 524-552, Nov.9 2020.

[31] L.J.P Van Der Maaten, and G. E. Hinton, “Visualizing data using t-SNE,”
Journal of machine learning research, vol. 9, no. 11, pp. 2579-2605,
2008.

[32] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53-65, 1987.

[33] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
1, no. 2, pp. 224-227, April 1979.

[34] I. Pelle, F. Paolucci, B. Sonkoly, and F. Cugini, “Latency-sensitive
edge/cloud serverless dynamic deployment over telemetry-based packet-
optical network,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 9, pp. 2849-2863, Sept. 2021.

[35] F. Yang, M. Tang, and O. Sinanoglu, “Stripped functionality logic lock-
ing with hamming distance-based restore unit (SFLL-hd) – unlocked,”
IEEE Trans. Inf. Forensics Security, vol. 14, no. 10, pp. 2778-2786, Oct.
2019.

[36] C. Yardim, P. Gerstoft, and W. S. Hodgkiss, “Tracking refractivity
from clutter using Kalman and particle filters,” IEEE Transactions on
Antennas and Propagation, vol. 56, no. 4, pp. 1058-1070, Apr. 2008.

[37] S. Sharma, A. Majumdar, V. Elvira, and É. Chouzenoux, “"Blind Kalman
filtering for short-term load forecasting,” IEEE Transactions on Power
Systems, vol. 35, no. 6, pp. 4916-4919, Nov. 2020.

[38] S. Yi and M. Zorzi, “Robust Kalman filtering under model uncertainty:
The case of degenerate densities,” IEEE Transactions on Automatic
Control, vol. 67, no. 7, pp. 3458-3471, Jul. 2022.

[39] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188,
Feb. 2002.

[40] A. Aspeel, A. Gouverneur, R. M. Jungers, and B. Macq, “Optimal
intermittent particle filter,” IEEE Transactions on Signal Processing, vol.
70, pp. 2814-2825, Jun. 2022.

[41] W. Song, Z. Wang, J. Wang, F. E. Alsaadi, and J. Shan, “Distributed
auxiliary particle filtering with diffusion strategy for target tracking:
A dynamic event-triggered approach,” IEEE Transactions on Signal
Processing, vol. 69, pp. 328-340, Dec. 2020.

Wenhan Zhang [S’19] received the B.S. degree in
electrical engineering and automation from Hefei
University of Technology, China, in 2016, and the
M.S. degree in electrical engineering from Syracuse
University in 2018. He is working toward his Ph.D.
degree with the Department of Electrical and Com-
puter Engineering at the University of Arizona. His
research interests include mobile edge computing,
wireless communications, and applications of ma-
chine learning in wireless networks.

Mingjie Feng [S’15] is currently a Full Professor
with the Research Center of 6G Mobile Commu-
nications, Wuhan National Laboratory for Opto-
electronics, Huazhong University of Science and
Technology, Wuhan, China. He is a recipient of
the Best Paper Award of Digital Communications
and Networks, the Woltosz Fellowship from Auburn
University, and the Best Reviewer of IEEE Transac-
tions on Wireless Communications. He has served/is
serving as an Associate Editor for several jour-
nals in communications, including IEEE Networking

Letters and Digital Communications and Networks. He was/is a Technical
Program Committee Member of various IEEE conferences, including IEEE
MASS and IEEE ICC.

Marwan Krunz [S’93-M’95-SM’04-F’10] is a Re-
gents Professor of electrical and computer engineer-
ing at the University of Arizona. He also holds
a joint appointment as a professor of computer
science. From 2015 to 2023, he was the Ken-
neth VonBehren Endowed Professor in ECE. Cur-
rently, he directs the Broadband Wireless Access
and Applications Center (BWAC), a multi-university
NSF/industry center that focuses on next-generation
wireless technologies. He is also an Affiliated Fac-
ulty of the UA Cancer Center. Previously, he served

as the Site Director for the Connection One Center. He served as the
chief scientist for two startup companies that focus on 5G and beyond
systems and machine learning for wireless communications. He has published
more than 330 journal articles and peer-reviewed conference papers and is
a named inventor on ten patents. His latest H-index is 62. His research
interests include wireless communications and protocols, network security,
and machine learning. He was an Arizona Engineering Faculty Fellow and
an IEEE Communications Society Distinguished Lecturer. He received the
NSF CAREER Award. He was the TPC Chair for several conferences
and symposia, including INFOCOM’04, SECON’05, WoWMoM’06, and
Hot Interconnects 9. He was a general chair for WiOpt’23, vice-chair for
WiOpt’16, and the general co-chair for WiSec’12. He served as the Editor-
in-Chief for the IEEE Transactions on Mobile Computing. He served as an
editor for numerous IEEE journals.

