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ABSTRACT Machine learning (ML) has been successfully applied to classification tasks in many domains,
including computer vision, cybersecurity, and communications. Although highly accurate classifiers have
been developed, research shows that these classifiers are, in general, vulnerable to adversarial machine
learning (AML) attacks. In one type of AML attack, the adversary trains a surrogate classifier (called the
attacker’s classifier) to produce intelligently crafted low-power “perturbations” that degrade the accuracy
of the targeted (defender’s) classifier. In this paper, we focus on radio frequency (RF) signal classifiers,
and study their vulnerabilities to AML attacks. Specifically, we consider several exemplary protocol
and modulation classifiers, designed using convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). We first show the high accuracy of such classifiers under random noise (AWGN).
We then study their performance under three types of low-power AML perturbations (FGSM, PGD,
and DeepFool), considering different amounts of information at the attacker. On one extreme (so-called
“white-box” attack), the attacker has complete knowledge of the defender’s classifier and its training data.
As expected, our results reveal that in this case, the AML attack significantly degrades the defender’s
classification accuracy. We gradually reduce the attacker’s knowledge and study five attack scenarios
that represent different amounts of information at the attacker. Surprisingly, even when the attacker
has limited or no knowledge of the defender’s classifier and its power is relatively low, the attack is
still significant. We also study various practical issues related to the wireless environment, including
channel impairments and misalignment between attacker and transmitter signals. Furthermore, we study
the effectiveness of intermittent AML attacks. Even under such imperfections, a low-power AML attack can
still significantly reduce the defender’s classification accuracy for both protocol and modulation classifiers.
Lastly, we propose a two-step adversarial training mechanism to defend against AML attacks and contrast
its performance against other state-of-the-art defense strategies. The proposed defense approach increases
the classification accuracy by up to 50%, even in scenarios where the attacker has perfect knowledge of
the defender and exhibits a relatively large power budget.

INDEX TERMS Deep learning, signal classification, adversarial machine learning, shared spectrum,
wireless security

I. Introduction
Machine learning (ML) based signal classification plays
an important role in next-generation wireless systems. It
can be used, for example, to identify the underlying pro-

tocol or modulation scheme of the received signal in a
spectrum-sharing scenario, e.g., coexisting Wi-Fi and cellular
transmissions over the unlicensed 5/6 GHz bands [1]–[3],
and LTE/radar transmissions over the CBRS band [4], [5].
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FIGURE 1: AML perturbations attack on a signal classifier
in wireless systems.

It can also be used to identify anomalies, rogue signals,
and selective-jamming attacks [6]–[8]. Signal classification
may also be used for RF fingerprinting [9]–[11] to provide
awareness of nearby emitters and avoid radio interference.
Deep neural networks (DNNs) were used in [12], [13] to
identify signal types not included in the training phase,
i.e., unknown signals. In [14], [15], the authors proposed
more advanced DNNs, including fusion convolutional neural
networks (CNNs) and self-supervised DNNs to improve the
accuracy of modulation classification. Recent DNN-based
RF signal classifiers also use recurrent neural networks
(RNNs) [16], [17] (see also [18], [19] and the references
therein for related work on ML-based signal classification).

However, ML classifiers are vulnerable to adversarial
machine learning (AML) attacks. These attacks can infer
membership [20], leave a backdoor in the data [21], poison
the data [22], or mislead the classifier into assigning wrong
labels during normal operation [23]–[27]. In this paper, we
focus on the last type of AML attacks. Specifically, we
investigate the impact of AML perturbations on signal clas-
sifiers, considering realistic aspects of the wireless scenario.
AML perturbations have mainly been studied in the context
of object classification/recognition, but more recently in the
context of RF signal classification (e.g., [28]–[34]). In such
attacks, an adversary trains a surrogate DNN, henceforth
called the attacker’s classifier, to produce cleverly crafted
perturbations that are difficult to detect. When combined with
the original (a.k.a. “benign”) samples, these perturbations
can mislead the defender’s classifier into wrongly classifying
the signal type (see Figure 1).

Several factors contribute to the effectiveness of an AML
attack, including how much knowledge the attacker has about
the defender and what imperfections the AML perturbations
may encounter before reaching the defender’s classifier. In
[28]–[31], the authors studied AML attacks in two extreme
scenarios: the attacker has full knowledge of the defender’s
classifier (white-box attack) or it has zero knowledge (black-
box attack). Specifically, in [28] the authors adapted the

original Fast Gradient Sign Method (FGSM) for generating
perturbations [23] to attack modulation classifiers, assuming
the attacker has perfect knowledge of the defender’s classier.
The authors in [29]–[31] showed that DNN-based signal
classifiers are vulnerable to both white-box and black-box
attacks. These attacks only represent two extremes. In many
practical scenarios, the attacker has partial knowledge of the
defender’s classifier. The authors in [32]–[34] analyzed AML
attacks that require prior knowledge (exact or probabilistic)
of the channel state between the attacker and defender,
assuming that the attacker knows the DNN architecture
(including the trainable weights and loss function) used by
the defender’s classifier. Note that due to differences in the
dynamics of the transmitter-attacker and transmitter-defender
channels, the benign signal seen by the attacker will be
different from the one seen by the defender, which will
result in different trained weights even for the same DNN
(ultimately, impacting the effectiveness of the attack, as later
shown in our simulations).

Prior works on RF signal classification have not exten-
sively examined differences in the hyperparameters of the
DNN structures, even when such structures are trained under
the same data. Our study examines both aspects (differences
in the input as well as differences in the hyperparameters).
In particular, we observe that knowledge of the defender’s
classifier plays an important role in the strength of the attack.
Intuitively, the attack is stronger when both the attacker and
defender apply the same DNN than when they use different
DNNs. Even under the same DNN architecture, differences
in the hyperparameters can also affect the attacker’s effec-
tiveness (even when the attacker and defender use the same
training and testing datasets). For example, if two CNNs
differ in filter sizes at the Cov2D layer(s) or in the number of
layers, the attack can be less effective. We further observe the
attack’s effectiveness is reduced even when the defender and
attacker apply the same DNN but train it with different seeds.
This implies that knowledge of defenders’ DNN structure is
critical for AML attacks. In our work, we first examine the
impact of AML perturbations under a white-box model. We
use the results as a reference point to evaluate other attack
scenarios where the attacker has partial knowledge of the
defender.

Previous works (e.g., [28]–[34]) primarily focused on
modulation classification attacks. Such works used CNN-
based classifiers as examples but did not consider sequence-
to-sequence models such as RNNs [16], [17]. Our paper eval-
uates both protocol and modulation classifiers, considering
CNN- and RNN-based designs. We start with FGSM, as a
simple technique to generate AML perturbations [23]. We
then extend the treatment to multi-step attacks by considering
Projected Gradient Descent (PGD) [24] and DeepFool [25].
We evaluate these attacks under different knowledge levels
for both modulation and protocol classifiers.

The authors in [32]–[34] considered the problem of syn-
chronization between the attacker and defender. The syn-
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chronizing problem in our paper differs from theirs in two
main aspects. First, we focus on studying the synchronization
issue for input-dependent AML attacks (e.g., FGSM, PGD,
and DeepFool). In contrast, the shift-invariance property
demonstrated in [32]–[34] pertains to input-independent at-
tacks, e.g., Universal Adversarial Perturbation (UAP). In the
UAP attack, the same matrix of perturbations is generated for
all different benign inputs. This matrix effectively fools all
inputs with high probability [35]. Consequently, the defender
receives the same perturbation for all inputs, a notable
contrast from the perturbations we examine in our paper.
Second, UAP, being input-independent, allows the generated
attack on one window to be effective on other windows, as
demonstrated in [32]–[34]. In our paper, we refer to this
coarse-scale misalignment as inter-window shift. However,
the misalignment can also be a fraction of a window, a
scenario we refer to as intra-window shift. In this case,
the shift-invariance property of the UAP attack is no longer
valid. For input-dependent AML attacks, we study the impact
of both inter- and intra-window shifts.

Finally, we propose a two-step defense mechanism to
improve the robustness of the defender’s classifier to AML
attacks. Our defense approach relies on training multiple
classifiers with various adversarial examples [23], each at a
given level of perturbations. During normal operation (testing
phase), a separate DNN-based estimator is used to predict
the level of perturbations of the AML attack (including the
possibility of no attack). Subsequently, one of the retrained
classifiers is selected for robust signal detection.

Our contributions are summarized as follows:

• In addition to modulation classifiers, we extend the
study of AML attacks to protocol classifiers used in
spectrum-sharing scenarios (prior work focused only
on modulation classification). In contrast to [28]–[34]
where only a CNN classifier was studied, in our work
we consider two CNNs and three RNNs (e.g., LSTM
and bidirectional LSTM).

• In contrast to previous work, which considered two
extreme cases of the attacker’s knowledge (i.e., white-
box and black-box attacks), our paper studies a range
of (partial) levels of knowledge.

• We study AML attacks under practical considerations
of a typical wireless network setting, including unsyn-
chronized transmitter/attacker operation, non-persistent
AML perturbations, and channel degradations. We eval-
uate the attacks under various imperfections and show
that these attacks can still significantly reduce the
defender’s accuracy.

• We propose a defense approach based on enhanced ad-
versarial training. Traditional adversarial training relies
on retraining a single classifier under a particular attack
setting, and hence is not effective under other attack
settings. Our proposed defense mechanism shows better
robustness and improves the defender’s accuracy by 30-
50% compared to conventional adversarial training.

II. System Model
We consider a wireless communication system that consists
of a legitimate transmitter-receiver pair and an adversarial
device (see Figure 1). The transmitter generates RF signals
according to one of several possible protocols (for proto-
col classification) or modulation schemes (for modulation
classification) in an interleaved manner, i.e., one protocol or
modulation scheme is active at a time. Without loss of gener-
ality, we assume that the defender’s classifier resides within
the legitimate receiver1. This classifier is trained to identify
the protocol (or modulation scheme) based on the received
baseband I/Q samples, which we refer to as benign data or
benign input. The attacker generates its perturbations based
on overheard benign data. These perturbations interfere with
the defender’s classifier, pushing it into wrongly classifying
the received samples. We refer to the combined benign data
plus perturbations as adversarial data.

The output of the defender’s classifier is represented by
the mapping z = g(x; θ), where x is a window of I/Q
samples and θ is the set of learnable DNN parameters, i.e.,
weights and biases. The input x is in R2×N , where N is the
window size (in consecutive samples) and the first (second)
row represents the sequence of I (Q) values, respectively. The
input matrix x is passed through the DNN and is represented
by a feature vector resulting from a projection and nonlinear
(activation) function, σ(·). The classifier assigns a label
f(x; θ) = arg maxk(σ(z)k) to the received input, where
k ∈ K and σ is a softmax function. In this formulation,
σ(z)k is the numerical output of classifier f corresponding
to the kth protocol (or modulation) type.

At any given time, let Htd be the channel matrix from the
legitimate transmitter to the defender, Hta be the channel
matrix from the legitimate transmitter to the attacker, and
Had be the channel matrix from the attacker to the defender.
We assume AWGN {nd} and {na} at the receive chains of
the legitimate receiver (defender) and attacker, respectively.
In the absence of AML perturbations, the defender receives
xd = Htdxt′ + nd, where xt′ is the transmitted waveform.
The attacker receives xa = Htaxt′ +na. The adversary uses
its signal xa to generate and transmit AML perturbations η.
In the presence of AML perturbations, the defender receives
x∗
d = Htdxt′ + Hadη + nd. We introduce a variable τ

to indicate the time lag between the arrival of the benign
signal at the defender and the arrival of the corresponding
AML perturbations. Accordingly, the signal received by the
defender becomes x∗

d(τ) = Htdxt′ +Hadη(τ) + nd.
Several approaches can be used to generate η. Such ap-

proaches were studied in the context of computer vision and
natural language processing. In this paper, we apply these
approaches in the context of RF signal classification. Specif-
ically, the attacker seeks to determine AML perturbations
that, when combined with the original signal, fall within an
ℓ∞ ball determined by ϵ and that maximize the classification

1We use the legitimate receiver and the defender interchangeably in our
paper.
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error. More formally, the adversary would ideally solve:

max
η

I{f(xd; θ) ̸= f(x∗
d; θ)}

s.t. ∥η∥∞ ≤ ϵ
(1)

where I is an indicator function that reflects the number
of misclassified labels in a given training set. We seek
the smallest possible perturbations. To achieve this goal of
finding the perturbation efficiently, we add a constraint on
η. Note that ϵ > 0 is a user-defined parameter that limits the
power of the perturbation and ensures the attack is difficult to
identify by the defender. Instead of constraining η, one can
also attempt to find the minimal η that is sufficient to change
the estimated label. This is done by solving the following
minimization problem:

η∗ =argmin
η
∥η∥∞

s.t. f(xd; θ) ̸= f(x∗
d; θ).

(2)

This type of perturbation, proposed by Moosavi-Dezfooli et
al. [25] is called the DeepFool attack.

III. DNN Structures
This section discusses the DNNs we consider for protocol
and modulation classification, as well as the datasets used to
train and test them.

A. DNNs for Protocol Classification
We consider four DNN structures for protocol classifica-
tion, as shown in Figure 2. Three of these structures are
stacked RNNs, each made of dense layers as well as Long
Short-Term Memory (LSTM) and/or bidirectional LSTM
(BiLSTM) layers. The last DNN is a CNN, modified from
LeNet [36] by replacing the Conv2D of LeNet with Conv1D
layers to efficiently transform and extract features from the
time-domain sequence. In addition, we remove the padding
layer from LeNet to improve the accuracy. The kernel size
for the Conv1D layer is set to two, and its stride is set
to one. The activation functions for the Conv1D and the
fully connected layers are scaled exponential linear units.
The output layer in each classifier is soft-max. To train and
test the protocol classifiers S1 to S4, we generate a dataset
of 15,000 inputs (see Section VI), each containing 512 pairs
of I/Q samples. AWGN is added to the samples to achieve
a given signal-to-noise ratio (SNR)2. Approximately 60% of
the dataset is used for training, 20% for validation (i.e., early
stopping, hyperparameter tuning, etc.), and 20% for testing.
We monitor the cross-entropy and use early stopping with a
patience of three.

B. DNNs for Modulation Classification
We also consider the modulation classifier proposed by
O’Shea et al. and apply it to the RML 2016.10a dataset [37].
We abbreviate O’Shea et al.’s DNN as VT-CNN2. VT-CNN2

2Unless specificied otherwise, the SNR in this paper refers to the SNR
for the Tx-attacker channel, i.e., SNRT−A.
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FIGURE 2: DNNs considered in this work for RF signal
classification. Structures S1-S3 are RNN-based classifiers,
structures S4 is a LeNet-based CNN classifier, and structure
S5 is the VT-CNN2 classifier.

is a four-layer CNN that uses two convolutional layers and
two fully connected layers. The hidden layer activations are
Rectified Linear unit (ReLu). The output layer is a soft-max.
The RML 2016.10a dataset comprises 220,000 data segments
(i.e., windows), representing 11 modulation schemes. There
are 20 SNR values that range from −18 dB to 20 dB in
steps of 2 dB. This results in 1,000 windows of samples per
modulation scheme per SNR. We use 50% of the data for
training, 5% for validation and early stopping, and 45% for
testing. The RML 2016.10a dataset is available in windows
of 128 samples (I/Q pairs) each, with a stride of 64 samples,
i.e., two successive windows overlap by 64 samples.

IV. Adversarial ML Attacks
We consider three different approaches for generating ad-
versarial data: FGSM, PGD, and DeepFool. Although other
approaches have been proposed in the literature, these three
are often applied to wireless communication systems.

A. FGSM Attack
FGSM uses the gradients of a DNN to generate a perturba-
tion η and, subsequently, the adversarial data xadv = x+ η
[23]. Ideally, the defender would predict the same class for
x and xadv if η is less than the given precision. However,
the adversary can craft η and cause the defender’s classifier
to change its decision on the perturbed data. We denote
the DNN’s mapping function as f : R2×N 7→ [0, 1]K with
parameters θ. Even though the difference between xadv and x
is the small perturbation η, the difference f(x+η; θ)−f(x; θ)
is not linear in η. In fact, the impact of η can be learned
and amplified by FGSM to change the label sign by cal-
culating backpropagated gradients. The adversarial perturba-
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tion is formally given by η = ϵ sign(∇xL(x, y; θ)), where
L(x, y; θ) is the loss function of the classifier (typically,
cross-entropy) with parameters θ [23]. The adversarial data
are generated by maximizing the loss with respect to the
classifier’s input x and true label y based on the gradients
∇xL(x, y; θ). The authors in [29] proposed a new parameter
ϵacc for adapting ϵ during the generation of the FGSM
perturbations. In Section VII.F, we compare the results in
[29] with the unmodified FGSM approach and show that both
versions of FGSM lead to reducing the defender’s accuracy.

B. PGD Attack
FGSM can be interpreted as a one-step approach to max-
imize the impact of the perturbations. PGD is a more
powerful variant of FGSM that uses multiple steps to project
the gradient on the negative loss function [24]. We consider
a constraint set Q for perturbation power ϵ. Starting from
the initial point x0, PGD iterates over the equation xt+1 =
PQ(xt + α sign(∇xL(x, y; θ)) until a stopping condition is
met, where PQ is a projection operator that ensures that
the output satisfies the constraint and t is the iteration
number, t = 0, 1, 2, . . . , T . In other words, PGD generates
the perturbation in T iterations using a step size α. Clearly,
the choice of α and T significantly impacts the performance
of the PGD attack. Section VII studies the classification
performance of PGD-based perturbations under different α
and T .

C. DeepFool Attack
In DeepFool [25] ϵ is not set a priori; instead, the adver-
sarial perturbation is determined by the smallest η needed
to change the label f(x; θ). We can calculate the pertur-
bation for x as in Equation (2). The same notation for
f(x; θ) = arg maxk(σ(z)k) is used as in Section II. To show
the changes in σ(z) with t, let σ(g(x; θ)) be the output
activation function that generates K outputs corresponding
to the number of classes. DeepFool continues until the
accumulative perturbation η changes the input’s label. For
multi-class problems, DeepFool updates the gradient changes
between all other labels and the label that the target model
predicts, and chooses the label with the smallest change as
the direction to accumulate the perturbation. To find the clos-
est possible perturbation that would mislead the classifier,
we need to calculate the gradient of σ(g(x; θ)). Therefore,
this work considers the perturbation vector directed to the
decision boundary between the originally predicted label and
a fake label ŷ. The perturbation at each t can be written

as: ηt ←
|σ(g(x;θ))′ŷ|

∥∇σ(g(x;θ))ŷ)∥2
2

∇σ(g(x; θ))ŷ. DeepFool returns η

as the sum of perturbation at each step (ηt). The DeepFool
algorithm is summarized in Algorithm 1.

D. Energy of Perturbations
In all the previously discussed perturbation methods, the
parameter ϵ controls the power (or energy) of the pertur-
bations. This ϵ is sometimes called the adversarial budget

Algorithm 1 DeepFool Attack (Multi-Class Classification)
Input: Input x, classifier f
Output: Perturbation η

Initialize t← 0, xt ← x
while f(xt; θ) = f(x; θ) do

for k ̸= f(x; θ) do
∇σ(g(xt; θ))k ← ∇σ(g(xt; θ))k −∇σ(g(xt; θ))f(x;θ)

σ(g(xt; θ))′k ← σ(g(xt; θ))k − σ(g(xt; θ))f(x;θ)

end for
ŷ ← argmink ̸=f(x;θ)

|σ(g(xt;θ))
′
k|

∥∇σ(g(xt;θ))k∥2
2

ηt ←
|σ(g(x;θ))′ŷ|

∥∇σ(g(x;θ))ŷ)∥2
2

∇σ(g(x; θ))ŷ
xt+1 ← xt + ηt
t← t+ 1

end while
return η =

∑
t ηt

[38]. A larger ϵ implies that the perturbations can have
a larger impact on the input, which results in a lower
classification accuracy of the adversarial dataset. A larger
ϵ means the adversary requires more energy. To reflect the
energy level of the perturbation, we define the Signal-to-
Perturbation Ratio (SPR) as the energy ratio between the re-
ceived signal and the perturbation: E(x)/E(η), where E(x)
is the average signal energy that received by the defender
before the additive perturbation: E(x) =

∑N
n=1

1
N |x[n]|

2 =∑N
n=1

1
N (Re{x[n]}2+Im{x[n]}2). Re{x[n]} and Im{x[n]}

correspond to the I/Q values contained in the nth input
sample. E(η) is the energy of the perturbation generated by
the attacker without including the channel impact between
the attacker and defender. The relationship between SPR
and ϵ is not in closed form because the energy of each
window of samples varies from one window to another, and
the perturbation vector differs for each class of data. As a
result, to obtain the SPR as a function of ϵ, we must first
generate the perturbations and then compare the average
energy between the benign signals and perturbations. We
show such relationships in Figure 3(a)-(b). It can be observed
that the SPR drops quickly with ϵ at the beginning. This trend
slows down when ϵ is large.

Recent research proposed ML approaches for detecting
low-power interference [39], [40]. According to the method
in [39], an adversarial signal can be detected when the
interference power is 10 dB below the benign signal. There-
fore, the adversarial perturbations will be hidden if the SPR
exceeds 10 dB. According to Figures 3(a)-(b), an SPR > 10
dB corresponds to ϵ < 0.25 and ϵ < 0.002, for the protocol
and modulation datasets, respectively.

Indeed, the range of values for ϵ depends on the specific
dataset used. In our experiments, the samples in the two
datasets exhibit significantly different amplitudes, as shown
in the examples in Figure 4. Thus, for the same ϵ, the
impact of the perturbations will be greater on the modulation
classifier than on the protocol classifier. This is why we
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FIGURE 3: Relationship between the SPR and ϵ for :
(a) protocol classification dataset, and (b) RML 2016.10a
dataset.
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FIGURE 4: Amplitude for a segment of I/Q samples: (a) 5G
waveform in the protocol dataset, (b) 64-QAM waveform in
the RML 2016.10a dataset.

evaluated AML attacks on the modulation classifier using
ϵ ∈ [0.0005, 0.005] and on the protocol classifier using
ϵ ∈ [0.05, 0.3].

V. Adversarial Attacks with Limited Knowledge
In this section, we assess the impact of the attacker’s
knowledge of the defender’s classifier on the effectiveness
of an AML attack, considering the aforementioned three
techniques for generating AML perturbations. A white-
box attack (full knowledge) is expected to cause the most
degradation in the defender’s classification accuracy. What is
less clear is how much reduction in the attack’s effectiveness,
if any, results from limiting the amount of information
available to the attacker. Accordingly, we consider scenarios
where the attacker possesses only partial information about
the defender. We divide such knowledge into classifier and
data domains, and consider different levels of knowledge for
the attacker in both domains. Under partial knowledge, the
attacker’s DNN ends up being different in structure and/or
trainable weights than the defender’s DNN. Even with such
differences, our results show that the attack is still effective,
but such effectiveness depends on the similarity between the
surrogate and defender classifiers. This observation confirms
the concept of attack transferability, defined as the ability of
an attack generated using one DNN classifier to impact the
performance of another DNN classifer [41], [42]. However,
the level of transferability is a function of the dissimilarity
between the two DNNs. Recent studies [43], [44] corroborate

our findings, prompting the authors of these works to sug-
gest applying transformations and input diversity during the
training of the attacker’s DNN so as to improve the efficacy
of attack transferability.

A. Limited Knowledge of Defender’s Classifier
We consider realistic scenarios in which the attacker trains
a classifier fa(x; θa) that is not identical to the defender’s
classifier fd(x; θd). In this case, the loss can be represented
by L(x∗

d, ya; θa) because the label for the corresponding
input needs to be estimated by the attacker’s classifier.
The difference between fa(x; θa) and fd(x; θd) has a direct
impact on the loss function. We study the following four
levels of the attacker’s knowledge and test their impacts on
the perturbations.

Attack A1: In this scenario, the attacker knows the hyper-
parameters of the defender (i.e., the network type, number
of hidden neurons, activation functions, etc), but does not
know the exact values of the defender’s trained weights.
This may result from using different random initializations
or different learning rates during the training. As a result,
the adversary’s and defender’s classifiers will have different
weights and biases even if they have the same classification
performance. For our simulations, we use two different sets
of random seeds to initialize two classifiers before training
them and keep all other settings the same.

Attack A2: In this attack, the adversary knows the overall
structure of the defender’s DNN but does not know other
hyperparameters. For example, the attacker may know that
the defender’s classifier uses a seven-layer CNN model with
Conv1D as the first two layers, but the attacker does not
know the filter numbers of these layers. For our simulations,
we assume that the attacker knows the number of layers,
their types, and their order but does not know these layers’
filter numbers (or unit numbers for RNNs).

Attack A3: In this case, the attacker knows the type of
classifier that the defender uses (e.g., CNN or RNN), but
not its structure. To study this attack, we use a differently
structured classifier of the attacker to generate the adversarial
perturbations. Sometimes, we consider the same type of
DNN but with different layer numbers (e.g., we use a three-
layer RNN structure S1 for the defender but use a two-layer
structure S3 for the attacker).

Attack A4: In this attack, the attacker knows nothing
about the defender’s classifier. The mapping function fa
can differ significantly with classifier types, especially if a
CNN represents features differently than an RNN. In this
scenario, we consider the situation when the attacker uses
RNN structure S1 as the classifier to generate the adversarial
perturbations. Still, the defender uses the CNN structure S4

as the detector and vice versa.

B. Limited Knowledge of Defender’s Training Data
In a practical wireless setting, the benign samples received
by the attacker, xa = Htaxt′ +n, and those received by the
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FIGURE 5: Examples of imperfect synchronization and
incomplete sequences of perturbations. (a) Intra-window
perturbation shift, (b) inter-window perturbation shift, (c)
Incomplete-window perturbations.

defender, xd = Htdxt′ + n, are different due to channel
impact. The attacker trains its classifier fa based on the
dataset xa. Because the training data sets at the attacker and
defender differ, the parameters θa and θd will differ. As a
result, the adversarial perturbations must be generated with
fa(x; θa). The loss function L(x∗

d, yd; θd) is approximated
by L(xa, ya; θa)+ηT∇xa

L(xa, ya; θa). We denote this type
of attack as Atr.

C. Imperfect Synchronization between Perturbations and
Benign Data at Defender
Due to differences in propagation delays, as well as pro-
cessing delays of benign data at the attacker, the adversary
cannot guarantee that its perturbations will be perfectly syn-
chronized with the benign data received by the defender [37].
We study such imperfect synchronization and analyze its
impact on the defender’s classification performance. In our
setup, the defender’s waveform is sampled by a fixed-length
moving window before being sent to the classifier. Therefore,
we consider two situations: intra- and inter-window shifts, as
shown in Figures 5(a) and 5(b). Note that our study of the
impact of imperfect synchronization does not mean that the
defender has any way to control or even estimate the degree
of mis-synchronization.

D. Incomplete Sequences of Perturbations
The adversary may act intermittently to prevent being de-
tected, generating its perturbations for only a fraction of the
time, as shown in Figure 5(c). In this setting, the attacker
listens to the channel at the beginning of the transmission
and sends part of the perturbation to be superposed with
the benign signal at the defender. For simplicity, we assume
that during its active periods, the attacker’s perturbations are
synchronized with the benign signal.

E. Limited Energy Ratio between Perturbations and
Channel Impact
Previously, we depicted the relationship between the SPR
and ϵ before accounting for channel effects (see Figures 3).
We also study the channel impact between the attacker
and the defender, assuming AWGN channels. In this case,
the total interference received by the defender is the sum
of the adversary’s perturbations and the channel noise.
The Perturbation-to-Noise Ratio (PNR) was introduced to
measure the relationship between the transmitted power of
the adversarial perturbations and the noise/fading of the
channel between the attacker and defender. In Section II,
we expressed the perturbations received by the defender as
Hadη + nd. The PNR, denoted as E(Hadη)/E(nd), is av-
eraged over all received baseband I/Q pairs. To evaluate the
channel impact between the attacker and defender, we treat
the received signal at the defender without attack as benign.
Note the benign signals already include the AWGN noise
between the transmitter and defender. To further determine
the channel noise between the attacker and defender, we use
the energy of the benign signals as the reference and vary
such channel noise in several levels. After determining the
channel noise between the attacker and defender, we further
vary perturbations to evaluate their impact under different
PNRs. The SNR in the attacker-defender channel is related
to SPR and PNR as SNR = SPR × PNR or, equivalently,
SNR [dB] = SPR [dB] + PNR [dB]. Therefore, if the attacker
wants to ensure the perturbations are undetectable, it should
have a PNR value below SNR −10 dB.

VI. Datasets
For protocol datasets, the Matlab Wi-Fi, LTE, and 5G
Toolboxes were used to generate signals. Of the various
possible features, we use the baseband I/Q samples at
the defender (with AGWN) as input to the classifier. I/Q
samples are obtained before decoding the signal, providing
a rich representation of the actual waveform. The simulated
waveforms are divided into multiple sequences by applying
a sliding window with a step size of one, each consisting of
512 I/Q pairs. Simulated transmissions are sent at the same
center frequency, over a 20 MHz channel. In addition, we
consider the LTE, Wi-Fi, and 5G NR as the classes of signals
transmitted under an AWGN channel with SNR = 15 dB. The
Wi-Fi waveforms are transmitted by generating baseband
samples of 802.11ac (VHT) with BPSK modulation and
1/2 coding rate. The LTE waveforms are generated by
downlink with reference channel R.9, which uses a 64 QAM
modulation. We also generate 5G waveforms using 5G DL
FRC with QPSK modulation and a coding rate of 1/3 with
a subcarrier spacing of 15 kHz. These sequences form the
datasets to train and test the four protocol classifiers. We
generate a dataset of 15,000 inputs, with approximately
5,000 samples for each label (Wi-Fi, LTE, and 5G).

In addition to the 15,000 windows of samples, we also
consider a much larger set of 220,000 windows. Specifically,
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FIGURE 6: Accuracy of proposed DNN classifiers under benign and FGSM-based perturbations: (a) All four DNNs under
white-box attacks, (b) RNN under limited-knowledge attacks, (c) CNN under limited-knowledge attacks.

to better illustrate the impact of adversarial perturbations on
classification accuracy, we consider the publicly available
RML 2016.10a dataset for modulation classification [37].
This dataset comprises noisy I/Q samples for 11 modulation
schemes: 8PSK, BPSK, QPSK, QAM16, QAM64, CPFSK,
GFSK, PAM4, WBFM, AM-DSB, and AM-SSB. Each mod-
ulation scheme is represented in 1,000 windows of samples
for each given SNR, with the SNR varying from -18 dB to
20 dB in steps of 2 dB. Thus, the RML 2016.10a dataset
includes 220,000 windows of samples (20,000 windows per
modulation scheme), each consisting of 128 I/Q pairs.

VII. Performance Evaluation
In this section, we evaluate the impact of FGSM, PGD,
and DeepFool attacks when the attacker possesses different
knowledge levels about the defender. We then test the
impact of mis-synchronization attack, persistence, and chan-
nel noise, considering FGSM as a representative example.
We apply our evaluation to both protocol and modulation
datasets.

A. FGSM Attacks
Figure 6 depicts the classification performance at the de-
fender vs. ϵ, considering FGSM attacks on the protocol
dataset. As shown in Figure 6(a), the RNN structures S1-S3

achieve approximately 91% accuracy under benign AWGN
perturbations. In contrast, the CNN structure S4 achieves
97% accuracy (refer to the dashed lines for benign perfor-
mance). The three RNN structures S1-S3 have comparable
performance but have various bidirectional LSTM designs.
The accuracy drops for all four classifiers as we increase the
budget of the adversarial FGSM perturbations via ϵ. Note
these are white-box attacks where the adversary is capable
of the most damage. We also observe that structure S1 has
the highest average accuracy over all ϵ settings among the
three proposed RNN models. Therefore, we use structure
S1 in later evaluation to represent the RNN classifier. Even
though the CNN performs best under benign perturbations,
it suffers more from AML attacks. When ϵ exceeds 0.1,

the CNN model performs the least accurately among the
different structures. All the models’ accuracy saturates when
ϵ is higher than 0.2, indicating that the white-box attack
can mislead the defender’s classifier with limited power
control. These results demonstrate an accurate classifier is
not necessarily a robust classifier.

After evaluating the white-box attacks, we consider attack
scenarios where the attacker has incomplete knowledge (as
described in Section V) of the defender’s classifier and/or
the training dataset used by the defender. The accuracy
for RNN (i.e., structure S1) is shown in Figure 6(b). The
impact of attack A1 is close to the white-box attack. This
result is expected because the attacker has the same hy-
perparameters as the defender. Although the classifiers are
trained with different seeds, one can still inherit most of
the properties from the other. Attack A2 exchanges the filter
number of the first two layers, and attack A3 uses one less
layer (e.g., remove the third layer of structure S1) for the
attacker. Both show similar performance as the defender,
which means these hyperparameters are relatively important
for generating adversarial perturbations. Attack A4 has the
weakest attack effect. This is because the attacker applies the
CNN structure S4 to generate the adversarial signals for the
RNN model (i.e., the adversary does not know the structure
of the defender). Even though both classifier types can
classify the waveforms accurately, the actual trained model
differs significantly from the others. Therefore, a well-crafted
perturbation for the CNN may not achieve the expected effect
on RNNs. Attack Atr uses the different training datasets to
generate the perturbations. Thus, it shows more variance than
other attacks. It has an equivalent trend with attacks A2 and
A3, but slows when ϵ exceeds 0.15.

The accuracy of CNN (i.e., structure S4) is shown in
Figure 6(c). Similar to the RNN observations, the attack’s
impact depends heavily on the adversary’s level of knowl-
edge about the defender. In the simulation, attack A2 ex-
changes the filter number of the two Conv1D layers, and
attack A3 removes the second Conv1D layer at the attacker
side. Compared to the RNN, the layer and filter number
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FIGURE 7: Classification accuracy vs. SNRs for VT-CNN2 using RML 2016.10a dataset. (a) FSGM, PGD, and DeepFool
under white-box attacks (several values for ϵ are considered), (b) FSGM and AWGN under limited-knowledge attacks (ϵ =
0.001).

setting play a more critical role in CNNs. As a result, attacks
A3 and A4 show different trends with varying ϵ. In contrast,
attack Atr shows a strong similarity with attack A1, which
implies the CNN model can suffer a more severe attack than
the RNN, even when the attacker has limited knowledge of
the data.

We then show the impact of FGSM under the white-
box attacks using the RML 2016.10a dataset. We use VT-
CNN2 as the benchmark classifier for the defender. The
adversarial budget, ϵ, varies from 0.00025 to 0.005. As
ϵ increases, the perturbations exhibit higher power (i.e.,
lower SPR), and reduce more accuracy of the defender. We
evaluate the defender under different SNRs and summarize
the results in Figure 7(a). In addition to the white-box
attack, we study FGSM perturbations under four limited-
knowledge attacks. To keep the energy of the perturbation
low, we explore the FGSM attacks with ϵ = 0.001 as
an example. As shown in Figure 7(b), limited-knowledge
attacks A1 and A2 show close accuracy with the white-box
attack. This result suggests that a small structure change
may not heavily impact the FGSM adversarial signals for
VT-CNN2 on RML 2016.10a dataset. However, when the
attacker’s knowledge is further reduced, the impact of FGSM
becomes weaker (shown as the attacks A3 and A4). This
indicates that the attack can be significantly weakened if the
defender’s knowledge is less than a certain level. However,
these imperfect knowledge attacks are still stronger than
AWGN with equivalent power.

B. PGD Attacks
Due to the CNNs and RNNs having similar accuracy trends
under FGSM attacks as shown in Figure 6(b) and 6(c), we
use RNN (structure S1) as the classifier for the protocol
dataset to show the remainder of the attack schemes. We
first study the impact of step sizes and maximum iteration
numbers on PGD-based perturbations. Under the white-box
attack, we test the classification accuracy of the defender’s
classifier while fixing ϵ = 0.15. Recall that the PGD attack is
computed over multiple steps (iterations) of gradient descent,

and is parameterized by ϵ and α. The parameter ϵ regulates
the power budget (same as FGSM), whereas α controls the
step size. α can be chosen from a wide range because the
projection in PGD always pushes the perturbed signal into
the constraints of ϵ, as described in Section IV.B. While
a larger ϵ can strengthen the attack, a larger α does not
guarantee a stronger attack, which was also observed in [45],
[46]. Using the CIFAR-10 dataset, Croce and Hein [45]
showed that when α is twice the value of ϵ, the PGD
attack becomes weaker than when using smaller values of
α. Figure 8(a) depicts the classification accuracy under PGD
perturbations versus the number of iterations for three values
of α with ϵ = 0.15 (protocol dataset). The defender’s
accuracy does not decrease when α goes from 0.2 to 0.3
because α is larger than ϵ. We observe that PGD with
α = 0.1 achieves the lowest accuracy after ten iterations.
Accordingly, we chose α = 0.1 for PGD and evaluated
this attack for different values of ϵ. Figure 8(b) shows the
defender’s classification accuracy under FGSM and PGD
attacks. PGD attacks are stronger than FGSM attacks when
ϵ ranges from 0.05 to 0.3. These results suggest that PGD
may be more effective at generating perturbations.

Comparable trends are observed in VT-CNN2 using RML
2016.10a dataset. To ensure that PGD attacks result in
perturbations with limited energy, we fix ϵ = 0.0025,
and vary α from 0.001 to 0.005. Figure 8(c) shows the
classification accuracy for different values of α. When α
is close to ϵ, the value of T has a visible impact on
the effectiveness of the PGD attack, particularly when T
increases from 1 to 2. After a few iterations, the impact
becomes less significant. Similar trends are observed under
the other two small values of α. Moreover, we evaluate
the accuracy of the defender’s classifier under attacks as a
function of ϵ when testing SNR is 16 dB, as shown in Figure
8(d). FGSM and PGD are quite effective in degrading the
defender’s classification accuracy. As expected, the accuracy
goes down with a larger ϵ. Generally, PGD is an iterative
attack and can impact the classification accuracy more than
the one-round FGSM attack. We compared and summarized
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FIGURE 8: Impact of α, number of iterations, and ϵ in the PGD attack: (a) Classification accuracy vs. number of iterations
with α, (b) classification accuracy vs. ϵ for different attacks (α = 0.1), using the DNN structure S1 and the protocol dataset.
(c) Classification accuracy vs. number of iterations under various α, averaged over all SNRs, (d) classification accuracy vs.
ϵ for different attacks (α = 0.01, SNR = 16 dB), for VT-CNN2 using RML 2016.10a dataset.
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the impact of FGSM and PGD attacks in Figure 7(a), where
we allow a sufficient iteration number for the PGD attacks
for comparison. When ϵ is very small, PGD similarly impacts
the classification performance as FGSM. As ϵ increases, the
difference between PGD and FGSM is more pronounced. In
our case, the accuracy gap between PGD and FGSM only
grows when ϵ increases from 0.00025 to 0.001, but drops
after that point (i.e., as ϵ further increases).

In addition to PGD under white-box attacks, we evaluate
the limited knowledge adversary for the protocol dataset
in Figure 9 and for RML 2016.10a dataset in Figure 10.
Figure 9 compares the different knowledge levels of PGD
attacks with α = 0.1 and T = 20 to the AWGN attack.
The PGD-based attacks significantly impact the defender’s
classifier when we allow a larger ϵ value. Similar to the
FGSM trends, the limited-knowledge PGD attacks show a
weaker impact. Attacks A1 and Atr are closer than other
attacks. This performance is because they have the closest
knowledge of the defender. Attacks A2 and A3 have similar
performance as the defender, which is consistent with FGSM
results in Figure 6(b).

In Figure 10, we explore the PGD attacks with ϵ = 0.001,
α = 0.01, and T = 20, under different SNRs for RML
2016.10a dataset. We observe the attacks become weaker
with less knowledge of the defender, similar to FGSM in
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FIGURE 10: Classification accuracy vs. SNRs for VT-CNN2
using RML 2016.10a dataset under limited-knowledge PGD
and AWGN attacks (ϵ = 0.001).

Figure 7(b). The attacker in A1 and A2 loses a little infor-
mation about the defender’s classifier, and has the closest
classification accuracy to the white-box attack. Attacks A3

and A4 become weaker due to the imperfect adversary’s
knowledge.

C. DeepFool Attacks
We first compare FGSM and DeepFool in terms of the
defender’s accuracy and SPR, assuming a white-box attack.
A range of ϵ is considered for FGSM. DeepFool is not
parameterized by ϵ, so it has only one entry in Table 1. From
this table, we observe that FGSM with a larger ϵ reduces the
defender’s accuracy but requires more energy (lower SPR).
This observation is in line with the observations in [30],
[33]. FGSM with ϵ = 0.2 has the closest SPR to DeepFool’s.
Therefore, in Table 2, we fix ϵ to 0.2 and compare FGSM and
DeepFool under different knowledge levels. The DeepFool
attack results in a classification accuracy of 8.13%, compared
to 12.82% for the FGSM attack. Even if we consider the
FGSM attack with a higher ϵ value, for instance ϵ = 0.25,
which gives rise to a lower SPR, DeepFool is still a stronger
attack.

Table 2 summarizes the SPR and accuracy under limited-
knowledge attacks A1-A4 (previously defined in Section
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Adversarial Scheme SPR (dB) Accuracy under Attack
FGSM with ϵ = 0.05 24.14 62.03%
FGSM with ϵ = 0.10 18.11 44.49%
FGSM with ϵ = 0.15 14.60 28.74%

DeepFool 12.12 8.13%
FGSM with ϵ = 0.2 12.10 12.82%
FGSM with ϵ = 0.25 10.17 10.97%

TABLE 1: Comparison between DeepFool and FGSM with
different ϵ values (white-box attack) using the protocol
dataset.

V.A). We observe that the FGSM attack becomes more
effective with more knowledge, as the defender’s accuracy
drops from 48.35% under attack A4 to 19.69% under at-
tack A1. The SPR under limited-knowledge FGSM attacks
remains the same because ϵ is fixed when generating the
FGSM perturbations. In the case of DeepFool, although an
attack with more knowledge is supposed to cause more harm,
this is not always the case. For example, DeepFool attack
A3 is more impactful than DeepFool attack A2, although
it has less knowledge of the defender. Moreover, the SPR
in DeepFool varies with knowledge levels since the attack
does not have an ϵ parameter that can be directly controlled.
While DeepFool’s perturbations force classification errors
at the defender, the attack is not guaranteed to be more
effective than FGSM, especially in the limited-knowledge
scenarios. Under limited knowledge, the difference between
estimated and actual classifiers may be amplified during the
iterations of the DeepFool algorithm. In attack A1, even
though we keep the same classifier structure for both attacker
and defender, the different seeds for training initialization
can still make the attacker’s network slightly different in
the final mapping function. As a result, the perturbation
generated based on the attacker’s classifier may not perform
as expected on the defender’s classifier. Attacks A2, A3, and
A4 are less effective than attack A1. This is expected given
that such attack scenarios consider less information about
the defender.

From the point of view of interference power, DeepFool-
based perturbations exhibit more fluctuations in their SPR.
Specifically, in attacks A2, A3, and A4, DeepFool perturba-
tions exhibit lower SPR than their FGSM counterparts but
are still less effective than FGSM in terms of degrading
the accuracy. One justification for this observation is that
DeepFool calculates the gradient changes for all the possi-
ble labels and chooses the shortest direction among these
labels to update the perturbation at each step. However, the
estimation of the boundary between different labels heavily
relies on the anticipated outcome of the defender’s classifier,
which is only partially known by the attacker. As a result, the
imperfect knowledge of the attacker can weaken DeepFool
more than FGSM.

We further consider the DeepFool for VT-CNN2 on RML
2016.10a dataset and show the limited-knowledge attacks
over all SNRs. As shown in Figure 11, DeepFool attack relies

Adversarial Scheme SPR (dB) Accuracy under Attack
DeepFool A4 20.00 76.97%
DeepFool A3 10.22 57.99%
DeepFool A2 11.41 61.87%
DeepFool A1 11.16 38.42%

FGSM A4 12.10 48.35%
FGSM A3 12.10 35.56%
FGSM A2 12.10 34.78%
FGSM A1 12.10 19.69%

TABLE 2: Comparison between DeepFool and FGSM with ϵ
= 0.2 (limited-knowledge attacks) using the protocol dataset.
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FIGURE 11: Classification accuracy vs. SNRs for VT-CNN2
using RML 2016.10a dataset under DeepFool and AWGN
attacks (ϵ = 0.001).

more on the information of the defender. Even DeepFool
attack is stronger than FGSM and PGD with ϵ = 0.001
under the white-box assumption, it becomes weaker with
imperfect knowledge. The attacker has significant knowledge
of the defender in attack A1. Nevertheless, the reduction
in performance is not as much as the white-box attack.
The limitation of the knowledge weakens the impact of
DeepFool. Even though, DeepFool can still outperform the
AWGN attack on a similar power level by 15% in the worst
situation (attack A4). We then show that DeepFool attack has
very low energy of the generated perturbation. The results of
different attack schemes tested under 16 dB are summarized
in Table 3. All these attacks can reduce the accuracy of
the defender’s classifier while maintaining the high SPR.
Such reduction changes are based on the knowledge level
of the attacker. When the attacker’s classifier performs more
similarly to the defender, the generated perturbations can be
more effective. Under the least-knowledge attack A4, the
attacker uses the RNN classifier to generate the perturbation
and applies it to the VT-CNN2 classifier on the defender
side. It still decreases the classification by approximately
20% with minimal perturbation energy (i.e., the SPR is still
high).

D. Impact of Synchronization
We evaluate the accuracy of the defender under intra- and
inter-window shifted perturbations to simulate the imperfect
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Adversarial Scheme SPR (dB) Accuracy under Attack
DeepFool A4 14.59 63.23%
DeepFool A3 8.34 47.17%
DeepFool A2 13.18 46.64%
DeepFool A1 15.65 43.70%

DeepFool white-box attack 15.74 17.32%

TABLE 3: Comparison between DeepFool attacks under
different knowledge levels using the modulation dataset.

synchronization. The results on the protocol dataset are
shown in Figure 12(a) and (b). Both intra- and inter-window
shifts weaken the strength of the FGSM attack; however,
the shifted FGSM attacks still degrade the performance
further than AWGN. The equivalent AWGN means that
the attacker transmits the AWGN noise instead of FGSM
perturbation, where AWGN has the same energy as the
FSGM attack under given ϵ. The intra-window shifted attack
can be weakened a lot even only has one sample step shift,
as shown in Figure 12(a). The shift between the signals and
perturbations can further reduce the attack performance until
the shift size reaches around 100 samples. Similarly, the
first several steps for the inter-window shift have a more
significant impact on the attack, as shown in Figure 12(b).
When the shift step achieves around 50 windows, the effect
of shifted attack starts to converge. In an actual attack, the
attacker cannot control such synchronizations; however, our
results can be used as the referring point to understand the
impact of the asynchronization and estimate the defender
accuracy for the attacker.

We further evaluate the impact of perturbation shifts on
the RML 2016.10a dataset. We train classifiers with the
data over whole SNRs and analyze the performance for
testing data under different SNRs. We consider testing data
with the highest SNR (18 dB) and use it as an example
scenario to show the impact of synchronization, and later
for completeness, and channel effect. Figure 12(d) and (e)
show the impact of synchronization for RML dataset. We
consider a smaller range of the sample shifts than the
protocol classification dataset because the window length
of the RML dataset is 128, other than 512. Similar to the
protocol classification dataset results, the first several steps
drop the attack strength a lot for the intra-window shift as
shown in Figure 12(d). The shifted perturbations perform
comparably when the shift step exceeds ten samples. The
FGSM attack with low ϵ (e.g., ϵ = 0.001) has a similar
effect as the equivalent AWGN attack when the intra-window
shift is greater than ten steps. For the inter-window attack
as shown in Figure 12(e), the effectiveness of the FGSM
attack is reduced even with one window shift. However,
the further shift does not degrade the attack more. This is
because the testing data in the RML 2016.10a dataset is
shuffled by default, and the impact of an inter-window shift
larger than one step is the same as a random-step shift. The
order of I/Q pairs is unknown, so the inter-window shifted
perturbations are similar to the shuffle. Overall, the FGSM

attack with larger ϵ suffers less for both the intra-window
and inter-window shifts.

E. Impact of Completeness
In an ideal attack, the attacker can continue to send the
streaming of perturbations that are superposed to the de-
fender’s signal. However, it can be stealthier if the attacker
sends the perturbation discontinuously. The impact of the
perturbation completeness for the protocol dataset is ex-
plored and summarized in Figure 12(c). The attack can still
be effective even after losing some perturbation samples,
especially when missing parts are less than 50. With more
perturbations missing, the attack becomes weaker. Neverthe-
less, the incomplete attack with 300 samples losing is still
more substantial than the equivalent AWGN attack (shown
as dashed lines above). Note that our full sample length is
512 for the protocol classification problem, indicating that
the AML attack with half perturbation interrupted is still
effective. The impact of the completeness for RML 2016.10a
dataset is summarized in Figure 12(f). Both the AWGN
and FGSM attacks are impaired due to truncation. The
impairment has a near-linear relationship with the number
of missing samples when the missing amount exceeds ten.
Even if the FGSM attack degrades with losing samples, it
can still be more powerful than the AWGN attack with the
equivalent energy.

F. Channel Impact
The efficacy of an AML attack depends on both the channel
type (e.g., Raleigh fading vs. AWGN) as well as channel
conditions. We assume that all three channels (Tx-attacker,
Tx-defender, and attacker-defender) are AWGN, and we
evaluate the effect of the channel conditions between the
attacker and defender. To do that, we first obtain the power of
the received (benign) signal at the input to the attacker based
on the power of the transmitted benign signal and the given
SNR value for the TX-attacker channel (SNRT−A). For the
protocol dataset, we set SNRT−A to 15 dB during training
and testing. For the RML 2016.10a dataset, AWGN is
already embedded in the signal at different SNRT−A values,
so during training we use the average of all the samples
in this dataset (over all SNRT−A values) to determine the
average power of the received benign signal. Testing of the
modulation classifier is done at SNRT−A = 18 dB (the
highest SNR in the RML dataset). For both protocol and
modulation classification, let β denote the ratio between the
(average) power of the incoming signal at the attacker and
the noise power of the attacker-defender channel. For a fixed
β, (hence, fixed noise power, En, of the attacker-defender
channel), we vary the power of the perturbations by varying
the PNR. Recall that the ‘N’ in the PNR refers to the AWGN
of the attacker-defender channel. Figure 13 below depicts
the classification accuracy versus PNR for different values
of β. It is clear from the figure that for a given β, the noise
of the attacker-defender channel impacts the effectiveness
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FIGURE 12: Impact of imperfect synchronization and incomplete sequences of perturbations: (a) Intra-window perturbation
shifts (protocol dataset), (b) inter-window perturbation shifts (protocol dataset), (c) incomplete-window perturbations
(protocol dataset), (d) intra-window perturbation shifts (RML 2016.10a dataset), (e) inter-window perturbation shifts (RML
2016.10a dataset), (f) incomplete-window perturbations (RML 2016.10a dataset).

of the attack. This can be observed for all values of β.
Another key observation is that for small to medium values
of β, the attack is still significant even at small PNR values.
For example, when β = 0 dB (very noisy attacker-defender
channel, relative to the power of the received benign signal)
and a PNR of −5 dB (perturbations power is 5 dB less than
attacker-defender noise power), the classification accuracy
is about 20% for both protocol and modulation classifiers.
Even with lower PNR values (e.g., −10 and −15 dB for the
protocol classifier), the attack is still significant.

For both the protocol and RML 2016.10a datasets, we
consider the β from 0 dB to 15 dB with a step size of 5 dB.
The defender’s accuracy reduces when PNR increases for all
values of β. When β is low, the channel noise between the
attacker and defender can degrade the classification accuracy
even with slight perturbations. Channel noise here can be
regarded as the traditional jamming attack. In Figure 13(a),
such noise makes the accuracy of the defender drop to around
70%. As the β increases, the channel condition improves,
and the defender’s accuracy also rises. For example, when
PNR is around −10 dB, the defender’s accuracy performs
better under larger β. As β increases, the channel noise
decreases. As shown in Figure 13(b), when β = 15 dB, the
defender has an accuracy of 80%, which aligns with the
observation under the benign data.

As previously mentioned, the authors in [29] modified the
FGSM attack and evaluated its performance under different
SNR values. Their study was conducted using the RML

β
β 
β 
β

(a) (b)

FIGURE 13: Accuracy of the defender classifier under
different PNRs when the power of channel noise is fixed.
(a) Protocol dataset with embedded AWGN noise (test
SNRT−A = 15 dB), (b) RML 2016.10a dataset with em-
bedded AWGN noise (test SNRT−A = 18 dB).

2016.10a dataset and the VT-CNN2 classifier, assuming an
AWGN channel and a white-box attack. In their results
(Figure 2 in [29]), the defender’s accuracy dropped to 0%
when SNR = 10 dB and PNR = 0 dB. Our results in Figure
13(b) show that the unmodified FGSM attack reduces the
defender’s accuracy to around 40% when β = 10 dB and
PNR = 0 dB. This implies that even the (unmodified) FGSM
algorithm can significantly reduce the defender’s accuracy,
although not to the level achieved by the ϵ adaption approach
in [29]. Our findings on FGSM are aligned with other
works, e.g., [31], which also showed the efficacy of the
original FGSM attack. Note that channel information may
be leveraged to design very effective (channel-dependent)
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AML attacks, as done in [32], [33]. However, even when
the technique used to generate the perturbations is channel-
agnostic (e.g., the classical FGSM), our results above show
that the attack is still impactful over a wide range of SNR
and SPR values.

It is important to note that different studies in the lit-
erature were conducted under different simulation settings;
some rooted in hardware experiments, while others consider
specific channel models and types of attacks (e.g., UAP
attacks). For instance, the study of channel effects in [32]–
[34] is based on a Rayleigh fading model, whereas our study
considers an AWGN channel. Intuitively, the success of an
attack depends on both the channel model (e.g., AWGN vs.
Rayleigh fading) as well as channel conditions. These dispar-
ities can lead to variations in the AML attack efficacy. For in-
stance, unmodified AML attacks might become less effective
in a fading channel; however, their potency increases if the
attacker and defender are in close proximity. Consequently, a
meaningful comparison necessitates applying a similar setup.

VIII. Defense Against Adversarial Attacks
In this section, we investigate several defense mechanisms
against AML attacks. First, we provide a summary of related
work on this topic.

A. Related Work on Defense Mechanisms
Recently, several defenses have been proposed against AML
attacks on DNN models [47]–[53]. Olowononi et al. [47]
presented an encryption mechanism to hide the DNN internal
weights, parameters, and training data from an adversary.
They also presented three techniques to improve the de-
fender’s robustness: input pre-processing, adversarial train-
ing, and post-processing. He et al. [48] evaluated adversarial
training, randomization, defensive distillation, and gradient
masking to defend against adversarial attacks. Adesina et
al. [49] presented statistical approaches to monitor metrics
such as the peak-to-average power ratio (PAPR), the distri-
bution of softmax outputs of the DNN classifier, and median
absolute deviation (MAD) of the data for adversarial signal
detection. They also evaluated the efficacy of adversarial
training and randomization to mitigate AML attacks. Of
the various defense mechanisms proposed in the literature,
adversarial training remains one of the most robust methods
[54], [55]. Moreover, some methods in [47] and [48] may
not be effective for broadcasted RF signals due to their
vulnerability to eavesdropping. Accordingly, we present a
novel adversarial training approach to improve the robustness
of protocol and modulation classifiers.

Several new defense mechanisms have recently been pro-
posed in the literature (e.g., [26], [45], [56]), but were
often countered by more potent attacks that are capable
of bypassing these defenses. In principle, certified defenses
(CD) ensures that a given classifier is robust to adversarial
perturbations as long as these perturbations are constrained
by a given bound. The authors in [57]–[59] proposed CD

mechanisms that offer robustness guarantees against norm-
bounded attacks. Recent research employs techniques like
convex outer approximation [57], semi-definite relaxation
[58], and differential privacy [59] to efficiently determine
upper bounds on the worst-case loss. Random smoothing, a
prevalent CD method [60], [61], introduces noise to input
data and employs statistical approaches to measure the
model’s resilience to perturbations and provide probabilistic
guarantees on its resistance to bounded perturbations. The
widespread adoption of CD stems from the simplicity and ef-
fectiveness of this approach across diverse models and input
variations. Lipschitz-based methods [62], [63] are variants
of CD that also gained attention. These methods center on
regulating the network’s Lipschitz constant — a metric of a
function’s sensitivity to input changes. By ensuring minimal
output variations in response to slight input perturbations,
these methods train networks to inherently maintain stability
and robustness. Despite the versatility of CD techniques
against various attacks, their practical use in the wireless
domain is limited because of the difficulty of establishing
a meaningful bound on the attacker’s perturbations, which
undermines the efficacy of these techniques.

B. Adversarial Training
Adversarial training [23], in which a network is trained on
adversarial examples, is one of the few defenses against
adversarial attacks that withstand strong attacks. As a result,
instead of updating the loss function based on a benign input
x, the new loss function at the trained defender classifier is
calculated based on both benign and adversarial inputs, as
follows:

L̃(x, y; θ) = γL(x, y; θ) + (1− γ)L(xadv, y; θ). (3)

The key idea behind this strategy is to increase the model’s
robustness by ensuring that the model predicts the same class
for legitimate and perturbed examples. Considering the same
attack generation method previously described: the defender
first trains a DNN, denoted as DNNnaive, using benign
data then the attacker steals DNN’s structure, including
all the weights and biases. In our defense mechanism, the
defender uses DNNnaive to develop its AML perturbations
and combines them with benign data to retrain its DNN.
The retraining dataset consists of the original and the self-
perturbed data, resulting in a data augmentation compared
to the DNNnaive training. The retrained DNN is denoted
by DNNdefense. To balance the impact between benign and
adversarial data (i.e., the losses for both types of data),
we set the sample number of both parts the same. As a
result, portion parameter γ is 0.5, and the retrained DNN
can have relatively good accuracy on both the benign and
the perturbed data.

One important aspect of adversarial training is setting the
parameters of the AML generator. For FGSM, this would
be the value of ϵ. First, we consider a scenario where
the defender uses a fixed value of ϵ, irrespective of the ϵ
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FIGURE 14: Classification accuracy when the defender’s
DNN is trained using benign or benign + AML data vs.
ϵ of the attacker’s FGSM perturbations. RML 2016.a dataset
with SNR = 16 dB.

used during the attack (testing) phase. Considering the RML
dataset and the VT-CNN2 network as a basis, we study the
classification accuracy of the defender’s DNN (DNNdefense)
in three scenarios: (1) DNNdefense is trained using benign data
(i.e., DNNdefense and DNNnaive are identical), (2) DNNdefense
is retrained using a combination of benign and AML data,
where the FGSM perturbations used for retraining are pro-
duced using ϵ = 0.005, and (3) DNNdefense is retrained using
a combination of benign and AML data, where the FGSM
perturbations used for retraining are produced using the same
ϵ using by the adversary during the test phase. Note that in
the second scenario, the choice of ϵ = 0.005 is triggered
by our interest in considering a reasonably small ϵ that
leads to high SPR values, i.e., stealth attacks. The third
scenario reflects the best-case performance of the defender,
as it requires the defender to learn the specific ϵ used by the
attacker, which is hard to obtain in a real attack.

Figure 14 shows the defender’s classification performance
for the three scenarios for different values ϵ used in the
attacker’s AML perturbations, i.e., the ϵ of the test dataset.
In scenario one (blue bars), the higher ϵ of the attacker’s
AML data, the stronger the attack, and, hence, the worse
the performance of the defender’s classifier. Scenario two
is presented in the orange bars. Interestingly, the inclusion
of AML perturbations as part of the defender’s training
dataset improves the defender’s classification performance
only when the value of ϵ used by the attacker is close
enough to the ϵ=0.005 used in the defender’s AML training
dataset (the accuracy increases from blue to orange bars).
To improve the performance under benign-only training
data, the defender need not exactly pinpoint the attacker’s
ϵ, i.e., a coarse estimate of ϵ is sufficient. For example,
the performance under scenario two is better than that of
scenario one when ϵ = 0.0025 and ϵ = 0.001. This is
because the ϵ in the FGSM attack only impacts the energy
of the perturbation. In other words, the perturbation vectors
generated under ϵ = 0.0025 and ϵ = 0.005 points in the same
direction but at different scales. The adversarial samples with
high ϵ help the DNN know the direction of the perturbations.
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FIGURE 15: Two-step structure for robust classification of
the received adversarial signals.

They can help improve the accuracy for lower ϵ by providing
the same perturbation direction. When ϵ of the defender’s
training set is significantly different from ϵ of the attacker’s
testing set, the performance in scenario two can be worse
than scenario one, i.e., the AML training data poisons the
original (benign) dataset. In scenario three, shown in green
bars, we assume that the defender and attacker use the same
value of ϵ. This is a strong assumption since it is hard for
the defender to know attacker’s ϵ in advance. However, the
results indicate that the classification performance can be
improved if the defender can estimate ϵ.

We build a two-step structure for robust classification even
under adversarial data. Figure 15 shows that the adversarial
signal detector first approximates the ϵ value of the received
signal and then assigns the signal to the corresponding mod-
ulation classifier. These classifiers are adversarially trained
with a specific ϵ to perform well when receiving the same ϵ
adversarial signals. We start with the design of the detector.
Different neural networks, including CNN and RNN, are
considered. We train the detector to predict the ϵ of the
received signal from one of four possible values, where ϵ ∈
{0, 0.001, 0.003, 0.005}. Figure 15 shows the LSTM network
that achieves the best performance with an accuracy of 72%.
The confusion matrix of the LSTM-based detector is shown
in Figure 16. Although there are incorrect classifications, the
misclassified are typically mostly drop in the adjacent values
of ϵ. If we consider the accuracy as the sum of correct and
adjacent labels, the average accuracy can achieve 96.75%. It
indicates the detector can reasonably estimate the ϵ of the
received signals.

Figure 17 compares the classification accuracy between
VT-CNN2 and our approach, where the solid lines represent
the testing accuracy for the VT-CNN2 and the dashed lines
are for the proposed two-step defense mechanism. When the
SNR is high, the accuracy of benign data is approximately
76%. This performance is lower than VT-CNN2, especially
when the SNR is from -10 to 10 dB. However, the slight
decrease in the performance from the adversarial information
is negligible compared to the increase in the accuracy of the
adversarial data. In other words, although adversarial training
slightly sacrifices some accuracy on benign data to defend
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FIGURE 16: Confusion matrix of the LSTM-based detector.

the attacks, the retrained model outperforms the original VT-
CNN2 across all adversarial perturbations. For example, VT-
CNN2 only achieves 10% accuracy when ϵ is high (e.g.,
ϵ = 0.005). In contrast, the adversarially trained model
achieves approximately 60% accuracy on adversarial data
with different values of ϵ. Overall, our structure combines
the benefit of all the classifiers in the second step and is
robust to all four adversarial signals we considered.

We study a defense mechanism that is based on training
the defender’s classifier using either FGSM- or Deepfool-
based perturbations, under DeepFool attacks. We summarize
the results in Figure 18. The black and blue plots show
the accuracy of the original VT-CNN2 modulation classifier,
while the grey, red, and orange plots are for the retrained VT-
CNN2 classifier and the proposed defense mechanism. It is
anticipated that training with FGSM perturbations but testing
it under DeepFool attacks yields a relatively lower accuracy
improvement than testing it under FGSM attacks. This is at-
tributed to the dissimilar nature of perturbations generated by
these two attacks. For SNR greater than 0 dB, the proposed
defense with FGSM-based adversarial training provides 8%
improvement in accuracy relative to the original VT-CNN2
classifier when the attacker uses DeepFool perturbations.
When we retrain the two-step defense mechanism with
DeepFool perturbations and test under DeepFool attacks, we
observe that the defender’s accuracy significantly increases
to 57% at high SNRs, as shown in the red plot. Similar to
the orange line (trained and tested under FGSM), the defense
mechanism’s accuracy greatly improves when training and
testing are done using the same attack type.

C. Autoencoder-based Defense
The authors in [50], [51] use an autoencoder before RF
classifier to mitigate the impact of additive perturbations.
We utilize the autoencoder-based defense mechanism as de-
scribed in [50], [51]. Specifically, the denoising autoencoder
(DA) architecture is chosen to be a fully connected DNN
with 256-128-64-128-256 neurons at each layer. Note this is
the same structure as Sahay et al. [50]. The DA was trained
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FIGURE 17: Comparison between VT-CNN2 and the pro-
posed ϵ prediction mechanism on classification accuracy vs.
testing SNRs with adversarial data using different ϵ. γ = 0
is used for adversarial training.

20 15 10 5 0 5 10 15
SNR for Test Data (dB)

10

20

30

40

50

60

70

80

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

VT-CNN2 under benign
VT-CNN2 under DeepFool
Proposed defense under FGSM, retrained with FGSM
Proposed defense under DeepFool, retrained with FGSM
Proposed defense under DeepFool, retrained with DeepFool

FIGURE 18: Evaluation of the proposed defense mechanism
under FGSM and DeepFool attacks for different SNRs,
when adversarial training is done using FGSM or DeepFool
perturbations.

to minimize the mean squared error over 100 epochs. At
evaluation time, the adversarial and benign signals are passed
through the DA and then passed through the modulation
classifier. Ideally, the DA would remove the adversarial
perturbations without causing degradation to the classifier’s
performance under benign input.

Figure 19(a) shows the amplitudes of the original and
DA-reconstructed waveform for the RML 2016.10a dataset,
respectively. Visually, the denoised signal in blue is similar
to the original signal in grey. This observation demonstrates
that the DA successfully reconstructs the input. Then, the
FGSM signals are passed to the DA using different values
of ϵ. As shown in Figure 19(b)-(d), the denoised signal (in
blue) is similar to the grey line when ϵ is small (0.001).
As ϵ increases, the reconstructed signal deviates further
from the original signal. The perturbation can have larger
amplitudes with larger ϵ values, which results in the benign
and adversarial signals deviating further. Unfortunately, the
DA fails to denoise data perfectly. The DA’s reconstruction
error shows that the approach is ineffective under large
perturbations.
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FIGURE 19: Examples of an FGSM perturbed and DA
reconstructed signal in the RML 2016.10a dataset for: (a)
ϵ = 0 (benign), (b) ϵ = 0.001, (c) ϵ = 0.003, and (d) ϵ =
0.005.
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FIGURE 20: Comparison between the proposed and
autoencoder-based defenses against FGSM attacks for vari-
ous testing SNRs and ϵ.

Figure 20 compares the DA defense and our proposed
defense under FGSM attacks. The DA defense improves the
defender’s accuracy when ϵ = 0.001 to 50% at high SNRs;
however, the defender’s accuracy degrades to near 10% as
ϵ increases. In contrast, our proposed approach outperforms
the DA method, and can improve the accuracy to more than
65% under attacks (except ϵ = 0, i.e., no attack). Although
the results in [50], [51] show the DA’s effectiveness, their
perturbations use small values of ϵ. Our results show that
the DA may not be a suitable defense mechanism for larger
ϵ.
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FIGURE 21: Comparison between the CNNs trained under
benign raw I/Q data and DFT transformed data on classifi-
cation accuracy vs. testing SNRs.

D. Ensemble-based Defense
We extend our evaluation to include an ensemble-based
defense approach. Inspired by [52], we train three DNN
models: a fully connected neural network (FCNN), a CNN,
and an RNN. Additionally, we consider both the original
time-domain I/Q data as well as a frequency-domain version
obtained using the discrete Fourier transform (DFT). Thus,
we end up with six trained classifiers: three DNNs trained
in the time domain and three DNNs trained in the frequency
domain. The outputs of six classifiers are averaged to form an
ensemble prediction, following the strategy outlined in [52].

While the authors of [52] demonstrated impressive accu-
racy for their classifier leveraging both time and frequency
representations, our observations show that the DNN classi-
fiers trained on frequency-domain transformed data do not
attain the same accuracy as the time-domain models. Figure
21 shows the CNN’s accuracy that is trained with I/Q and the
DFT data. The two classifiers have similar accuracy when
the SNR is less than −8 dB; however, the CNN trained with
I/Q data has better accuracy than their DFT counterpart as
the SNR increases.

A potential explanation for the disparities in our findings
and those of [52] could stem from differences in the datasets.
Specifically, the datasets employed in [52] include only four
modulation types. In contrast, our study of modulation clas-
sification is based on the full RML 2016.10a dataset, which
consists of 11 modulation types, including two amplitude
modulation schemes (AM-DSB and AM-SSB). These two
modulation schemes were not a part of the dataset used
in [52]. Applying DFT to amplitude modulation data can
potentially lead to the loss of crucial temporal features,
resulting in lower accuracy for a DFT-trained classifier com-
pared to a classifier trained on raw (time-domain) I/Q data.
Furthermore, irrespective of whether the data are processed
in the time or frequency domain, including additional classes
in the dataset adds complexity to the decision boundary,
which can lead to class overlap and reduction in accuracy.
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FIGURE 22: Comparison between the proposed defense
mechanism and ensemble-based defense on classification
accuracy vs. testing SNRs with adversarial data using ϵ =
0.001.

Figure 22 compares our defense to the ensemble-based
approach. The ensemble strategy surpasses our defense (de-
picted by solid lines) when the SNR ranges from −10 to 5
dB. The trend is reversed for SNR > 5 dB. The ensemble
defense’s accuracy is nearly 50% in high SNR scenarios
under FGSM attacks with ϵ = 0.001. Our defense exhibits
an accuracy exceeding 60% in such scenarios, establishing
a more effective safeguard than the ensemble approach for
these experiments.

IX. Conclusions
Machine learning, particularly deep learning, plays an in-
creasingly important role in wireless communications and
can achieve state-of-the-art performances without hand-
crafted features. While these DNNs achieve satisfactory
performance, they are also vulnerable to adversarial pertur-
bations, limiting the classifiers’ robustness. Most of these
perturbations are undetectable at the input to the deep learn-
ing classifier; however, the classifier’s output has significant
changes. Thus, the strength of the attack is strong if the
performance goes down and the SPR keeps high, which also
makes the perturbation hard to detect.

This work studied the vulnerability of DNN-based classi-
fiers to AML-based jamming attacks for signal classification
datasets. We considered two different signal classification
types, namely, protocol and modulation classification. By
adding different types of AML-based perturbations while
maintaining a relatively high SPR level, all DNNs signif-
icantly reduce the classification accuracy. We considered
various adversarial approaches, including the FGSM, PGD,
and DeepFool attacks. The decrease in performance when
the adversarial signals have a high SPR, further shows that
highly successful attacks can be challenging to detect [64].

The results show that these attacks can negatively im-
pact the defender’s accuracy. We observed similar trends
on the DNN-based classifier for the protocol and modula-
tion datasets. The effectiveness of the AML perturbations

depends on the amount of information the adversary has
regarding the structure and training dataset of the defender’s
classifier. Accordingly, we studied different attack scenarios
with varying levels of knowledge. In one extreme, an attacker
with full knowledge of the defender (white-box attack)
significantly degrades the defender’s accuracy. Compared
to traditional jamming, where the attacker transmits only
AWGN noise, the proposed AML-based attack requires
much less transmit power to mislead the classifiers.

We also observed that DNNs are vulnerable to these
attacks even if the attacker has imperfect synchronization,
incomplete sequence, or under the noisy channel, of both the
protocol and modulation classification. We generate attacks
under these more practical cases and evaluate the impact
of attacks of different synchronization, sequence length, and
channel noise levels. We show that these imperfect attacks
can still effectively drop the defender’s accuracy in a certain
imperfection range.

Finally, we propose the counter measurements for AML
attacks and address one limitation of adversarial training.
The proposed mechanism splits the defense into two steps:
ϵ estimation and classifier retraining. In the first step, the ϵ
estimator accurately estimates ϵ, and the adversarial training
in the second step can counter a more specific attack. The
proposed structure combines the benefit of all the classifiers
in the second step. As a result, the two-step defense shows
better robustness and effectively improves the defender’s
accuracy under different budget settings of attacks compared
to the single-classifier retraining.
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