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ABSTRACT Online learning, particularly Multi-Armed Bandit (MAB) algorithms, has been extensively
adopted in various real-world networking applications. In certain applications, such as fair heterogeneous
networks coexistence, multiple links (individual arms) are selected in each round, and the throughputs
(rewards) of these arms depend on the chosen set of links. Additionally, ensuring fairness among individual
arms is a critical objective. However, existing MAB algorithms are unsuitable for these applications due
to different models and assumptions. In this paper, we introduce a new fair probabilistic MAB (FP-MAB)
problem aimed at either maximizing the minimum reward for all arms or maximizing the total reward while
imposing a fairness constraint that guarantees a minimum selection fraction for each arm. In FP-MAB, the
learning agent probabilistically selects a meta-arm, which is associated with one or multiple individual arms
in each decision round. To address the FP-MAB problem, we propose two algorithms: Fair Probabilistic
Explore-Then-Commit (FP-ETC) and Fair Probabilistic Optimism In the Face of Uncertainty (FP-OFU).
We also introduce a novel concept of regret in the context of the max-min fairness objective. We analyze
the performance of FP-ETC and FP-OFU in terms of the upper bound of average regret and average
constraint violation. Simulation results demonstrate that FP-ETC and FP-OFU achieve lower regrets (or
higher objective values) under the same fairness requirements compared to existing MAB algorithms.

INDEX TERMS Probabilistic multi-armed bandit, Max-min fairness, Fairness constraint, Explore-then-
commit, Optimism in the face of uncertainty, Online learning.

I. INTRODUCTION
Online learning, especially MAB algorithms, is widely ap-
plied in various real-world networking applications, includ-
ing cognitive radio networks [1], shortest path routing [2],
and internet advertising [3]. In some applications, such as
shortest path routing [2], a combination of multiple individ-
ual arms is played in each round, and exploring one set of
arms can benefit the exploitation of other sets, as the reward
of an individual arm is independent of the selected set. How-
ever, this independence does not hold in other applications,
such as fair heterogeneous networks coexistence [4], wireless
scheduling [5], and energy harvesting [6], which will be

discussed in more detail later. Additionally, ensuring fairness
among arms is a crucial objective in these applications.

In this paper, we introduce a probabilistic multi-armed
bandit (MAB) problem in which we are given a collection
of individual arms, and a learning agent probabilistically
plays a meta-arm associated with one or multiple individual
arms in each decision round. The reward of an individual
arm depends on the specific meta-arm played and cannot be
accurately estimated by pulling other meta-arms due to this
dependence. The agent’s objective is to either maximize its
cumulative reward while adhering to a fairness constraint for
each arm or to optimize a specific fairness objective, such
as max-min fairness. This novel problem setup is applicable
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FIGURE 1: Motivating example: fair heterogeneous net-
works coexistence.

to numerous real-world networking scenarios. We describe
three example applications as follows.

Fair heterogeneous networks coexistence [4]. Differ-
ent wireless technologies coexist in the same unlicensed
band, such as LTE Licensed Assisted Access (LTE-LAA)
[7] and WiFi [8] coexistence in the 5 GHz unlicensed
spectrum. To improve spectrum utilization, previous works
[4], [9] have proposed enabling simultaneous transmissions
and adopting interference cancellation techniques to decode
multiple signals, rather than using collision avoidance. Fig. 1
illustrates a heterogeneous LAA/WiFi coexistence scenario,
with successive interference cancellation (SIC) [4] adopted
in receivers. In this context, a transmission strategy is defined
as a policy for selecting a concurrent transmission set (CTS)
in each transmission period. Table 1 shows the normalized
throughput of individual links under different transmission
strategies. In this example, an arm is a link, a meta-arm
is a CTS, and the reward of an arm corresponds to the
link throughput. We observe that the reward of each arm
depends on which meta-arm is selected by the learning agent
since each arm’s reward is influenced by the locations of
other arms (i.e., interfering links). For instance, from Table
1, when arm 1 and arm 2 are concurrently played, the
reward of arm 1 is 0.734, whereas it is 0.668 if arm 1 and
arm 3 are concurrently played. Furthermore, ensuring fair
and harmonious LAA/WiFi coexistence in the unlicensed
spectrum is crucial for designing their transmission protocols
[10], [11]. Thus, fairness objectives and constraints among
individual arms (i.e., links) must be considered when de-
signing online learning algorithms. To balance the reward of
each arm, various meta-arms (transmission strategies) should
be selected with different probabilities in each transmission
period.

Wireless scheduling [5]. Fair allocation of resources (e.g.,
bandwidth, power, transmission opportunities) is crucial for
ensuring the Quality of Service (QoS) of users in wireless
adhoc networks. Total user satisfaction is often improved
if all users obtain an equitable quality of service, rather

TABLE 1: Normalized throughput of different transmission
strategies.

Transmission strategy Link 1 Link 2 Link 3

Link 1 transmits alone 1 0 0

Link 2 transmits alone 0 1 0

Link 3 transmits alone 0 0 1

Links 1 and 2 concurrently transmit 0.734 0.277 0

Links 1 and 3 concurrently transmit 0.668 0 0.618

Links 2 and 3 concurrently transmit 0 0.799 0.685

All three links concurrently transmit 0.481 0.210 0.079

than some users benefiting at the expense of others. Fig. 2
illustrates an example of wireless network with four flows,
where each flow can be either a single-hop link or a set
of multi-hop links. Flows that share common nodes with
other flows are considered as contending flows, meaning they
cannot transmit packets simultaneously. For instance, flows 3
and 4 are contending flows as they share a common node N4.
In Fig. 2, there are three sets of non-contending flows: (flow
4, flow 1), (flow 4, flow 2), and flow 3. In this example,
an arm represents a flow, a meta-arm represents a set of
non-contending flows, and reward corresponds to throughput.
The reward of each arm depends on the selected meta-arm
because of interference from other flows. For instance, the
reward of flow 4 differs between the meta-arms (flow 4,
flow 1) and (flow 4, flow 2) due to interference from flow 1
and flow 2, respectively. The goal of the wireless scheduler
is to either maximize the overall reward while adhering to
a fairness constraint (e.g., minimum selection fraction) for
each flow, or to optimize a specific fairness objective (e.g.,
max-min throughput). To achieve this, different sets of non-
contending flows should be probabilistically selected in each
transmission period.

Flow 4 Flow 3

N2

N1

N3N4

FIGURE 2: Motivating example: wireless scheduling.

Energy harvesting [6]. Recent advances in wireless en-
ergy harvesting enable sensor nodes to extend their lifespan
by remotely charging their batteries. The longevity of the
sensor network depends on the minimum amount of energy a
node can harvest in the network. Fig. 3 shows an example of
energy harvesting where an energy source wirelessly charges
5 energy harvesting nodes using 3 channels. The amount
of energy harvested by any node is stochastic and depends
on the distance from the energy source and the channel
allocated by the energy source. In each time slot, the energy
source decides which channel to use for wireless charging,
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aiming either to maximize the total harvested energy with
a fairness constraint (e.g., minimum selection fraction) for
each node or to maximize a specific fairness objective
(e.g., max-min harvested energy). In this context, an arm
represents an energy harvesting node, a meta-arm represents
a mapping of node-channel associations, and the harvested
energy corresponds to the reward. Different channels (meta-
arms) present diverse propagation conditions for wireless
waveform. For instance, if channel 1 has a higher frequency
than channel 2, the reward of each arm on channel 1 will
generally be less than that on channel 2 due to higher
propagation loss [12]. Consequently, the reward of each arm
depends on the meta-arm selected by the energy source. To
meet the fairness objective or constraint, different meta-arms
(node-to-channel assignments) may be chosen with varying
probabilities.

Energy source

Energy 

harvesting node

FIGURE 3: Motivating example: energy harvesting.

It is important to note that, although the aforementioned
applications have a combinatorial arm structure, they cannot
be solved using classic combinatorial multi-armed bandit
(CMAB) formulations [2], [13], [14]. In CMAB, the learning
agent plays a super arm consisting of multiple individual
arms in each round, and the reward of a super arm can
be expressed as a linear function of the individual arms’
rewards, which remain constant regardless of the selected
super arm. However, in our applications, the reward of an
(individual) arm depends on the meta-arm that the learn-
ing agent selects due to environmental differences caused
by meta-arms (e.g., locations of nodes, RF frequencies of
channels). Thus, information obtained about an arm from
one meta-arm is not useful for another meta-arm containing
the same arm. Additionally, the reward of a meta-arm is
no longer a linear function of the rewards of the individual
arms within that meta-arm. Furthermore, while traditional
MAB formulations with fairness considerations have been
studied [15], [16], they are inapplicable to our problem as
they lack a similar combinatorial structure and their solutions
are not probabilistic.

Therefore, in this paper, we introduce a new online
learning problem called the fair probabilistic multi-armed
bandit (FP-MAB). Due to its unique combinatorial structure
with dependent arm rewards and fairness considerations, this
problem presents a novel type of MAB setup that has been
largely unexplored in the literature. Our main contributions
are summarized as follows.

(1) Inspired by a category of network optimization appli-
cations, we formulate a new fair probabilistic MAB (FP-
MAB) problem. This problem aims to either maximize
the minimum reward for all arms or maximize the total
reward while adhering to fairness constraints that enforce a
minimum selection fraction for each arm. We also introduce
a novel notion of regret considering the max-min fairness
objective.

(2) To address the formulated FP-MAB problem, we pro-
pose a Fair Probabilistic Explore-Then-Commit (FP-ETC)
algorithm. This algorithm is designed to handle problems
with both the max-min fairness objective and total reward
maximization subject to fairness constraints. For the max-
min fairness version of FP-ETC, we derive a sublinear upper
bound O

(
T

2
3 (K log T )

1
3

)
for the average regret, where T is

the time horizon and K is the number of meta-arms. For the
fairness constraint version of FP-ETC, we obtain an upper
bound O

(
NT

2
3 (K log T )

1
3

)
for the average regret and an

upper bound O
(
T− 1

3 (K log T )
1
3

)
for the average constraint

violation of each arm, where N is the number of arms.
(3) To further reduce the regret of FP-ETC, we introduce

a Fair Probabilistic Optimism In the Face of Uncertainty
(FP-OFU) algorithm. This algorithm is also applicable to
problems with both the max-min fairness objective and total
reward maximization subject to fairness constraints. For the
max-min fairness version of FP-OFU, we derive an upper
bound O(K

√
T log T ) for the average regret. For the fairness

constraint version of FP-OFU, we obtain an upper bound
O(NK

√
T log T ) for the average regret.

(4) We conduct extensive simulations to evaluate the
performance of the proposed algorithms in the context of
heterogeneous network coexistence application and com-
pare them with state-of-the-art baselines. Simulation results
demonstrate that the proposed algorithms significantly out-
perform the baseline algorithms in terms of average regret
and fairness.

II. RELATED WORK
A. Combinatorial Multi-Armed Bandit
Combinatorial multi-armed bandit (CMAB) was first studied
in [17], where the learning agent can play a combination
of arms in each round. Since then, the CMAB model
has found widespread application in various real-world
networking scenarios, including shortest path routing [2],
[18], channel allocation in cognitive radio networks [2], and
recommendation systems [19]. Existing CMAB literature
typically considers two types of reward structures: linear
reward [2], [14] and non-linear reward [13], [20], [21].
This classification depends on whether a super-arm’s reward
can be expressed as a linear function of the rewards of
individual arms belonging to it. However, it is essential to
note that the reward structure of CMAB differs from our
setting. In CMAB, the expected reward of each arm remains
independent of the selected super-arm, resulting in the same
expected reward regardless of which super-arm is played.
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Consequently, in CMAB, information about the same arm
can be exploited across different super-arms to expedite
learning. In our FP-MAB framework, this is not the case.
Although fairness considerations were studied in [16] under
the CMAB setting, it is inapplicable to solving our problem
since it does not have a similar combinatorial structure and
the proposed solution is not probabilistic.

B. Multi-Armed Bandit with Fairness Constraints
Online MAB algorithms with fairness constraints have been
studied in the existing literature to address real-world net-
working problems. For instance, the work [22] introduced
contextual MAB with fairness constraints, defining fairness
as a minimum rate at which tasks or resources are allocated
to users. In [23], the Fair-LinUCB algorithm was proposed
to enhance the traditional LinUCB algorithm, aiming to
achieve group-level fairness in personalized recommendation
systems. While these studies focus on developing fair MAB
algorithms in contextual bandit settings, they have limited
relevance to our work. In [24], the authors studied a multi-
player multi-armed bandit game where players collaborate to
optimize arm allocation, maximizing the minimum expected
reward received by any player. Similarly, the work [25]
introduced team fairness, a group-based fairness measure in
cooperative and single-objective multi-agent learning prob-
lems. However, our focus lies in single-agent applications,
such as considering the entire network as a single agent in
contexts like energy harvesting or wireless scheduling.

The authors in [26] introduced a definition of individual
fairness, asserting that similar individuals should be treated
similarly. Inspired by this concept, several fair MAB algo-
rithms have been proposed. For instance, the FAIRBANDIT
algorithm, outlined in [27], employs a strategy of playing all
arms with equal probability until they can be distinguished
with a high degree of confidence. Additionally, works such
as [15], [16] have proposed fair MAB algorithms that ensure
each arm is pulled at least a pre-specified fraction of the
time. Furthermore, [28] presented online MAB algorithms
that consider proportional fairness, aiming to maximize the
sum of logarithmic utility functions of all arms. However,
the aforementioned works do not explicitly address fairness
objectives. In contrast, other works such as [29]–[31] have
designed fair MAB algorithms utilizing the Nash Social
Welfare (NSW) as the fairness objective. Unlike the objective
of maximizing the minimum average reward in max-min
fairness, NSW aims to maximize the product of all arms’
average rewards.

The work most related to ours is [6]. This work proposed
Maxmin-UCB, integrating the max-min objective into the
UCB algorithm. Initially, Maxmin-UCB identifies the mini-
mum UCB value (denoted as UCBmin) among all individual
arms within a meta-arm, and subsequently selects the meta-
arm with the maximum UCBmin. However, Maxmin-UCB
may converge to deterministically playing a meta-arm over
time, potentially leading to a max-min objective value that

is no better (and possibly worse) than that achieved by our
proposed fair probabilistic MAB algorithms in this paper.

In the conference version of this paper [32], we introduced
the fair probabilistic explore-then-commit (FP-ETC) algo-
rithm, which solely considers the max-min fairness objective.
In this paper, we extend FP-ETC to address not only the
max-min fairness objective but also fairness constraints.
Additionally, to further reduce the regret of FP-ETC, we
introduce the Fair Probabilistic Optimism In the Face of
Uncertainty (FP-OFU) algorithm.

III. PROBLEM FORMULATION
We begin with an overview of the multi-armed bandit (MAB)
problem. This problem has received significant attention in
the fields of statistics and machine learning [33], serving
as a cornerstone for sequential decision-making in uncertain
environments. In its fundamental setup, there is a set of
arms (i.e., actions), available to the learning agent. Each arm
presents an unknown reward distribution to the agent. With
each passing time step, the agent selects an arm from this set
and subsequently receives a stochastic reward drawn from
the corresponding distribution. Ultimately, the objective of
the learning agent is to maximize its expected cumulative
reward.

Next, we describe the setup of FP-MAB. The frequently
used notations are outlined in Table 2 for convenience.

TABLE 2: Main notations.

Notation Representation
t decision round

N number of arms

n index of arm

A meta-arm

K number of meta-arms

pt meta-arm selection vector at decision round t

r(A,n, t) reward of arm n associated with meta-arm A at t

g(A,n) true mean of reward for arm n associated with meta-arm A

Illustrated in Fig. 4, we consider a discrete-time system
with N individual arms. We denote N = {1, 2, · · · , N}
as the set of all (individual) arms. In decision round
t(1 ≤ t ≤ T ), the learning agent plays a meta-arm A,
associated with one or multiple arms, where A ∈ F and
F is the feasible set of meta-arms. There are K meta-arms
in F . The learning agent then receives reward r(A,n, t)
for arm n ∈ N with (n,A) ∈ E, where E is the
edge set {∀n, ∀A, (n,A)|arm n is associated with A}. E
is determined by the actual application. For convenience,
we normalize r(A,n, t) ∈ [0, 1]. r(A,n, t) is randomly
sampled from an unknown distribution DA,n, dependent
on the individual arm n and meta-arm A. We assume
that

{
r(A,n, t) : 1 ≤ t ≤ T

}
is independent and identically

distributed. The online decision-making process of selecting
meta-arms is detailed in Alg. 1.
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FIGURE 4: Problem setup of FP-MAB.

Algorithm 1 Online decision-making process of selecting
meta-arms

1: Parameters: K meta-arms and T decision rounds (both
are known); reward distribution DA,n (unknown), A ∈
F ; edge set E

2: for t = 1 to T do
3: The learning agent plays a meta-arm A
4: It observes reward r(A,n, t) ∼ DA,n for all n, where

(n,A) ∈ E
5: end for

Remark 1: The number of meta-arms, denoted as K,
does not necessarily grow exponentially with the number
of arms, N . In fact, K only grows exponentially with
N in the worst-case scenario. To illustrate this point, we
consider the three networking applications introduced in
the Introduction section. Table 3 showcases the number of
arms and meta-arms in the worst-case scenario for each
application. For instance, in the context of energy harvesting,
the number of arms remains fixed, equating to the number of
energy harvesting nodes. Similarly, the number of meta-arms
remains constant, corresponding to the number of channels.
Notably, the number of meta-arms in this application is
independent of the number of arms.

TABLE 3: The number of arms and meta-arms for three
networking applications, in the worst scenario.

Networking application The number of arms The number of meta-arms

Heterogeneous networks coexistence N 2N − 1

Wireless scheduling N 2
N
2

Energy harvesting Equal to the number of nodes Equal to the number of channels

In practical applications, the number of meta-arms may
not be large. For example, in scenarios such as fair hetero-
geneous networks coexistence [4], where there are a limited
number of users sharing the same unlicensed band with SIC,
the number of meta-arms is typically constrained. For net-
working scenarios where the number of meta-arms increases
exponentially with the number of arms, we can divide all
arms into multiple orthogonal domains and allocate different
resources to these orthogonal domains. This can decrease the
number of arms sharing the same resource. Additionally, to
mitigate the impact of potentially unfavorable meta-arms, we
can eliminate a set of poor-performing meta-arms by probing
all meta-arms before executing the FP-MAB algorithms.

Poor meta-arms are those that yield low rewards for all arms
associated with them.

To facilitate the discussion on optimizing fairness objec-
tives and constraints, we define a policy as a probabilistic
selection rule for meta-arms, rather than a deterministic
choice. This is formally defined as follows:

Definition 1 (Meta-arm Selection Vector). Meta-arm se-
lection vector is denoted as p = (p1, . . . , pK), where
pi(1 ≤ i ≤ K) represents the probability of selecting meta-
arm Ai in each decision round.

A. Max-min Fairness Objective
We begin by formulating our problem with consideration for
fairness objectives. Two commonly studied fairness objec-
tives in wireless communications and networks are max-min
fairness [34] and proportional fairness [35]. Integrating these
fairness objectives into online MAB problems poses a non-
trivial challenge, as traditional MAB algorithms are typically
designed without fairness considerations. This necessitates
the redesign of MAB algorithms, the redefinition of per-
formance metrics (e.g., regret), and the derivation of new
analyses to achieve fairness. In this work, we concentrate
on determining the optimal p to maximize the minimum
expected reward of arms, providing valuable insights for the
design of other fair MAB algorithms.

Given a meta-arm A ∈ F , we denote g(A,n) as the true
mean of the reward for arm n, where n ∈ N . If (n,A) is not
in E, let g(A,n) = 0. ∀A ∈ F ,∀n ∈ N , if g(A,n) is known,
one can obtain the optimal p by solving the following max-
min optimization problem:

Opt-min : max
p

f(p)

s.t. 0 ≤ pi ≤ 1, i ∈ [K],∑
i,i∈[K]

pi = 1,

(1)

where f(p) = minn∈N {
∑

i∈[K]

(
pi × g(Ai, n)

)
}, pi repre-

sents the i-th element of p, Ai is the i-th meta-arm.
For comparison, we also present Opt-total, which seeks

to maximize the total expected rewards of all arms:

Opt-total : max
p

∑
n∈N

∑
i∈[K]

(
pi × g(Ai, n)

)
s.t. 0 ≤ pi ≤ 1, i ∈ [K],∑

i,i∈[K]

pi = 1.

(2)

However, ∀i ∈ [K], n ∈ N , g(Ai, n) is unknown to the
learning agent beforehand. Hence, the learning agent must
explore all meta-arms to learn and obtain accurate estima-
tions of g(Ai, n), n ∈ N , i ∈ [K]. Let ĝ(Ai, n, t) represent
the empirical average reward of arm n ∈ N until decision
round t. We outline the process of obtaining ĝ(Ai, n, t)
as follows. If meta-arm Ai is played in decision round t,
the reward of arm n, (n,Ai) ∈ E, denoted as r(Ai, n, t)
is observed. For any other arm n′, where (n′, Ai) /∈ E,
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namely, arm n′ is not played in Ai, we set r(Ai, n
′, t) = 0

for generalization purpose. Denote nt(Ai) as the number of
times that Ai has been played until decision round t, which
can be represented as nt(Ai) =

∑t
τ=1 1{aτ = Ai}, where

aτ is the index of meta-arm played in decision round τ .
Then, ĝ(Ai, n, t) can be represented as follows:

ĝ(Ai, n, t) =
1

nt(Ai)

t∑
τ=1

1{aτ = Ai}r(Ai, n, τ). (3)

As previously mentioned, the learning agent explores
all meta-arms to learn a more accurate ĝ(Ai, n, t), while
also exploiting the currently-known information to make the
best action. Both exploration and exploitation incur a loss
compared to the best action. We refer to this as loss regret,
which measures how much suboptimal the learning agent is
compared with the optimal strategy when the environment
{g(A,n) : (A,n) ∈ E} is known in advance. The goal of the
learning agent is to minimize the incurred regret. However,
unlike classic maximization problems, Opt-min is a max-
min optimization problem, which necessitates a redefinition
of regret. Inspired by the definition of regret in the regular
MAB problem (e.g., Equation (1.1) of [36]), the regret of
Opt-min is defined as:

RT = min
n∈N

T∑
t=1

r(bt, n, t)− min
n∈N

T∑
t=1

r(at, n, t), (4)

where b1, . . . , bT is an independent and identically dis-
tributed sequence of meta-arms drawn from p∗, which is the
optimal solution of Opt-min in Equation (1) assuming the
environment {g(A,n) : (A,n) ∈ E} is known in advance;
a1, . . . , aT is the sequence of meta-arms chosen by the
learning agent.

Accordingly, define the average regret to be

E[RT ] = E

min
n∈N

T∑
t=1

r(bt, n, t)

−E

min
n∈N

T∑
t=1

r(at, n, t)

 ,

(5)
where the expectation is with respect to (1) the choices
of b1, . . . , bT ; (2) the random rewards drawn from the
environment; (3) the random choices of a1, . . . , aT selected
by the learning agent.

B. Reward Maximization Subject To Fairness Constraint
We next formulate our problem with reward maximization
while subject to fairness constraint. We model the fairness
constraint as the targeted minimum selection fraction for
each arm. Denote d = (d1, d2, · · · , dN ) as the constraint
vector, where dn denotes the targeted minimum selection
fraction for arm n. If {g(A,n) : (A,n) ∈ E} is known,
the optimal p can be obtained by solving the following

optimization problem:

Opt-cons : max
p

∑
n∈N

∑
i∈[K]

(
pi × g(Ai, n)

)
s.t. 0 ≤ pi ≤ 1, i ∈ [K],∑

i,i∈[K]

pi = 1,

∑
i∈[K]

(
pi × 1{(n,Ai) ∈ E}

)
≥ dn,∀n ∈ N .

(6)
Inspired by the definition of regret in the regular MAB

problem (e.g., Equation (1.1) of [36]), the regret of Opt-
cons is defined as:

RT =
∑
n∈N

T∑
t=1

r(bt, n, t)−
∑
n∈N

T∑
t=1

r(at, n, t), (7)

where b1, . . . , bT is an independent and identically dis-
tributed sequence of meta-arms drawn from p∗, which is
the optimal solution of Opt-cons assuming the environment
{g(A,n) : (A,n) ∈ E} is known in advance; a1, . . . , aT is
the sequence of meta-arms chosen by the learning agent.

The average regret is defined to be

E[RT ] = E

∑
n∈N

T∑
t=1

r(bt, n, t)

−E

∑
n∈N

T∑
t=1

r(at, n, t)

 .

(8)
Remark 2: The objective of Opt-cons is to maximize the

summation of average rewards among all arms while satisfy-
ing the fairness constraint. On the other hand, the objective
of Opt-min is to maximize the minimum average reward
of arms. Therefore, their regrets are defined differently (see
Equations (4) and (7)).

Any constraint vector d = {dn}Nn=1(0 ≤ dn ≤ 1)
will be feasible for Opt-cons if there exists one meta-arm
which is associated with all arms. For instance, the meta-
arm k in Fig. 4 is associated with all arms. In this case,
p = (0, 0, 1, · · · , 0), with pk = 1 and pj = 0, j ̸= k, is a
feasible meta-arm selection vector for any constraint vector
d = {dn}Nn=1, 0 ≤ dn ≤ 1, since the constraint for each arm
is satisfied according to Equation (6).

We would like to highlight that the problem formulation
of FP-MAB would be meaningless if we solely prioritize
maximizing the accumulated reward without checking the
constraint violations for Opt-cons. Given the incorporation
of fairness constraints within Opt-cons, it becomes essential
to evaluate both regret and constraint violations simultane-
ously at each time step. Therefore, for Opt-cons, besides the
regret, constraint violation also needs to be measured as a
performance metric. For ∀n ∈ N , the constraint violation of
arm n is defined as:

vn,T = max{dn −
∑T

t=1

∑
i∈[K] pt,i1{(n,Ai) ∈ E}

T
, 0},

(9)
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where pt,i is the selection probability of meta-arm Ai in
decision round t. The average constraint violation of arm n
is

E[vn,T ] = E[max{dn−
∑T

t=1

∑
i∈[K] pt,i1{(n,Ai) ∈ E}

T
, 0}], (10)

where the expectation is with the respect to pt.

IV. FAIR PROBABILISTIC EXPLORE-THEN-COMMIT
ALGORITHM
The explore-then-commit (ETC) algorithm [33], which con-
sists of an exploration phase followed by an exploitation
phase, is one of the most widely used MAB algorithms in a
variety of online decision applications. The basic idea of the
standard ETC algorithm is that the learning agent explores all
arms uniformly in a round-robin manner during predefined
exploration rounds, regardless of previous observations. In
the remaining rounds, the learning agent selects the arm
deemed empirically best for exploitation.

To address the formulated problems outlined in Section III,
we introduce the Fair Probabilistic Explore-Then-Commit
(FP-ETC) algorithm and analyze its performance in this
section. FP-ETC is an extension of standard ETC algorithm.
A key difference between FP-ETC and the standard ETC
algorithm is that FP-ETC probabilistically selects arms dur-
ing exploitation rounds instead of choosing the empirically
best arm, as done in the standard ETC algorithm. The
introduction of probabilistic exploitation in FP-ETC aims to
satisfy desired fairness objectives or constraints.

The procedure of FP-ETC algorithm is outlined in Alg.
2, where the input m is a pre-defined fixed positive integer
representing the number of rounds that each meta-arm is
explored in the exploration phase and will be optimized in
the regret analysis later. K is the number of meta-arms. If
t ≤ mK, the algorithm is in exploration phase (i.e., seeking
better options) as shown from Step 3 to Step 5. Specifically,
the FP-ETC algorithm first plays each meta-arm m times
in a round-robin fashion to update the empirical average
reward for each arm associated with the corresponding meta-
arm. Once t > mK, the algorithm enters the exploitation
phase (i.e., staying with the currently-known best option)
starting from Step 7. If the max-min fairness objective is
considered, the minimum empirical average reward of all
arms is maximized to obtain the estimated p̂ in Step 8, where
F1 is the feasible set of p in Opt-min. Note that p does
not change as t increases in the exploitation phase of FP-
ETC. If reward maximization subject to fairness constraint
is considered, the summation of empirical average reward
of all arms is maximized to obtain the estimated p̂ in Step
10, where F2 is the feasible set of p in Opt-cons. After
that, FP-ETC sticks to the currently-known best option (i.e.,
p̂) and samples out a meta-arm at based on the categorical
distribution of p̂ as shown in Step 12. The selected meta-arm
is played in Step 13.

It is important to note that Alg. 2 is utilized to determine
the selected meta-arm in each decision round, and it interacts
with line 3 of Alg. 1.

Algorithm 2 Fair Probabilistic Explore-Then-Commit (FP-
ETC)

1: Input : Positive integers m, K
2: for t = 1 to T do
3: if t ≤ mK then
4: at = t mod K + 1
5: Play meta-arm at in decision round t
6: else
7: if Max-min fairness objective is considered then
8: Solve the optimization problem p̂ =

argmaxp∈F1
minn∈N {

∑
i∈[K] piĝ(Ai, n,mK)}

9: else if Reward maximization subject to fairness
constraint is considered then

10: Solve the optimization problem p̂ =
argmaxp∈F2

∑
n∈N

∑
i∈[K] piĝ(Ai, n,mK)

11: end if
12: Sample out a meta-arm at based on the categorical

distribution of p̂
13: Play meta-arm at in decision round t
14: end if
15: end for

We emphasize the novelty of our theoretical contributions
in analyzing FP-ETC. The introduction of the meta-arm
selection vector p in FP-ETC is crucial for meeting the
fairness requirements. It is important to note that p is a
continuous random variable within the feasible sets F1 and
F2. As such, the general logic of regret analysis in traditional
MAB algorithms with finite arms is not directly applicable
to FP-ETC.

A. Performance Analysis of FP-ETC Under Max-min
Fairness Objective
To analyze the regret of FP-ETC under max-min fairness
objective, we first present a concentration bound (Lemma
1) using the Hoeffding’s inequality, from the perspective of
each meta-arm. To bridge the gap between p and meta-arms,
we then obtain a corresponding concentration bound with
respect to any p (Lemma 2).

1) Concentration Bounds
Lemma 1. ∀ meta-arm i, ∀n ∈ N , define event Ei,n :∣∣ĝ(Ai, n,mK)− g(Ai, n)

∣∣ ≤
√

2 log(T )
m , where m is the

number of rounds that each meta-arm is played in the
exploration phase, K is the number of meta-arms, T is the
total number of rounds. Then Pr(Ei,n) ≥ 1− 2

T 4 .

Lemma 1 is a direct application of the Hoeffding’s in-
equality (Theorem A.1 of [33] by setting α = 2, β = 1),
given r(Ai, n, t) ∈ [0, 1]. It shows that the estimated
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ĝ(Ai, n,mK) concentrates around its true mean g(Ai, n)
after the exploration phase.

Obtaining a concentration bound per meta-arm is insuf-
ficient to derive the regret bound of FP-ETC under max-
min fairness objective. Based on Lemma 1, we obtain a
concentration bound for any p, which is presented as follows.

Lemma 2 (Concentration Bound for Any p Under
Max-min Fairness Objective). Define function f(p) =
minn∈N {

∑
i∈[K]

(
pi × g(Ai, n)

)
}, where pi is the i-th

element of p. For FP-ETC, if the max-min fairness ob-
jective is considered, ∀ p ∈ F1, P r

(∣∣∣f̂(p)− f(p)
∣∣∣ ≤√

2 log(T )
m

)
≥ 1 − 2NK

T 4 , where N is the number of arms,

f̂(p) = minn∈N {
∑

i∈[K]

(
pi × ĝ(Ai, n,mK)

)
}.

Proof outline: we first rewrite f(p) = minn∈N hn(p) and
f̂(p) = minn∈N ĥn(p). Then

∣∣∣hn(p)− ĥn(p)
∣∣∣ is upper-

bounded for any given arm n ∈ N . After that, we prove
that

∣∣∣f̂(p)− f(p)
∣∣∣ is upper-bounded by utilizing Lemma 3.

The detailed proof of Lemma 2 and Lemma 3 are shown in
Section A of Appendix.

2) Upper Bound on Average Regret of FP-ETC Under
Max-min Fairness Objective
After obtaining the concentration bound with regard to any
p ∈ F1. We are ready to upper bound the regret of FP-
ETC under max-min fairness objective. We state the results
in Theorem 1.

Theorem 1. For FP-ETC, if the max-min fairness objective
is considered, the average regret E[RT ] defined in Equation
(5) is upper bounded by O

(
T

2
3 (K log T )

1
3

)
.

Proof outline: We first utilize Lemma 2 to upper bound
Rf

T =
∑T

t=1[f(p
∗) − f(pt)], where pt is the p vector in

decision round t. Rf
T represents the summation of instan-

taneous performance gap between the optimal policy and
policy chosen by the algorithm. However, there is still a gap
between Rf

T and RT of Equation (4). To bridge the gap,
we make use of Hoeffding’s inequality, union bound, and
Lemma 4. The detailed proof of Theorem 1 is shown in
Section B of Appendix. Lemma 4 is presented in Section C
of Appendix.

B. Performance Analysis of FP-ETC Under Reward
Maximization Subject to Fairness Constraint
For FP-ETC, the regret analysis under reward maximization
subject to fairness constraint shares similar reasoning to the
analysis of max-min fairness objective since there are only
differences of objectives (max-min reward versus max total
reward) and constraints (F1 versus F2) between Opt-min
and Opt-cons. However, constraint violation may happen
under the consideration of fairness constraint. We present
the results in the following Theorem.

Theorem 2. For FP-ETC, if reward maximization sub-
ject to fairness constraint is considered, the average re-
gret E[RT ] defined in Equation (8) is upper bounded by
O
(
NT

2
3 (K log T )

1
3

)
. Therefore, the average constraint vi-

olation E[vn,t] defined in Equation (10) is upper bounded
by O

(
T− 1

3 (K log T )
1
3

)
for any arm n ∈ N .

Proof outline: Define f1(p) =
∑

n∈N
∑

i∈[K]

(
pi ×

g(Ai, n)
)

and f̂1(p) =
∑

n∈N
∑

i∈[K]

(
pi× ĝ(Ai, n,mK)

)
,

we can obtain that
∣∣∣f̂1(p)− f1(p)

∣∣∣ ≤ N
√

2 log(T )
m is upper-

bounded with high probability, similar to Lemma 2. The
difference is that the confidence interval under reward max-
imization subject to fairness constraint is N times as that
of Lemma 2 due to the summation of rewards for all arms,
instead of minimization of those rewards. Following similar
proof line of Theorem 1, the average regret of FP-ETC
under reward maximization subject to fairness constraint is
upper-bounded as O

(
NT

2
3 (K log T )

1
3

)
by selecting m =

O
(
( T
K )

2
3 (log T )

1
3

)
. For any arm n ∈ N , constraint violation

only happens during the exploration phase of FP-ETC under
reward maximization subject to fairness constraint. This is
because FP-ETC adopts a round-robin fashion to explore
each meta-arm without considering fairness constraint in the
exploration phase. In the exploitation phase, no constraint
violation happens since the optimized p̂ naturally lies in
the feasible set F2 as indicated by line 10 of Alg. 2.
FP-ETC contributes at most dn of constraint violation in
each round of exploration phase for each arm. Therefore,
E[vn,T ] ≤ dn×mK+0×(T−mK)

T ≤ O
(
T− 1

3 (K log T )
1
3

)
for

any arm n ∈ N .

V. FAIR PROBABILISTIC OPTIMISM IN THE FACE OF
UNCERTAINTY ALGORITHM
Many existing MAB algorithms are designed based on the
underlying principle of optimism in the face of uncertainty
(OFU) [37]. The OFU principle is that the learning agent is
always optimistic about the uncertainty of the environment.
Despite lacking complete knowledge about all actions, the
learning agent forms an optimistic estimate of how rewarding
each action might be and selects the action with the highest
estimated reward. If the estimate turns out to be incorrect,
the learning agent adjusts its strategy accordingly. However,
if the learning agent’s choice is successful, it can exploit that
action and minimize regret. Thus, the OFU principle helps
balance exploration and exploitation.

Utilizing the principle of OFU for the proposed prob-
abilistic MAB problem, we introduce a Fair Probabilistic
OFU (FP-OFU) algorithm. Denote g ∈ [0, 1]K×N , with gi,n
representing the true mean of reward for arm n associated
with meta-arm i. We define two functions:

U1(p,g) = min
n∈N

{p× g × en},where p ∈ F1, (11)
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U2(p,g) =
∑
n∈N

(p× g),where p ∈ F2, (12)

where en ∈ {0, 1}N×1, with n-th element being 1 and 0 for
other elements. U1(p,g) is designed for the consideration
of the max-min fairness objective (i.e., Opt-min), while
U2(p,g) is designed for the consideration of the fairness
constraint (i.e., Opt-cons).

The basic idea of FP-OFU is that the algorithm main-
tains a confidence set Mt ⊆ [0, 1]K×N for the param-
eter g in decision round t, such that g ∈ Mt with a
high probability. Mt can be calculated and updated based
on the past actions p1,p2, · · · ,pt and respective reward
r(Aa1

, n, 1), r(Aa2
, n, 2), · · · , r(Aat

, n, t), n ∈ N . The
algorithm chooses a pair (p,g) that jointly maximizes
U1(p,g) or U2(p,g), depending on the consideration of ei-
ther aforementioned fairness objective or fairness constraint.

The procedure of FP-OFU is given in Alg. 3. In step
1, the algorithm initializes M0 as a hypercube with each
dimension lower-bounded by 0 and upper-bound by 1. This
is because each element in g ranges from [0, 1]. If 1 ≤ t ≤ T ,
FP-OFU obtains an optimal pair (pt, g̃t) that jointly maxi-
mizes U1(p ∈ F1,g ∈ Mt) if max-min fairness objective
is considered, as shown in Step 4, or jointly maximizes
U2(p ∈ F2,g ∈ Mt) if reward maximization subject to
fairness constraint is considered as shown in Step 6. Note
that the optimal pair (pt, g̃t) changes as t increases. After
that, it samples out a meta-arm at based on the categorical
distribution of pt as shown in Step 8 and plays meta-arm at
in Step 9. Mt is then updated in Step 10. The updating rule
for Mt will be provided in Theorem 3.

Algorithm 3 Fair Probabilistic Optimism In the Face of
Uncertainty (FP-OFU)

1: Initialize M0 = [0, 1]K×N

2: for t = 1 to T do
3: if Max-min fairness objective is considered then
4: Solve the optimization problem (pt, g̃t) =

argmax(p,g)∈F1×Mt
U1(p,g)

5: else if Reward maximization subject to fairness con-
straint is considered then

6: Solve the optimization problem (pt, g̃t) =
argmax(p,g)∈F2×Mt

U2(p,g)
7: end if
8: Sample out a meta-arm at based on the categorical

distribution of pt

9: Play meta-arm at in decision round t
10: Update Mt.
11: end for

A. Performance Analysis of FP-OFU Under Max-min
Fairness Objective
In this subsection, we analyze the regret of FP-OFU algo-
rithm under the consideration of max-min fairness objective.

As the construction of confidence sets Mt is the key to Alg.
3. We first present how to construct these confidence sets in
the following.

At time step t, denote Pt and rn,t as follows:

Pt =


p1

p2

· · ·
pt

 , rn,t =


r(Aa1 , n, 1)
r(Aa2 , n, 2)

· · ·
r(Aat , n, t)

 , (13)

Pt is a matrix with the dimension of t×K, rn,t is a reward
vector with the dimension of t × 1. For any arm n ∈ N ,
define ĝt,n as the n-th column of matrix ĝt, which is the l2-
regularized least-squares estimation of matrix g in decision
round t, with regularization parameter λ > 0. ĝt,n can be
expressed as

ĝt,n = (P⊤
t Pt + λI)−1P⊤

t rn,t. (14)

For any arm n ∈ N , denote gn as the n-th column of
matrix g. The following Theorem states that gn lies with a
high probability in an ellipsoid with the center at ĝt,n.

Theorem 3. Let λ > 0, for any arm n ∈ N , for any 0 < δ <
1, with probability at least 1−δ, for all t > 0, gn ∈ [0, 1]1×K

lies in the set
Mt = {g′

n ∈ [0, 1]1×K : ∥ĝt,n − g′
n∥V̄t

≤
√

K log(1 +
t

λδ
) + (λK)

1
2 },

(15)
where V̄t = P⊤

t Pt + λI.

Proof outline: We first represent the instantaneous reward
r(Aat , n, t) as a noisy linear product of pt and g⊤

n . After
that, we measure the norm of ĝt,n − gn (ĝt,n is shown in
Equation (14)) weighted by matrix V̄t, where V̄t = P⊤

t Pt+
λI. The detailed proof of Theorem 3 is provided in Section
D of Appendix.

Based on Theorem 3, we upper bound the average regret of
FP-OFU under max-min fairness objective, which is shown
in Theorem 4.

Theorem 4. For FP-OFU algorithm, if the max-min fairness
objective is considered, ∀T > 0, the average regret E[RT ]
defined in Equation (5) is upper bounded by O(K

√
T log T ).

Proof outline: We first upper bound RU1

T =∑T
t=1(U1(p

∗,g) − U1(pt,g)), which is the summation of
instantaneous performance gap between the optimal policy
and policy chosen by the algorithm. However, there is still
a gap between RU1

T and RT of Equation (4). To bridge the
gap, we make use of Azuma’s inequality, union bound, and
Lemma 4. The detailed proof of Theorem 4 is shown in
Section E of Appendix.

B. Performance Analysis of FP-OFU Under Reward
Maximization Subject to Fairness Constraint
In this subsection, we analyze the performance of FP-OFU
under reward maximization subject to fairness constraint.
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Theorem 5. For FP-OFU algorithm, if reward maximization
subject to fairness constraint is considered, ∀T > 0, the
average regret E[RT ] defined in Equation (8) is upper
bounded by O(NK

√
T log T ). In addition, there are no

constraint violations for this case.

Remark 3: The regret analysis of Theorem 5 is similar
to that of Theorem 4 and its detailed proof is shown in
Section F of Appendix. We observe that the average regret of
Theorem 5 is O(N) times of the average regret of Theorem
4. This is because there is a minimization function over all
meta-arms for the regret definition of Opt-min as shown
in Equation (4), whereas the regret is summed among all
meta-arms for the regret definition of Opt-cons as shown in
Equation (7). Furthermore, if reward maximization subject
to fairness constraint is considered in FP-OFU, as indicated
by line 6 of Alg. 3, no constraint violation happens in each
round since the optimized p̂t naturally lies in the feasible
set F2.

VI. MORE DISCUSSIONS ON FP-MAB PROBLEM AND
ALGORITHMS
A. Lower Bound on Average Regret
Regarding the lower bound of proposed FP-MAB problem,
we are interested in lower bounds on regret that apply to
all FP-MAB algorithms, rather than analyzing a specific FP-
MAB algorithm. We would like to highlight the FP-MAB
problem is an extension of the traditional MAB problem
[36] by playing a meta-arm (i.e., an association of one or
multiple individual arms) at each time step while considering
fairness objectives/constraints for each individual arm. First,
if we set N = 1 in the FP-MAB problem, FP-MAB
reduces to a traditional MAB problem, where the meta-
arm in FP-MAB becomes a regular arm, and the max-min
reward objective simplifies to reward maximization due to
N = 1. Second, under this condition, if we further set
dn = 0,∀n ∈ N in FP-MAB, the fairness constraints in FP-
MAB can be neglected, and FP-MAB reduces to a traditional
MAB problem without fairness constraints. Hence, the lower
bound for the traditional MAB problem still applies to the
FP-MAB problem. Based on the Theorem 2.1 of [33], for any
bandit algorithm, there exists a problem instance such that
E[R(T )] ≥ Ω(

√
KT ), where T is the time horizon and K

is the number of arms. Ω(
√
KT ) is the lower bound for the

traditional MAB problem. For FP-OFU algorithm proposed
in this paper, we can achieve an upper bound O(K

√
T log T )

on the average regret. Therefore, the achieved upper bound
has an O(

√
K log T ) gap with its lower bound.

B. Differences in Proof Techniques Compared to Those
Used in Combinatorial Bandit
If we treat FP-MAB as a general combinatorial bandit
framework, where the player generates a distribution over
the regular arms and plays a regular arm (meta-arm in this
paper) in each time step, existing fair MAB algorithms still
cannot solve the FP-MAB problem. This is because FP-

MAB focuses on the fairness of individual arms, rather than
the fairness of meta-arms. In general combinatorial bandit
frameworks, as studied in [2], [38], the received reward in
each time step is a linear combination of individual arms’
rewards. However, this is not the case for FP-MAB due to
the max-min fairness objective. This key difference means
that traditional proof techniques used in general combina-
torial bandit works cannot be applied to analyze FP-MAB.
Instead, we need to derive concentration bounds for non-
linear rewards based on the concentration bounds for the
rewards of all individual arms.

C. Solving Optimization Problems
There are mainly two types of optimizations involved in the
FP-ETC and FP-OFU algorithms. One is the online version
of Opt-min under FP-ETC and FP-OFU, shown in line 8
of Algorithm 2 and line 4 of Algorithm 3. Another one is
the online version of Opt-cons under FP-ETC and FP-OFU,
shown in line 10 of Algorithm 2 and line 6 of Algorithm 3.
We show how these optimization problems are solved in the
following.

Both Opt-min of FP-ETC and Opt-min of FP-OFU are
solved using fminimax function in MATLAB. fminimax seeks
a point that minimizes the maximum of a set of objective
functions. All the objective functions and constraints can be
linear or non-linear. The idea of fminimax is that it converts
a min-max (or max-min) problem into a goal attainment
problem [39], which can be solved using standard goal
attainment method introduced in [39]. Note that Opt-min
of FP-ETC is a convex optimization problem, whereas Opt-
min of FP-OFU is a non-convex and non-linear optimization
problem as its objective function involves the multiplication
of two optimization variables, p and g.

Both Opt-cons of FP-ETC and Opt-cons of FP-OFU
are solved using fmincon function in MATLAB, which is a
nonlinear programming solver. It addresses the minimization
(or maximization) optimization problems with linear or non-
linear objective functions and constraints. fmincon adopts
standard interior-point optimization algorithm [40] to solve
the optimization problem. Note that Opt-cons of FP-ETC
is a convex optimization problem, whereas Opt-cons of FP-
OFU is a non-convex and non-linear optimization problem
since its objective function involves the multiplication of two
optimization variables, p and g, which are jointly solved
using fmincon function in MATLAB.

We discuss the computation complexity and scalability
of implementing FP-ETC and FP-OFU algorithms in the
following.

D. Computation Complexity and Scalability
Computation complexity: First, we analyze the computation
complexity of implementing FP-ETC. The main computation
cost for FP-ETC is solving the optimization problems in line
8 and line 10 of Algorithm 2. We observe that the objective
functions of both optimization problems are linear functions
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with the meta-arm selection vector p as the optimization
variable. The constraints F1 and F2 are also linear functions.
Therefore, the optimization problems of FP-ETC can be
treated as linear programming problems or converted to
them, which can be solved in polynomial time.

Next, we next analyze the computation complexity of
implementing FP-OFU. The main computation cost for FP-
OFU is solving the optimization problems in line 4 and line
6 of Algorithm 3. Even though the constraints F1 and F2 are
linear functions, the objective functions of both optimization
problems in FP-OFU are non-convex and non-linear since
they involve the multiplication of two optimization variables,
p and g. For this type of optimization problems, only local
optima may be obtained based on the related literature, and
the complexity analysis for this non-convex problem is not
well understood yet [41].

Scalability: We implemented the FP-ETC and FP-OFU
algorithms in MATLAB within the context of the LAA/WiFi
coexistence scenario. We simulated 500 random LAA/WiFi
coexistence topologies with T = 5000 in both algorithms.
Fig. 5 shows the average running time of FP-ETC and FP-
OFU in each decision round. From Fig. 5(a), we observe that
the time complexity of FP-ETC algorithm seems like scaling
linearly with the number of meta-arms. Fig. 5(b) illustrates
that the time complexity of the FP-OFU algorithm exhibits
a superlinear scale with the number of meta-arms.

In practical applications, the number of meta-arms may
not be large. For example, in scenarios such as fair hetero-
geneous networks coexistence [4], where there are a limited
number of users sharing the same unlicensed band with
SIC, the number of meta-arms is typically constrained. Ad-
ditionally, to mitigate the impact of potentially unfavorable
meta-arms, we can eliminate a set of poor-performing meta-
arms by probing all meta-arms before executing the FP-MAB
algorithms. Poor meta-arms are those that yield low rewards
for all arms associated with them.

VII. SIMULATION RESULTS
In this section, we evaluate the performance of the PF-ETC
and FP-OFU algorithms via simulations under the applica-
tion of heterogeneous LAA/WiFi coexistence, where SIC
is enabled in each receiver to cancel possible interference
and the successful decoding SINR threshold is set to 10 dB.
Rayleigh channel is considered for each link. Due to space
limitation, we only present the results for N = 2 and N = 3
coexisting links, as other scenarios have similar observations.
There are 3 meta-arms and 7 meta-arms for the scenario of
N = 2 and N = 3, respectively. To evaluate the performance
of proposed algorithms under the consideration of the max-
min fairness objective, we use the average regret defined
in Equation (5), minimum link throughput, Jain fairness
index (JFI) [42] as the performance metrics. Specifically,
the throughput is normalized and represents the effective
channel utilization. Let xn be the throughput of link n ∈ N ,
JFI(x1, · · · , xN ) =

(
∑N

n=1 xn)
2

N×
∑N

n=1 x2
n

, which ranges from 1
N
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FIGURE 5: Average running time per decision round.

(worst case) to 1 (best case), it is maximized when all links
have the same throughput. To evaluate the performance of
proposed algorithms under the consideration of the fairness
constraint, we use the average regret defined in Equation
(8), total throughput, the minimum selection fraction of
arm as performance metrics. We simulate 500 randomized
LAA/WiFi coexistence topology, where all nodes in each
topology are uniformly distributed in a 50× 50 m2 area.

A. FP-MAB with the Max-min Fairness Objective
First, we show the average regret of FP-ETC for differ-
ent choices of m and FP-OFU by setting λ = 1, δ =
0.01 in Equation (15). We also compare them with the
Maxmin UCB algorithm [6], where it selects meta-arm in
each decision round according to the following rule: at =

argmaxi∈[K] [minn∈N ĝ(Ai, n, t− 1) +
√

2 log T
nt−1(Ai)

]. These
results are presented in Fig. 6. We observe that Maxmin
UCB performs worse than proposed FP-ETC and FP-OFU
algorithms. This is because the Maxmin UCB algorithm
aims to identify one best meta-arm and it will converge
to deterministically playing a meta-arm after a sufficient
time instead of a probabilistic meta-arm selection strategy.
On the other hand, both FP-ETC and FP-OFU select a
combination of different meta-arms to maximize the reward
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and satisfy the max-min fairness objective at the same time.
The probabilistic MAB algorithm is actually a generalized
version of the corresponding basic MAB algorithm. It is
also observed that for FP-ETC, higher m generally results
in higher average regret as FP-ETC incurs significant regret
during the exploration phase. For two-link LAA/WiFi coex-
istence scenario (i.e., N = 2), from Fig. 6(a), we can see
that FP-OFU has similar performance with FP-ETC when
m is set to 50. This is because the number of meta-arms
(i.e., K) is small in this case. However, as K increases,
FP-OFU outperforms FP-ETC, as indicated in Fig. 6(b).
This is reasonable since FP-OFU avoids the round-robin
exploration of suboptimal meta-arms, which happens during
the exploration phase of FP-ETC.

It is possible to obtain the local optimal solutions for
both online Opt-min and online Opt-cons in FP-OFU al-
gorithm as they are non-convex and non-linear optimization
problem. Their objective functions involve the multiplication
of two optimization variables, p and g. For the max-min
fairness version of FP-OFU, the average regret is upper
bounded by O(K

√
T log T ). For the fairness constraint

version of FP-OFU, the average regret is upper bounded by
O(NK

√
T log T ). To compare the average regret obtained

through experiments implemented in MATLAB (which calls
optimization functions to obtain meta-arm selection vector
pt at time t in FP-OFU), we also show

√
t log(t) (theoretical

trend of average regret of FP-OFU) in Fig. 6. We can see
that the slope of average regret for FP-OFU is almost the
same as

√
t log(t), indicating that the optimization problems

of FP-OFU are well solved.
Next, we compare FP-ETC and FP-OFU with the fol-

lowing five baselines: UCB for Opt-total, ETC for Opt-
total (adopt the same m as FP-ETC), Maxmin UCB [6],
ETC with NSW [29], UCB with NSW [29]. Opt-total
is defined in Equation (2). The reasons why we select
NSW as a comparison with the max-min fairness objective
are as follows. NSW is a popular fairness objective in
recently MAB works [29]–[31]. Different from maximizing
the minimum average reward in max-min fairness objective,
NSW aims to maximize the product of all arms’ average
rewards. This idea is the same as proportional fairness
[35], another commonly studied fairness objective in wire-
less communications and networks. The algorithms of ETC
with NSW and UCB with NSW in [29] are developed
in a multi-agent MAB setting. To adapt it to our prob-
lem, ETC with NSW obtains the meta-arm selection vector
p̂ = argmaxp∈F1

∏
n∈N {

∑
i∈[K] piĝ(Ai, n,mK)}; UCB

with NSW updates pt based on the following rule:

pt ← argmax
p∈F1

[
∏
n∈N

∑
i∈[K]

piĝ(Ai, n, t− 1) +N
K∑
i=1

pi

√
log(NKt)

nt−1(Ai)
].

(16)
The UCB for Opt-total selects meta-arm in deci-

sion round t according to the following rule: at =

argmaxi∈[K] [
∑

n∈N ĝ(Ai, n, t− 1) +N
√

2 log t
nt−1(Ai)

].
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FIGURE 6: Average regret vs the number of rounds t.

The minimum link throughput and Jain fairness index
(JFI) are compared for these algorithms.

The cumulative distribution functions (CDFs) of the min-
imum link throughput for the aforementioned algorithms are
presented in Fig. 7. The simulation is based on 500 ran-
domized LAA/WiFi coexistence topologies with T = 5000.
As we can see, both FP-ETC and FP-OFU achieve much
higher minimum link throughput than other baselines. This
is attributed to the additional meta-arm selection vector p in
FP-ETC and FP-OFU algorithms, which allows for tuning
the selection probability of each meta-arm to satisfy the max-
min fairness objective.

From Fig. 7, we observe that the CDF of FP-ETC performs
slight worse than that of FP-ETC in the case of N = 2.
However, FP-OFU significantly outperforms the FP-ETC in
the case of N = 3. We provide the intuition below. For
FP-ETC, the explorations for meta-arms only happen during
the exploration phase (t ≥ m ∗ K). When N = 2 (i.e.,
two LAA/WiFi link coexistence), there are only K = 3
meta-arms, m = 100 rounds of explorations for each meta-
arm may be enough to obtain accurate successful decoding
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probabilities for each link in FP-ETC algorithm. For N = 3,
there are K = 7 meta-arms, the dependency of links’ rewards
in the same meta-arm is stronger with higher N . Therefore,
even m = 200 rounds of explorations for each meta-arm
may not be enough to obtain accurate successful decoding
probabilities for each link in FP-ETC algorithm in the case
of N = 3. However, for FP-OFU, the explorations for meta-
arms happen during all decision rounds (1 ≤ t ≤ T ), where
T is set to 5000.
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FIGURE 7: CDF of minimum link throughput.

Fig. 8 shows the CDFs of JFI for the aforementioned algo-
rithms. It is observed that both FP-ETC and FP-OFU clearly
perform better than other baselines. It is worth noting that
FP-ETC and FP-OFU almost guarantee the same throughput
for all links under all LAA/WiFi coexisting topologies,
which is demonstrated by the fact that all JFI values of
FP-ETC and FP-OFU are close to 1. Fig. 8 also indicates
that FP-OFU slightly performs better than FP-ETC in some
LAA/WiFi coexisting topologies. These results confirm that
the proposed FP-ETC and FP-OFU algorithms are effective
solutions to achieve the max-min fairness objective.
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FIGURE 8: CDF of Jain fairness index (JFI).

B. FP-MAB with Fairness Constraint
In this subsection, we present the simulation results of FP-
ETC and FP-OFU algorithms under Opt-cons. We also
compare them with the UCB for Opt-cons, which is similar
to the proposed fair MAB algorithm in [15]. It selects meta-
arm in each decision round according to the following rule:
(1) determine ∆d =

(
ct−1(1)− d1 × (t− 1), · · · , ct−1(n)−

dn × (t− 1), · · · , ct−1(N)− dN × (t− 1)
)
, where ct−1(n)

is the number of times that link n has been chosen until
t − 1, dn is the targeted minimum selection fraction for
link n; (2) if all the elements of ∆d are greater than 0,
select meta-arm at = argmaxi∈[K] [

∑
n∈N ĝ(Ai, n, t −

1) + N
√

2 log T
nt−1(Ai)

], otherwise select meta-arm at =

argmax{i|(ñ,Ai)∈E} [
∑

n∈N ĝ(Ai, n, t−1)+N
√

2 log T
nt−1(Ai)

],
where ñ = minn∈N ∆d. The simulation is based on 500 ran-
domized LAA/WiFi coexistence topologies with T = 5000.

First, we show the average regret of proposed algorithms
and baseline, which are presented in Fig. 9. For N = 2 and
N = 3, we set the minimum selection fraction for each link
as 0.6 and 0.4 respectively. We observe that FP-ETC and FP-
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OFU significantly outperform UCB due to the probabilistic
meta-arm selection strategy. It is expected higher m incurs
higher average regret for FP-ETC. It is interesting to observe
that the regret of FP-OFU increases with a lower rate as
t when t is small, compared with FP-ETC. This is again
attributed to the significant regret of round-robin exploration
of suboptimal meta-arms during the exploration phase of FP-
ETC. When t is large, FP-OFU has similar performance with
FP-ETC when m is set between 100 and 200.
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FIGURE 9: Average regret vs the number of rounds t.

Next, we present the average constraint violation of pro-
posed algorithms and baseline, as shown in Fig. 10. For
N = 2 and N = 3, we set the minimum selection fraction
for each link as 0.8 and 0.6 respectively. Note that, as we
stated in Theorem 5, there are no constraint violations in
each round of FP-OFU, we only illustrate the results of FP-
ETC and UCB in Fig. 10. We observe that, for FP-ETC,
there are indeed constraint violations for each link (arm) in
its exploration phase. However, the constraint violation will
decrease with t and converge to 0 when t increases to infinity.
For UCB, constraint violation can be quickly reduced to
almost 0. This is because UCB can play the meta-arm, which
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FIGURE 10: Constraint violation vs the number of rounds
t.

is associated with all individual arms, at the worst case to
satisfy the fairness constraint. Even though UCB seems to
have less constraint violation, its regret is much larger than
FP-ETC (as shown in Fig. 9) and its objective values are
also generally much smaller than FP-ETC, as shown later.

For FP-ETC, the constraint violation converge to 0 only
when t increases to infinity. To verify if the fairness con-
straint is satisfied for FP-OFU under a finite time horizon,
we present the CDFs of selection fraction of different links
(arms) for FP-OFU algorithm when T is set to 5000.
The simulation is based on 500 randomized LAA/WiFi
coexistence topologies and we set the minimum selection
fraction for each link to 0.6 and 0.4 for N = 2 and
N = 3 respectively, we observe from Fig. 11 that the fairness
constraints of all links (arms) for all LAA/WiFi coexistence
topologies are indeed satisfied under a finite time horizon.

Lastly, we show the CDFs of the total throughput for the
aforementioned algorithms in Fig. 12. We observe that both
FP-ETC and FP-OFU achieve much higher total throughput
than UCB. This is attributed to the additional meta-arm
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FIGURE 11: CDF of selection fraction for FP-OFU algo-
rithm.

selection vector p in FP-ETC and FP-OFU algorithms, which
allows for tuning the selection probability of each meta-
arm to satisfy desired fairness constraint. For both cases
(N = 2 and N = 3), FP-ETC and FP-OFU achieve similar
performance regarding the total throughput.

VIII. Experimental Results
To validate the feasibility of the proposed algorithms in
real-world LAA/WiFi coexistence scenarios, we established
a wireless communication testbed. This testbed comprised
three National Instruments (NI) USRP 2921 devices: one
serving as the LAA transmitter, another as the WiFi trans-
mitter, and the third functioning as the SIC receiver. We
conducted over-the-air LAA/WiFi transmission and reception
simultaneously, transmitting LAA and WiFi frames to a
common SIC receiver at the 2.495 GHz unlicensed band. The
SIC receiver was equipped with the capability to decode both
LAA and WiFi frames. LAA and WiFi frames, utilizing dif-
ferent modulation and coding schemes, were generated using
MATLAB’s LTE toolbox and WLAN toolbox respectively.
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FIGURE 12: Total throughput.

The LAA/WiFi coexistence topology is illustrated in Fig. 13,
where “W”, “L”, and “R” denote the WiFi transmitter, LAA
transmitter, and SIC receiver respectively.
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FIGURE 13: LAA/WiFi coexistence topology.

Let γ = 10 log PL

PW
, where PL and PW represent the

transmission power of LAA and WiFi respectively. To ex-
plore various scenarios with different successful decoding
probabilities for LAA and WiFi links, we manipulate PL

and PW and consider γ values in the set {−10,−5, 0, 5, 10}
in our experiments. We present the average regret under
the experimental LAA/WiFi coexistence scenarios in Fig.
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14, where the average regret is computed over all γ val-
ues, with each γ averaged over 10 experiments. Due to
experimental constraints, we could only execute the three
online algorithms (Maxmin UCB, FP-ETC, and FP-OFU)
until t = 161. In this experiment, there are three meta-
arms. For a fair comparison, we set m = 25 for FP-
ETC, allowing it to explore all meta-arms from t = 1 to
t = 75 before transitioning to exploitation. From Fig. 14,
we observe that FP-OFU gradually outperforms FP-ETC as
t increases. This suggests that FP-OFU exhibits a lower
slope in regret increase compared to FP-ETC over time.
Notably, both FP-ETC and FP-OFU significantly outperform
Maxmin UCB. These findings align with the simulation
results, underscoring the efficacy and applicability of the
proposed algorithms in real-world scenarios.
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FIGURE 14: Average regret under experimental LAA/WiFi
coexistence scenarios.

IX. CONCLUSIONS
We clearly and concisely summarized our key findings and
contributions in the following.

Contributions: Firstly, we formulate a new fair probabilis-
tic MAB (FP-MAB) problem considering max-min fairness
objective or fairness constraint (i.e., enforcing a minimum
selection fraction for each arm); we also define a novel
notion of regret considering the max-min fairness objective.
Additionally, we propose fair probabilistic explore-then-
commit (FP-ETC) and fair probabilistic optimism in the
face of uncertainty (FP-OFU) algorithms, both applicable
to solving the formulated FP-MAB problem. Performance
metrics such as average regret and average constraint vi-
olation are analyzed for FP-ETC and FP-OFU algorithms.
Lastly, we evaluate the performances of FP-ETC and FP-
OFU algorithms in a practical networking scenario, such as
heterogeneous LAA/WiFi networks coexistence in the 5 GHz
unlicensed band, and compare the proposed algorithms with
state-of-the-art baseline algorithms.

Key findings: Firstly, FP-ETC and FP-OFU achieve sub-
linear regret and significantly outperform the state-of-the-
art baselines (e.g., maxmin-UCB). Secondly, concerning the

max-min fairness objective, FP-ETC and FP-OFU achieve
much higher minimum link throughput in the scenario
of LAA/WiFi coexistence, compared with the state-of-the-
art baselines (e.g., maxmin-UCB [6], UCB for Opt-total,
ETC for Opt-total, UCB with NSW [29]). Lastly, FP-ETC
exhibits constraint violations during its exploration phase
due to deterministic explorations, whereas FP-OFU has no
constraint violations.

X. APPENDIX
A. Proof of Lemma 2

Proof:
First, we define event E = ∩i∈[K],n∈NEi,n, where Ei,n is
defined in Lemma 1. Using the property of union bound, we
have Pr(E) ≥ 1 −

∑
∀i,n Pr(Ēi,n) ≥ 1 −

∑
i∈[K] N

2
T 4 =

1 − 2NK
T 4 . For the remainder of the proof, we condition on

event E happening.
For any p ∈ F1, given f(p) = minn∈N {

∑
i∈[K]

(
pi ×

g(Ai, n)
)
}, the estimation of f(p) at the end of explo-

ration phase (i.e., t = mK) of FP-ETC is f̂(p) =
minn∈N {

∑
i∈[K]

(
pi × ĝ(Ai, n,mK)

)
}.

For the convenience of the proof, for every n ∈ N ,
we define hn(p) =

∑
i∈[K]

(
pi × g(Ai, n)

)
and ĥn(p) =∑

i∈[K]

(
pi×ĝ(Ai, n,mK)

)
, then we can obtain the relation-

ship of f(p) and hn(p), f̂(p) and ĥn(p), respectively, which
are f(p) = minn∈N hn(p) and f̂(p) = minn∈N ĥn(p). For
every n ∈ N , we bound

∣∣∣hn(p)− ĥn(p)
∣∣∣ :

∣∣∣hn(p)− ĥn(p)
∣∣∣ ≤

∣∣∣∣∣∣∣
∑

i∈[K]

(
pig(Ai, n)

)
−

∑
i∈[K]

(
piĝ(Ai, n,mK)

)∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∑

i∈[K]

pi
(
g(Ai, n)− ĝ(Ai, n,mK)

)∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∑

i∈[K]

pi

√
2 log(T )

m

∣∣∣∣∣∣∣ (if event E happens)

=

√
2 log(T )

m
(since

∑
i∈[K]

pi = 1).

(17)
Equation (17) shows that for every n ∈ N ,∣∣∣hn(p)− ĥn(p)

∣∣∣ is upper-bounded by
√

2 log(T )
m if event E

happens. Next, we utilize Equation (17) to further bound∣∣∣f̂(p)− f(p)
∣∣∣ for any p ∈ F1. To do so, we need another

Lemma, which is presented as follows.

Lemma 3. Denote a sequence A =
(
a(n)

)
n∈N and a

sequence B =
(
b(n)

)
n∈N , if ∀n, a(n) ≤ b(n), then

minn∈N a(n) ≤ minn∈N b(n).

The proof of Lemma 3 is straightforward. Let
argminn∈N b(n) = n∗. We have minn∈N b(n) = b(n∗) ≥
a(n∗) ≥ minn∈N a(n). This completes the proof of Lemma
3.
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By Equation (17), taking a(n) = ĥn(p)−
√

2 log(T )
m and

b(n) = hn(p) give a(n) ≤ b(n), ∀n ∈ N . According to
Lemma 3,

min
n∈N

{ĥn(p)−
√

2 log(T )

m
} ≤ min

n∈N
hn(p). (18)

Similarly, taking a(n) = hn(p) and b(n) = ĥn(p) +√
2 log(T )

m give a(n) ≤ b(n), ∀n ∈ N . By Lemma 3,

min
n∈N

hn(p) ≤ min
n∈N

{ĥn(p) +

√
2 log(T )

m
}. (19)

Combining Equation (18) and Equation (19), we obtain

min
n∈N

hn(p)−
√

2 log(T )

m
≤ min

n∈N
ĥn(p) ≤ min

n∈N
hn(p) +

√
2 log(T )

m
,

(20)
which is equivalently∣∣∣f̂(p)− f(p)

∣∣∣ ≤ √
2 log(T )

m
. (21)

B. Proof of Theorem 1

Proof:
Define a clean event ξ := {∀p ∈ F1,

∣∣∣f̂(p)− f(p)
∣∣∣ ≤√

2 log(T )
m }, where f̂(p) and f(p) are defined in Lemma 2.

According to Lemma 2, Pr(ξ) ≥ 1− 2NK
T 4 . We also define

a bad event ξ̄, which is the complement of ξ. Denote the
optimal p∗ = argmaxp∈F1

f(p).
We first analyze event ξ. If FP-ETC chooses p, where

p ̸= p∗, under event ξ, we have f(p)+
√

2 log(T )
m > f̂(p) >

f̂(p∗) ≥ f(p∗)−
√

2 log(T )
m . Re-arranging these terms gives

f(p∗)− f(p) ≤ 2

√
2 log(T )

m
. (22)

Therefore, under event ξ, FP-ETC contributes at most

2
√

2 log(T )
m regret in each round of the exploitation phase.

In each round of the exploration phase, FP-ETC trivially
contributes at most regret of 1 for each arm. Thus, under
event ξ,

Rf
T =

T∑
t=1

[f(p∗)− f(pt)] ≤ mK + (T −mK)2

√
2 log(T )

m

≤ mK + 2T

√
2 log(T )

m
,

(23)
where pt is the p vector in decision round t. When t ≤ mK,
pt is a standard basis vector, with element 1 indicating that
the corresponding meta-arm is selected in the exploration
phase. The total regret in the exploration phase of FP-ETC
is upper-bounded by mK as there are K meta-arms and each
meta-arm is played m times.

Until now, we have upper bounded Rf
T under event ξ

happens. However, there is still a gap between Rf
T and RT

of Equation (4). Observe that the first term in Equation
(4) is minn∈N

∑T
t=1 r(bt, n, t). Applying the Hoeffding’s

inequality, we obtain that ∀n ∈ N , at least with probability
1− δ,∣∣∣∣∣∣

T∑
t=1

r(bt, n, t)− T
∑
i∈[K]

p∗i g(Ai, n)

∣∣∣∣∣∣ ≤
√

T

2
log(

2

δ
). (24)

Without loss of generality, we set δ = 1
T 2 . Therefore,∣∣∣∣∣∣min

n∈N

T∑
t=1

r(bt, n, t)− T min
n∈N

∑
i∈[K]

p∗i g(Ai, n)

∣∣∣∣∣∣ ≤ √
T log(2T ).

(25)
Note that pt does not change when t > mK. Applying

the Hoeffding’s inequality, we obtain that ∀n ∈ N , at least
with probability 1− 1

T 2 ,∣∣∣∣∣∣
T∑

t=mK+1

r(at, n, t)−
T∑

t=mK+1

∑
i∈[K]

pt,ig(Ai, n)

∣∣∣∣∣∣
≤

√
(T −mK) log(2T ),

(26)

where pt,i is the i-th element of vector pt.
When t ≤ mK, the reward for each arm is upper bounded

by 1. Combining the two cases of t ≤ mK and t > mK
together, we obtain that ∀n ∈ N , at least with probability
1− 1

T 2 ,∣∣∣∣∣∣
T∑

t=1

r(at, n, t)−
T∑

t=1

∑
i∈[K]

pt,ig(Ai, n)

∣∣∣∣∣∣
≤ mK +

∣∣∣∣∣∣
T∑

t=mK+1

r(at, n, t)−
T∑

t=mK+1

∑
i∈[K]

pt,ig(Ai, n)

∣∣∣∣∣∣
≤ mK +

√
(T −mK) log(2T ),

(27)
Therefore,∣∣∣∣∣∣min

n∈N

T∑
t=1

r(at, n, t)− min
n∈N

T∑
t=1

∑
i∈[K]

pt,ig(Ai, n)

∣∣∣∣∣∣
≤ mK +

√
(T −mK) log(2T ).

(28)

Define event η := {∀n ∈
N ,Equation (24) and Equation (27) hold}. Event η̄ is
the complement of η. Using union bound, we obtain that
event η happens at least with probability 1− 2N

T 2 .
Combining Equation (25) and Equation (28) together,

when event ξ∩ η happens, RT of Equation (4) can be upper

VOLUME , 17



Guo et al.:

bounded:

RT = min
n∈N

T∑
t=1

r(bt, n, t)− min
n∈N

T∑
t=1

r(at, n, t)

≤ T min
n∈N

∑
i∈[K]

p∗i g(Ai, n)− min
n∈N

T∑
t=1

∑
i∈[K]

pt,ig(Ai, n)

+
√

T log(2T ) +mK +
√

(T −mK) log(2T )

≤ Tf(p∗)− f(

T∑
t=1

pt) +mK + 2
√

T log(2T )

(a)

≤ Tf(p∗)−
T∑

t=1

f(pt) +mK + 2
√

T log(2T )

= Rf
T +mK + 2

√
T log(2T )

≤ 2mK + 2T

√
2 log(T )

m
+ 2

√
T log(2T ),

(29)
where (a) is because of Lemma 4 of Section C of Appendix.

Recall that m was given in advance in FP-ETC algorithm.
Therefore, we can choose m to minimize the right-hand side
of Equation (29). Since the first two terms (i.e., 2mK and

2T
√

2 log(T )
m ) are monotonically increasing and monotoni-

cally decreasing with respect to m. We can set m so that
the two terms are approximately equal. By solving it, we
obtain m = O

(
( T
K )

2
3 (log T )

1
3

)
. Plug it into Equation (29),

we have RT ≤ O
(
T

2
3 (K log T )

1
3

)
, where O

(
T

1
2 (log T )

1
2

)
is neglected as it has a lower order than O

(
T

2
3 (K log T )

1
3

)
.

Using union bound, Pr(ξ∩η) ≥ 1− 2N
T 2 − 2NK

T 4 , averaging
all the events, then E[RT ] of Equation (5) is

E [RT ] ≤E
[
RT I(ξ ∩ η)

]
+ E

[
RT I(ξ ∩ η)

]
≤ O

(
T

2
3 (K log T )

1
3

)
+ E

[
T · I(ξ ∩ η)

]
≤ O

(
T

2
3 (K log T )

1
3

)
+ T · (2N

T 2
+

2NK

T 4
)

≤ O
(
T

2
3 (K log T )

1
3

)
,

(30)
where the last term T · ( 2NT 2 + 2NK

T 4 ) is neglected since it is
the order of T−1.

C. Lemma 4 and Its Proof
Lemma 4. Given f(p) = minn∈N {

∑
i∈[K]

(
pi ×

g(Ai, n)
)
}, f(

∑T
t=1 pt) ≥

∑T
t=1 f(pt).

Proof:

Denote n∗ = argminn∈N
∑

i∈[K]

(∑T
t=1 pt,i × g(Ai, n)

)
,

where pt,i is the i-th element of pt, we have

f(

T∑
t=1

pt) = min
n∈N

{
∑
i∈[K]

( T∑
t=1

pt,i × g(Ai, n)
)
}

=
∑
i∈[K]

( T∑
t=1

pt,i × g(Ai, n
∗)
)

=

T∑
t=1

∑
i∈[K]

(
pt,i × g(Ai, n

∗)
)

≥
T∑

t=1

min
n∈N

{
∑
i∈[K]

(
pt,i × g(Ai, n)

)
}

=

T∑
t=1

f(pt),

(31)

D. Proof of Theorem 3

Proof:
Since each meta-arm is randomly sampled based on the

categorical distribution of pt in each decision round, we
obtain that for any arm n ∈ N , for all t > 0,

E[r(Aat
, n, t)|pt] = ⟨pt,g

⊤
n ⟩, (32)

where at is the index of meta-arm chosen by the learning
agent. The instantaneous reward r(Aat

, n, t) can be modelled
as a noisy linear product of pt and g⊤

n , which is

r(Aat
, n, t) = ⟨pt,g

⊤
n ⟩+ ηn,t, (33)

where ηn,t is a random variable representing the noise. Since
both r(Aat , n, t) ∈ [0, 1] and ⟨pt,g

⊤
n ⟩ ∈ [0, 1], then ηn,t ∈

[−1, 1]. Therefore, ηn,t follows 1-subgaussian distribution
[43].

Let ηn = (ηn,1, ηn,2, · · · , ηn,t)⊤. Plug Equation (33) into
Equation (14), we obtain

ĝt,n = (P⊤
t Pt + λI)−1P⊤

t (Ptgn + ηn)

= (P⊤
t Pt + λI)−1P⊤

t Ptgn + (P⊤
t Pt + λI)−1P⊤

t ηn

(a)
= (P⊤

t Pt + λI)−1(P⊤
t Pt + λI)gn − λ(P⊤

t Pt + λI)−1gn

+ (P⊤
t Pt + λI)−1P⊤

t ηn

= gn − λ(P⊤
t Pt + λI)−1gn + (P⊤

t Pt + λI)−1P⊤
t ηn,

(34)
where (a) is because we add and subtract a term λ(P⊤

t Pt+
λI)−1gn.

Subtract gn and multiply p on both sides of Equation (34),
we obtain

p(ĝt,n − gn) = p(P⊤
t Pt + λI)−1P⊤

t ηn − λp(P⊤
t Pt + λI)−1gn

= ⟨p⊤,P⊤
t ηn⟩V̄ −1

t
− λ⟨p⊤,gn⟩V̄ −1

t
,

(35)
where V̄t = P⊤

t Pt + λI.
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Note that for λ > 0, both V̄t and V̄ −1
t are positive definite,

the above inner product is well-defined. Using Cauchy-
Schwarz inequality, we obtain∣∣p(ĝt,n − gn)

∣∣ ≤ ∥p⊤∥V̄ −1
t

(
∥P⊤

t ηn∥V̄ −1
t

+ λ∥gn∥V̄ −1
t

)
(a)

≤ ∥p⊤∥V̄ −1
t

(
∥P⊤

t ηn∥V̄ −1
t

+ λ
1
2 ∥gn∥2

)
,

(36)
where (a) is because ∥gn∥2V̄ −1

t

≤ 1
λmin(V̄t)

∥gn∥22 ≤ 1
λ∥gn∥22.

By the Theorem 1 of reference [44] and let V = λI and
R = 1 (since ηn,t is 1-subgaussian), for any arm n ∈ N , for
any δ > 0, with probability at least 1− δ, for all t > 0,

∥P⊤
t ηn∥V̄ −1

t
≤

√
2 log

(det(V̄t)
1
2 det(λI)−

1
2

δ

)
. (37)

Conditioning on the above event happens, plug Equation
(37) into Equation (36), we have ∀t > 0,∀p,∣∣p(ĝt,n − gn)

∣∣
≤∥p⊤∥V̄ −1

t

(√
2 log

(det(V̄t)
1
2 det(λI)−

1
2

δ

)
+ λ

1
2 ∥gn∥2

)
.

(38)
Since both p and gn are 1×K vector and each element is

upper bounded by 1, ∥p∥2 ≤
√
K and ∥gn∥2 ≤

√
K, based

on the relationship of trace and determinant of a matrix, we
get

det(V̄t) ≤ (λ+ t)K , (39)

Therefore, Equation (38) can be reduced to∣∣p(ĝt,n − gn)
∣∣ ≤ ∥p⊤∥V̄ −1

t

(√
K log(1 +

t

λδ
) + (λK)

1
2

)
.

(40)
Let p⊤ = V̄t(ĝt,n − gn), Equation (40) is written as

∥ĝt,n − gn∥2V̄t
≤ ∥V̄t(ĝt,n − gn)∥V̄ −1

t
×(√

K log(1 +
t

λδ
) + (λK)

1
2

)
.

(41)

Since ∥V̄t(ĝt,n − gn)∥V̄ −1
t

= ∥ĝt,n − gn∥V̄t
, divide both

sides by ∥ĝt,n − gn∥V̄t
, we get

∥ĝt,n − gn∥V̄t
≤

√
K log(1 +

t

λδ
) + (λK)

1
2 . (42)

E. Proof of Theorem 4

Proof:
Denote βt(δ) =

√
K log(1 + t

λδ ) + (λK)
1
2 . Define E =

∩n∈NEn, where En := {Equation (15) holds for arm n}.
For p ∈ F1, for any arm n ∈ N , define hn(p,g) =∑
i∈[K]

(
pi × g(Ai, n)

)
, then hn(p, ĝt,n) =

∑
i∈[K]

(
pi ×

ĝ(Ai, n, t)
)
. Therefore,

U1(p,g) = min
n∈N

hn(p,g), (43)

U1(p, ĝt) = min
n∈N

hn(p, ĝt,n). (44)

We first bound
∣∣hn(p,g)− hn(p, ĝt,n)

∣∣ for any p when E
happens (which, due to Theorem 3, happens with probability
1−Nδ):

∣∣hn(p,g)− hn(p, ĝt,n)
∣∣ =

∣∣∣∣∣∣∣
∑

i∈[K]

(
pig(Ai, n)

)
−

∑
i∈[K]

(
piĝ(Ai, n, t)

)∣∣∣∣∣∣∣
=
∣∣∣⟨p,g⊤

n ⟩ − ⟨p, ĝ⊤
t,n⟩

∣∣∣
=
∣∣∣⟨p, (gn − ĝt,n)

⊤
∣∣∣

=

∣∣∣∣∥p∥V̄ −1
t
∥gn − ĝt,n∥V̄t

∣∣∣∣
(a)

≤ βt(δ)∥p∥V̄ −1
t

,

(45)
where (a) is due to the definition of event E.

Using Lemma 3 and taking a(n) = hn(p, ĝt,n) −
βt(δ)∥p∥V̄ −1

t
, n ∈ N and b(n) = hl(p,g), n ∈ N , we

obtain that for every n ∈ N , a(n) ≤ b(n). Therefore,

min
n∈N

{hn(p, ĝt,n)− βt(δ)∥p∥V̄ −1
t

} ≤ min
n∈N

hn(p,g). (46)

Similarly, taking a(n) = hn(p,g), n ∈ N and b(n) =
hn(p, ĝt,n)+βt(δ)∥p∥V̄ −1

t
, n ∈ N , we obtain that for every

n ∈ N , a(n) ≤ b(n). Therefore,

min
n∈N

hn(p,g) ≤ min
n∈N

{hn(p, ĝt,n) + βt(δ)∥p∥V̄ −1
t

}. (47)

Combine Equation (46) and Equation (47), we get
minn∈N hn(p,g) − βt(δ)∥p∥V̄ −1

t
≤ minn∈N hl(p, ĝt,n) ≤

minn∈N hn(p,g) + βt(δ)∥p∥V̄ −1
t

, which is equivalently∣∣U1(p,g)− U1(p, ĝt)
∣∣ ≤ βt(δ)∥p∥V̄ −1

t
. (48)

Therefore, for any δ > 0 and t > 0, with probability at
least 1−Nδ, Inequality (48) holds.

Following the same reasoning as Equation (45), we can
bound

∣∣hn(p, g̃t,n)− hl(p, ĝt,n)
∣∣ for any p when E happens

(which happens with probability 1−Nδ):∣∣hn(p, g̃t,n)− hn(p, ĝt,n)
∣∣

=

∣∣∣∣∣∣
∑
i∈[K]

(
pig̃(Ai, n, t)

)
−

∑
i∈[K]

(
piĝ(Ai, n, t)

)∣∣∣∣∣∣
=
∣∣∣⟨p, g̃⊤

t,n⟩ − ⟨p, ĝ⊤
t,n⟩

∣∣∣
=
∣∣∣⟨p, (g̃t,n − ĝt,n)

⊤⟩
∣∣∣

=
∣∣∣∥p∥V̄ −1

t
∥g̃t,n − ĝt,n∥V̄t

∣∣∣
≤βt(δ)∥p∥V̄ −1

t
,

(49)

note that ĝt,n (shown in Equation (14)) is the center of
an ellipsoid for the construction of confidence sets, g̃t,n is
estimated by the FP-OFU algorithm. Denote U1(p, g̃t) =
minn∈N hn(p, g̃t,n), then for any δ > 0 and t > 0, with
probability at least 1−Nδ,∣∣U1(p, g̃t)− U1(p, ĝt)

∣∣ ≤ βt(δ)∥p∥V̄ −1
t

. (50)
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Define RU1

T =
∑T

t=1(U1(p
∗,g) − U1(pt,g)). We bound

U1(p
∗,g)− U1(pt,g), which is

U1(p
∗,g)− U1(pt,g)

(a)

≤ U1(pt, g̃t)− U1(pt,g)

= U1(pt, g̃t)− U1(pt, ĝt) + U1(pt, ĝt)− U1(pt,g)

≤ βt(δ)∥pt∥V̄ −1
t

+ βt(δ)∥pt∥V̄ −1
t

= 2βt(δ)∥pt∥V̄ −1
t

(51)

where (a) is because of the optimality of (pt, g̃t) guaran-
teed by the FP-OFU algorithm. Since both U1(p

∗,g) and
U1(pt,g) are upper-bounded by 1, the difference of them is
also upper-bounded by 1, combine this fact with Equation
(51), we have

U1(p
∗,g)− U1(pt,g)

≤ min(1, 2βt(δ)∥pt∥V̄ −1
t

)

= 2βt(δ)min(
1

2βt(δ)
, ∥pt∥V̄ −1

t
)

(a)

≤ 2βt(δ)min(1, ∥pt∥V̄ −1
t

),

(52)

where (a) is due to βt(δ) > 1.
Using union bound on the events of Inequality (48) and

Inequality (50) hold, for any δ > 0 and t > 0, with
probability at least 1− 2Nδ,

RU1
T =

T∑
t=1

(U1(p
∗,g)− U1(pt,g))

≤
T∑

t=1

2βt(δ)min(∥pt∥V̄ −1
t

, 1),

≤

√√√√T

T∑
t=1

(2βt(δ)min(∥pt∥V̄ −1
t

, 1))2

≤

√√√√4β2
T (δ)T

T∑
t=1

min(∥pt∥2
V̄ −1
t

, 1)

≤

√
8β2

T (δ)T log
det(V̄T )

det(λI)

≤ βT (δ)

√
8KT log(1 +

T

λ
)

≤
(√

K log(1 +
T

λδ
) + (λK)

1
2
)√

8KT log(1 +
T

λ
)

≤ O
(
K

√
T log(

T

δ
) log(T )

)
.

(53)

Without loss of generality, we set δ = 1
T . Therefore, with

probability at least 1− 2N
T ,

RU1

T ≤ O(K
√
T log T ). (54)

There is still a gap between RU1

T and RT of Equa-
tion (4). Observe that the first term in Equation (4) is
minn∈N

∑T
t=1 r(bt, n, t). Applying the Hoeffding’s inequal-

ity, we obtain that ∀n ∈ N , at least with probability 1− δ1,∣∣∣∣∣∣
T∑

t=1

r(bt, n, t)− T
∑
i∈[K]

p∗i g(Ai, n)

∣∣∣∣∣∣ ≤
√

T

2
log(

2

δ1
). (55)

Without loss of generality, we set δ1 = 1
T 2 . Therefore,

∣∣∣∣∣∣min
n∈N

T∑
t=1

r(bt, n, t)− T min
n∈N

∑
i∈[K]

p∗i g(Ai, n)

∣∣∣∣∣∣ ≤ √
T log(2T ).

(56)
Next, we give the definition of martingale sequence and

use the Azuma’s inequality to obtain a concentration bound
for the second term of Equation (4).

Definition 2 (Martingale sequence). A sequence of random
variables X1, X2, X3, · · · is a martingale sequence if (1)
∀i,E[|Xi|] < ∞, and (2) ∀i,E[Xi+1|X1, X2, · · · , Xi] = Xi.
That is, the conditional expected value of the next observa-
tion, given all the past observations, is equal to the most
recent observation.

∀n ∈ N , define Xn,j =
∑j

t=1 r(Aat , n, t) −∑j
t=1

∑
i∈[K] pt,ig(Ai, n), which is a random variable since

pt,i(i ∈ [K]) and r(Aat , n, t) are random. In the following,
we show that ∀n ∈ N , {Xn,j}j>0 is a martingale sequence.
We first show that the first condition of martingale sequence
is satisfied since ∀n ∈ N ,∀j > 0,

E[
∣∣Xn,j

∣∣] = E
[∣∣∣∣∣∣

j∑
t=1

r(Aat , n, t)−
j∑

t=1

∑
i∈[K]

pt,ig(Ai, n)

∣∣∣∣∣∣
]

≤
j∑

t=1

E
[∣∣∣∣∣∣r(Aat

, n, t)−
∑
i∈[K]

pt,ig(Ai, n)

∣∣∣∣∣∣
]
,

(57)
note that r(Aat

, n, t) ∈ [0, 1] and∑
i∈[K] pt,ig(Ai, n) ∈ [0, 1]. Therefore, we have

E
[∣∣∣r(Aat

, n, t)−
∑

i∈[K] pt,ig(Ai, n)
∣∣∣ ] ≤ 1 and

E[
∣∣Xn,j

∣∣] ≤ j < ∞. The first condition of Definition
2 is satisfied.

Next, we show that the second condition of
martingale sequence is also satisfied. ∀j, denote
Gn,j = {Xn,1, Xn,2, · · · , Xn,j} and Hj = {∀n ∈
N ,pt, at, r(Aat , n, t)}

j
t=1, then we have

E[Xn,j+1|Xn,1, Xn,2, · · · , Xn,j ]

=E[Xn,j+1|Gn,j ]

(a)
=E[E[Xn,j+1|Hj ]|Gn,j ]

(b)
=E[E[(Xn,j +∆n,j+1)|Hj ]|Gn,j ]

=Xn,j + E[E[∆n,j+1|Hj ]|Gn,j ],

(58)

where (a) is due to tower property of conditional ex-
pectation with Gn,j ⊆ Hj and we denote ∆n,j+1 =
r(Aaj+1

, n, j + 1)−
∑

i∈[K] pj+1,ig(Ai, n) in (b).
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The second term of Equation (58) is equal to 0. This is
because

E[∆n,j+1|Hj ]

=E[(r(Aaj+1 , n, j + 1)−
∑
i∈[K]

pj+1,ig(Ai, n))|Hj ]

=E[r(Aaj+1
, n, j + 1)|Hj ]−

∑
i∈[K]

pj+1,ig(Ai, n)

(a)
=

∑
i∈[K]

Pr(Ej+1,i|Hj)E[r(Aaj+1
, n, j + 1)|(Hj , Ej+1,i)]

−
∑
i∈[K]

pj+1,ig(Ai, n)

=
∑
i∈[K]

pj+1,ig(Ai, n)−
∑
i∈[K]

pj+1,ig(Ai, n)

=0,
(59)

where we denote event Ej+1,i as the event of selecting meta-
arm i in round j + 1 in (a).

Combine Equations (57) and (59), we prove that
{Xn,j}j>0 is a martingale sequence. We use the Azuma’s
inequality to obtain a concentration bound for the second
term of Equation (4).

Lemma 5 (Azuma’s Inequality). Suppose {Xi : i =
1, 2, · · · } is a martingale sequence and |Xi −Xi−1| ≤ ci
almost surely. Then for all positive integer T and all positive
real ϵ, Pr(|XT −X0| ≥ ϵ) ≤ 2 exp( −ϵ2

2
∑T

i=1 c2i
).

∀n ∈ N , ∀j > 0, −1 ≤ Xj ≤ 1, therefore ∀j > 0,∣∣Xj+1 −Xj

∣∣ ≤ 2. Using Azuma’s inequality and initializing
X0 = 0, we get that ∀n ∈ N , ∀T > 0, ∀ϵ > 0,
Pr(

∣∣∣∑T
t=1 r(Aat

, n, t)−
∑T

t=1

∑
i∈[K] pt,ig(Ai, n)

∣∣∣ ≥ ϵ) ≤
2 exp(−ϵ2

8T ). Set 2 exp(−ϵ2

8T ) = 1
T 2 , then ∀n ∈ N , ∀T > 0,

at least with probability 1− 1
T 2 ,

∣∣∣∣∣∣
T∑

t=1

r(Aat
, n, t)−

T∑
t=1

∑
i∈[K]

pt,ig(Ai, n)

∣∣∣∣∣∣ ≤ 4
√

T log(2T ).

(60)
Therefore,

∣∣∣∣∣∣∣min
n∈N

T∑
t=1

r(Aat , n, t)− min
n∈N

T∑
t=1

∑
i∈[K]

pt,ig(Ai, n)

∣∣∣∣∣∣∣ ≤ 4
√

T log(2T ).

(61)
Define event η := {∀n ∈

N ,Equation (55) and Equation (60) hold}. Event η̄ is
the complement of η. Using union bound, we obtain that
event η happens at least with probability 1 − 2N

T 2 . Define
event ξ := {∀T > 0,Equation (54) holds}, event ξ̄ is the
complement of ξ, we already obtained that event ξ happens
at least with probability 1− 2N

T . When event ξ ∩ η happens,
RT of Equation (4) can be upper bounded, which is

RT = min
n∈N

T∑
t=1

r(bt, n, t)− min
n∈N

T∑
t=1

r(at, n, t)

≤ T min
n∈N

∑
i∈[K]

p∗i g(Ai, n)− min
n∈N

T∑
t=1

∑
i∈[K]

pt,ig(Ai, n)

+
√

T log(2T ) + 4
√

T log(2T )

≤ Tf(p∗)− f(

T∑
t=1

pt) +O(
√

T log(T ))

(a)

≤ Tf(p∗)−
T∑

t=1

f(pt) +O(
√

T log(T ))

= RU1

T +O(
√

T log(T ))

≤ O(K
√
T log T ) +O(

√
T log(T ))

≤ O(K
√
T log T ),

(62)
where (a) is because of Lemma 4 of Section C of Appendix.

Using union bound, Pr(ξ∩ η) ≥ 1− 2N
T 2 − 2N

T , averaging
all the events, then E[RT ] of Equation (5) is

E [RT ] ≤ E
[
RT I(ξ ∩ η)

]
+ E

[
RT I(ξ ∩ η)

]
≤ O(K

√
T log T ) + E

[
T · I(ξ ∩ η)

]
≤ O(K

√
T log T ) + T · (2N

T 2
+

2N

T
)

≤ O(K
√
T log T ).

(63)

F. Proof of Theorem 5

Proof:
Define E = ∩n∈NEn, where En :=

{Equation (15) holds for arm n}. Denote
βt(δ) =

√
K log(1 + t

λδ ) + (λK)
1
2 . We first bound∣∣U2(p,g)− U2(p, ĝt)

∣∣ for all p when E happens (which,
due to Theorem 3, happens with probability 1−Nδ):

∣∣U2(p,g)− U2(p, ĝt)
∣∣ =

∣∣∣∣∣∣
∑
n∈N

(p× g)−
∑
n∈N

(p× ĝt)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n∈N
⟨p,g⊤

n ⟩ −
∑
n∈N
⟨p, ĝ⊤

t,n⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n∈N
⟨p, (gn − ĝt,n)

⊤

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n∈N

(
∥p∥

V̄ −1
t
∥gn − ĝt,n∥V̄t

)∣∣∣∣∣∣
(a)

≤ Nβt(δ)∥p∥V̄ −1
t

,

(64)

where (a) is due to the definition of event E.
Similarly (this time, instead using the definition of event

E, we use the fact that g̃t ∈ Mt), we can also obtain that ,
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for all p,∣∣U2(p, g̃t)− U2(p, ĝt)
∣∣ ≤ Nβt(δ)∥p∥V̄ −1

t
. (65)

Combining Equations (64) and (65) gives that when E
happens,

U2(p
∗,g)− U2(pt,g)

(a)

≤ U2(pt, g̃t)− U2(pt,g)

≤ U2(pt, g̃t)− U2(pt, ĝt) + U2(pt, ĝt)− U2(pt,g)

≤ Nβt(δ)∥pt∥V̄ −1
t

+Nβt(δ)∥pt∥V̄ −1
t

≤ 2Nβt(δ)∥pt∥V̄ −1
t

,

(66)

where (a) is because of the optimality of (pt, g̃t) guaran-
teed by the FP-OFU algorithm. Since both U2(p

∗,g) and
U2(pt,g) are upper-bounded by N , the difference of them
is also upper-bounded by N , combine this fact with Equation
(66), we have

U2(p
∗,g)− U2(pt,g)

≤ min(N, 2Nβt(δ)∥pt∥V̄ −1
t

)

= 2Nβt(δ)min(
1

2βt(δ)
, ∥pt∥V̄ −1

t
)

(a)

≤ 2Nβt(δ)min(1, ∥pt∥V̄ −1
t

),

(67)

where (a) is due to βt(δ) > 1.
Following the same reasoning as Equation (53), we obtain

that for any δ > 0 and t > 0, with probability at least
1− 2Nδ,

RU2

T =

T∑
t=1

(U2(p
∗,g)− U2(pt,g))

≤ O
(
NK

√
T log(

T

δ
) log(T )

)
.

(68)

Without loss of generality, we set δ = 1
T . Therefore, with

probability at least 1− 2N
T ,

RU2

T ≤ O(NK
√
T log T ). (69)

By the similar reasoning as Equation (55), using union
bound over all n ∈ N and setting δ1 = 1

T 2 , at least with
probability 1− N

T 2 ,∣∣∣∣∣∣∣
∑
n∈N

T∑
t=1

r(bt, n, t)− T
∑
n∈N

∑
i∈[K]

p∗i g(Ai, n)

∣∣∣∣∣∣∣ ≤ N
√

T log(2T ).

(70)
By Equation (60) and union bound, at least with proba-

bility 1− N
T 2 ,∣∣∣∣∣∣∣

∑
n∈N

T∑
t=1

r(Aat , n, t)−
∑
n∈N

T∑
t=1

∑
i∈[K]

pt,ig(Ai, n)

∣∣∣∣∣∣∣ ≤ 4N
√

T log(2T ).

(71)
Define event η := {Equation (70) and Equation (71) hold}.

Event η̄ is the complement of η. Using union bound, we
obtain that event η happens at least with probability 1− 2N

T 2 .
Define event ξ := {∀T > 0,Equation (69) holds}, event ξ̄
is the complement of ξ. We already obtained that event ξ

happens at least with probability 1− 2N
T . When event ξ ∩ η

happens, RT of Equation (7) is upper bounded:

RT =
∑
n∈N

T∑
t=1

r(bt, n, t)−
∑
n∈N

T∑
t=1

r(at, n, t)

≤ T
∑
n∈N

∑
i∈[K]

p∗i g(Ai, n)−
∑
n∈N

T∑
t=1

∑
i∈[K]

pt,ig(Ai, n)

+N
√

T log(2T ) + 4N
√

T log(2T )

= RU2

T +O(N
√

T log(T ))

≤ O(NK
√
T log T ) +O(N

√
T log(T ))

≤ O(NK
√
T log T ).

(72)
Following the same reasoning as Equation (63), E[RT ] of

Equation (8) is upper-bounded by O(NK
√
T log T ).
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