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Abstract—Accurate detection of the Physical Cell Identity (PCI)
is critical for rapid synchronization and connection establishment
in 5G New Radio (5G-NR) systems. This paper introduces a deep
learning-based approach for PCI classification, aiming to mitigate
the computational complexity associated with traditional methods
that rely on decoding the Synchronization Signal Block (SSB).
Our approach processes only time-domain baseband samples of
the downlink signal, arranged in fixed-length windows. These
windows are inputted into a pre-trained Convolutional Neural
Network (CNN), which classifies the samples into one of several
known PCI values (representing nearby cells) or into an ‘other’
category (representing all non-nearby cells, as well as windows that
do not contain SSB samples). Because PCI-related information
is contained only in the SSB symbols of a frame, it is possible
for an input window to include no or a few SSB samples.
Accordingly, in labeling the training set, we use a threshold
Ttrain on the fraction of the samples within a window: if Ttrain

or more of the samples belong to an SSB of cell with a target
PCI value, the true label for that window is set to that PCI
value; otherwise, it is set to ‘other.’ A separate threshold Ttest

is used for labeling the test windows. We also study another
labeling mechanism whereby only samples of the third OFDM
symbol in an SSB (which contains the Secondary Synchronization
Signal) is used to determine the label. Our analysis considers
two commonly used SSB formats that correspond to 15 and 30
kHz subcarrier spacings, respectively. Extensive simulations are
conducted which reveal that the proposed classifier can reliably
(above 98%) identify the PCI value of a captured signal even
under Signal-to-Noise Ratio (SNR) values as low as −10 dB. This
performance comes with a significant reduction in computational
complexity as it bypasses the need for traditional SSB decoding
procedures used for PCI estimation in 5G networks.

Index Terms—Physical cell identity, 5G-NR, deep learning,
synchronization signal block, PSS, SSS.

I. INTRODUCTION

THE advent of 5G New Radio (5G-NR) heralds a new
era in wireless communication, offering unparalleled data

speeds, minimal latency, and extensive machine-type communi-
cations [1], [2]. The synchronization process is an integral com-
ponent of 5G systems, as it ensures seamless initial discovery
and reliable communication between User Equipment (UE) and
Base Stations (BS) [3]–[6]. It is used by the UE to acquire the
Timing Offset (TO) and the Carrier Frequency Offset (CFO),
as well as retrieving the Physical Cell Identifier (PCI) [4], [7].
The PCI uniquely identifies a cell within the network, enabling
the UE to connect to the appropriate cell. Precise identification
of PCI is crucial for the synchronization mechanism, signif-
icantly influencing network performance, e.g., reducing error

probabilities during initial access, minimizing interference, and
facilitating handovers, thereby enhancing the overall user ex-
perience [8].

Machine Learning (ML) plays an important role in 5G-
NR, enabling dynamic spectrum sharing, performance enhance-
ment in coexistence scenarios, and fostering advancements
in areas like adaptive beamforming [9], resource allocation,
interference management, predictive analytics, and network
optimization [10], [11]. This paper exploits ML for estimating
the PCI, bypassing the conventional approaches for synchro-
nization which rely on signal decoding. This strategy leads to
a significant reduction in complexity and opens the door for
integrating ML-based PCI detection in various use cases such as
smart repeaters, SSB-based passive coherent location RADAR
systems, UAV detection, and others.

Cell search in the 5G system requires decoding the Syn-
chronization Signal Blocks (SSBs) [12], [13]. Using the Global
Synchronization Channel Number (GSCN) within a specified
frequency band, a UE executes a cell search by detecting both
the Primary Synchronization Signal (PSS) and the Secondary
Synchronization Signal (SSS) [14]. SSB consists of the PSS
and SSS along with the Physical Broadcast Channel (PBCH)
[6], [15], [16]. PSS in 5G-NR utilizes one of three pre-defined
m-sequences, each with a length of 127, transmitted on the first
OFDM symbol of the SSB. It assists in determining the physical
layer identity groups and facilitates initial synchronization and
symbol-level time alignment [6]. The SSS is used to identify
the specific cell within the identified PSS group. There are
336 possible sequences. Combination of these two signals
(PSS identifying the broader group and SSS pinpointing the
exact cell within that group) enables precise calculation of
the PCI [17]. This calculation, integral to the UE’s ability
to differentiate between various network cells, is essential to
maintain effective communication and network coherence in a
dynamic environment of 5G connectivity.

Typically, PCI detection occurs in tandem with the syn-
chronization process. The algorithm devised for PCI detection,
detailed in [18], relies on estimating the CFO and SSS se-
quence. This estimation is achieved by finding the maximum
correlation between the received signal (after frequency offset
compensation) and all possible SSS sequences. In [6], a timing
synchronization algorithm based on PSS was proposed which
incorporates an enhanced coarse synchronization method using
Fourier transform with a fine synchronization approach based



on the triple auto-correlation algorithm. However, this comes at
the cost of higher computational complexity, twice as much as
the conventional approach. Improved PCI detection probability
through precoding vector switching transmit diversity and re-
ceive diversity was proposed in [19]. It was shown that receive
diversity with up to four antennas significantly improves PSS
and SSS sequence detection, and boosts the PCI detection prob-
ability in high Signal-to-Noise Ratio (SNR) regions. Another
approach [5] utilized quasi-omni pseudo-random sounding
beams and a novel signal processing algorithm for initial cell
discovery, synchronization, and fine-resolution beam training.
This approach relied on energy detection for initial access,
outperforming directional initial access in the cell discovery
rate. In [20], a deep-learning-based initial access method was
introduced for millimeter-wave MIMO systems. It employed
a Convolutional Neural Network (CNN) for enhanced PSS
detection. However, the approach requires preprocessing the
received signal using Fast Fourier Transform, followed by
network training, resulting in higher computational complexity
than conventional approaches.

Traditional PCI estimation processes rely predominantly on
SSB decoding, which involves high computational complexity
due to intensive correlation operations on the receiving end. In
this paper, we introduce a CNN and Convolutional Long-Short-
Term Memory (ConvLSTM) architecture for PCI detection in a
5G-NR network using only time-domain samples, i.e., prior to
FFT, bypassing the SSB decoding stage. It substantially reduces
computational complexity compared to traditional methods and
effectively retrieves the PCI value from the received signal,
even in the presence of a larger frequency offset. Given
LTE’s simpler synchronization architecture, our PCI estima-
tion approach is also well-suited for LTE systems. The main
contributions of the paper are as follows:

• We create a comprehensive dataset of 5G-NR signal
waveforms using MATLAB’s ‘Communication Toolbox’
and ‘5G Toolbox’. The dataset features 12 distinct PCIs
(99 to 110) with varying sector and group IDs and two
SSB formats (Case-A and Case-B).

• Two deep learning classifiers (CNN and ConvLSTM) are
developed for PCI classification. Focusing on the less
complex yet efficient CNN architecture, we achieve strong
PCI classification performance across SNR values ranging
from -10 to 0 dB.

• We continue to evaluate the trained model’s performance
with the received signal incorporating CFO, showcasing
its capability to handle real-world signal imperfections.

• Finally, our deep learning-based approach is compared
with the traditional methods that decode the SSB from
the baseband signals, revealing a significant advantage
in terms of computational complexity with the CNN
approach.

The rest of the paper is organized as follows. In Section II,
we start with the background of the synchronization process in
5G systems. We also explain the conventional approach of PCI
detection. Section III introduces the CNN model, dataset gen-
eration, and proposed PCI estimation procedure. Simulation-

Fig. 1. Structure of an SSB in 5G-NR.

Fig. 2. Classical procedure for PCI estimation.

based performance evaluation of the proposed approach is
provided in Section IV. Finally, Section V concludes this paper.

II. PRELIMINARIES: SYNCHRONIZATION PROCESS IN
5G-NR

A. Synchronization Signal Block (SSB)

The synchronization procedure relies on periodic transmis-
sion of SSBs by a gNB (gNodeB). In contrast to LTE, the
gNB transmits SSB in intermittent bursts with periodicities
of 5, 10, 20, 40, 80, and 160 ms, depending on the specific
configuration of the network (20ms is the default period). In
5G-NR, a synchronization signal burst (SS burst) is a set of
SSBs within a beam-sweep. Each SSB within an SS burst is
assigned a distinctive identifier known as the SSB index, which
is transmitted through a dedicated beam in a specific direction
in the time domain. A UE may only detect and read a single
SSB from a particular beam direction without considering other
SSBs transmitted from the same cell. Fig. 1 illustrates the
structure of an SSB burst transmission pattern. In the time
domain, an SSB consists of four OFDM symbols that are each
mapped to 240 contiguous subcarriers in the frequency domain.
Synchronization signals (PSS and SSS) are in the first and



TABLE I
SSB TIME-DOMAIN RESOURCE ALLOCATION

Indices of OFDM starting symbols of the candidate SSBs
Frequency Range - 1 Frequency Range - 2

SCS
of SSB

OFDM Symbols
Position (fc ≤ 3 GHz) (3 ≤ fc ≤ 6) GHz SCS

of SSB
OFDM Symbols

Position (fc ≥ 6 GHz)

Case-A
15 kHz {2, 8}+14n n = 0, 1

{2, 8, 16, 22}
n = 0, 1, 2, 3

{2, 8, 16, 22, 30, 36, 44, 50}
Case-D
120 kHz {4, 8, 16, 20}+28n

n = 0, 1, 2, 3, 5, 6, 7, 8, 10,
11, 12, 13, 15, 16, 17, 18
{4, 8, 16, ...512, 520, 524}

Case-B
30 kHz {4, 8, 16, 20}+ 28n n = 0

{4, 8, 16, 20}
n = 0, 1

{4, 8, 16, 20, 32, 36, 44, 48}
Case-E
240 kHz

{8, 12, 16, 20,
32, 36, 40, 44}+56n

n = 0, 1, 2, 3, 5, 6, 7, 8
{8, 12, 16, ...484, 488, 492}

Case-C
30 kHz {2, 8}+14n n = 0, 1

{2, 8, 16, 22}
n = 0, 1, 2, 3

{2, 8, 16, 22, 30, 36, 44, 50}

third OFDM symbols. The Sub-Carrier Spacing (SCS) can be
different than the SCS of a carrier for faster synchronization
[16]. Different SSB transmission patterns, based on the SCS
of SSB, are observed in time-domain, with flexibility in their
frequency domain placement. Table I illustrates all possible
SSB burst patterns, specifying the number of SSBs within a
burst and the starting OFDM symbol position of these SSBs
for FR1 and FR2 of 5G-NR.

B. Primary and Secondary Synchronization Signals

PSS and SSS play crucial roles in synchronizing a UE to
a base station. The PSS is used to identify frame boundary
and detect the cell ID sector, N (2)

ID . It is composed of one
of three possible 127-symbol m-sequences [17]. One of these
sequences is strategically positioned on the first symbol of each
SSB, spanning 127 subcarriers. The SSS is selected from 336
distinct 127-symbol gold sequences, and is positioned on the
third symbol of each SSB. The structure of these 336 gold
sequences is provided in [17].

5G-NR supports 1008 unique Cell IDs, systematically orga-
nized into 336 groups. Each group is defined by a ‘Cell ID
Group’ (N (1)

ID , ranging from 0 to 335) and further divided into
three sectors, identified by the ‘Cell ID Sector’ (N (2)

ID , taking
values 0, 1, or 2). UEs discern N (2)

ID from the PSS and N (1)
ID

from the SSS, leading to the calculation of the primary cell
(PCI) as: N cell

ID = 3N (1)
ID + N (2)

ID . This identification approach
bears similarity to that of 4G networks. However, it differs from
4G in the specific attributes and the generation patterns of the
synchronization signal sequences. These differences are pivotal
in enhancing the effectiveness of the 5G network, particularly
in terms of the speed and accuracy of cell detection.

C. Classical Synchronization Procedure and PCI Estimation

In 5G-NR, the PCI detection process involves several key
steps, as shown in Fig. 2. Initially, the receiver identifies the
OFDM symbol timing and extracts the PSS sequence through
cross-correlation of the received signal and each of the three
reference PSS sequences. Following frequency offset estimation
and correction, the receiver performs OFDM demodulation and
extracts the resource elements corresponding to the SSS from
the received grid. It then correlates these elements with each
possible locally generated SSS sequence to determine N (1)

ID . The
indices of the strongest PSS and SSS sequences are combined

TABLE II
PARAMETERS USED TO GENERATE 5G TRACES

Parameters Value
Channel Bandwidth 20 MHz
Frequency Range FR1
Numerology 0, 1
# of Subframes 10
# of Resource Block 106
SCS of SSB Case-A & Case-B
PCI ID 99, 100, ..., 110
SSB Burst Periodicity (Training) 5 msec
SSB Burst Periodicity (Testing) 20 msec
SNR (dB) 0,−2,−4,−6,−8,−10

to determine the PCI, which is essential for the demodulation
reference signal (DM-RS) and PBCH processing.

III. PROPOSED PCI DETECTION APPROACH

A. Dataset Description

The 5G-NR signal waveforms are generated using MAT-
LAB’s ‘Communication Toolbox’ and ‘5G Toolbox’. These
toolboxes enable the specification of key signal attributes such
as baseband I and Q values, channel bandwidth, modulation,
SCS, and allocated resource blocks. Leveraging these defined
features, we simulate diverse waveforms for 5G-NR systems
across various parameter configurations outlined in Table II
in accordance with standard specifications. Amid the array of
potential features, particular emphasis is placed on the baseband
I/Q samples at the receiver, augmented with noise, serving as
the input for the classifier. These I/Q samples, accessible prior
to signal decoding, offer a good representation of the actual
waveform.

In this study, we explore the impact of two distinct SCS
formats, ‘Case-A’ and ‘Case-B,’ within the context of SSB.
Within each case, we investigate two variants of SSB burst pe-
riodicities, specifically 5ms and 20ms (default periodicity). By
leveraging these parameters, we generate traces for 12 distinct
PCIs ranging from 99 to 110, incorporating different sector
and group IDs. Given the pool of 1008 possible PCIs resulting
from PSS and SSS combinations, we strategically aim to curate
this subset, which encapsulates the full spectrum of possible
combinations, thus enabling a comprehensive assessment of the
resilience of our PCI detection methodology.



Fig. 3. Architecture of the proposed CNN model for PCI classification.

Fig. 4. F1-score comparison between CNN and ConvLSTM at different SNR
values considering ‘Case-A’ SSB format.

Each PCI was meticulously analyzed with respect to a
specific SSB Burst periodicity and one of the SCS formats,
resulting in the generation of 300 individual traces per com-
bination. Consequently, our research endeavors yield a com-
prehensive dataset comprising 14, 400 traces with 10 frames
in each, capturing the intricacies and variations across the
investigated parameters. The dataset exhibits diversity through
the incorporation of varying payloads across the traces. Channel
randomization, utilizing the AWGN channel, is applied to each
of these traces. The traces for each PCI are further catego-
rized into 6-SNR values after performing channel realizations.
Each trace realization comprises 3, 072, 000 I/Q pairs, with
each OFDM symbol corresponding to 2, 192 I/Q pairs for the
Case-A format of SSB and 1, 097 I/Q pairs for the Case-B
configuration.

B. Classifier Design

Recent advances in deep learning demonstrated the efficacy
of CNNs and ConvLSTM networks in capturing complex data
patterns in wireless systems [20]–[23]. This section provides
a comparative analysis of these two architectures, focusing on
their application in PCI classification. CNNs are known for
their effectiveness in processing spatial data through hierar-
chical feature extraction. Their architecture, characterized by
convolutional layers, activation functions, pooling layers, and
fully connected layers, is well-suited for tasks that involve

TABLE III
HYPER-PARAMETERS FOR PROPOSED PCI CLASSIFIER

Parameters Value
Max Training Epochs 10
Initial Learning Rate 0.2
Learn Rate Schedule Piecewise
Learn Rate Drop-Factor 0.8
Learn Rate Drop Period 7
Batch Size 128
Filter Size [1, 16]
Optimizer Stochastic gradient descent with momentum
Activation Function ReLU
Loss Categorical Cross-entropy

identifying patterns and features in images or other grid-
like structures. Our proposed CNN model, shown in Fig. 3,
consists of six convolutional layers, each coupled with batch
normalization, ReLU activation, and max pooling. Noteworthy
is the replacement of the traditional max pooling layer with
an average pooling layer in the final convolutional layer,
thereby introducing a nuanced method for feature aggregation.
SoftMax activation function is used in the output layer of the
model, thereby giving probabilistic class prediction. The hyper-
parameters of this CNN classifier are summarized in Table III.

On the other hand, ConvLSTM networks extend CNNs’
capabilities by incorporating LSTM units to address both spatial
and temporal dependencies, making them particularly powerful
for sequential data where temporal dynamics are important to
capture. The proposed architecture of ConvLSTM used in our
work integrates the same CNN structure previously discussed
but adds an LSTM layer to enhance the model’s ability to
handle classification tasks. Following the convolutional block,
the ConvLSTM model employs average pooling to aggregate
global features, which are then flattened. An LSTM layer with
256 hidden units is subsequently used to capture temporal
dependencies within these features. Combining the strengths
of convolutional and sequential processing, the architecture
achieves robust PCI classification performance.

Fig. 4 presents an F1-score comparison between CNN and
ConvLSTM models for PCI classification across different SNR
(−10 to 0 dB) levels. Surprisingly, the two models exhibit
comparable performance except at SNR = −10 dB, where
ConvLSTM shows a marginally superior performance. The
CNN model offers a clear advantage in computational efficiency



over the ConvLSTM due to its simpler architecture. Given
our emphasis on minimizing the computational complexity
of traditional PCI detection methods, CNN’s efficiency and
straightforward design make it the preferred choice for further
analysis.

C. Window Labeling Strategy

To perform PCI classification, we arrange the time-domain
baseband I/Q samples of the downlink signal in fixed-length
windows. During the training process, we allow the windows
to overlap by adjusting the stride of the sliding window. In the
window labeling process, we explore two approaches. The first
approach labels a window based on the percentages of samples
that fully or partially belong to SSB, spanning four OFDM
symbols. The second approach focuses on a specific segment
of the SSB, considering solely the OFDM symbol that contains
the SSS. Window labeling depends on a threshold value: Ttrain

and Ttest for the training and testing phase, respectively. This
threshold indicates the percentage of I/Q pairs associated with
the SSB or SSS for the two approaches, respectively. If an
I/Q sample within a window corresponds to the SSB/SSS of
a particular PCI and the percentage of such samples is greater
than or equal to Ttrain, the window is labeled with that PCI
value. Otherwise, it is labeled as ‘Other’. During the training
phase, we set Ttrain = 100%, and our observations indicate that
the model exhibits accurate window classification performance
during testing for Ttest = 50% and 100%. As mentioned above,
two types of SSB burst periodicity, 5 ms and 20 ms (default
periodicity), are considered. During the training phase, we focus
solely on the 5 ms periodicity due to the higher concentration
of SS blocks in each trace. However, we maintain the default
20 ms SSB burst periodicity during testing.

IV. RESULTS AND DISCUSSION

A. Impact of Model Depth

This segment presents the rationale behind our selection of a
six-layer CNN architecture. Our analysis assesses the model’s
efficacy by selectively focusing on a subset of training and
test windows, where all samples are uniquely associated with
the third OFDM symbol of an SSB (‘Case-A’). The outcomes
are succinctly illustrated in Fig. 5, wherein we deploy CNN
configurations of varying depths. Our analysis reveals that
CNN architecture comprising six layers significantly outper-
forms alternative configurations and strikes a balance between
model complexity and computational efficiency. We optimize
the hyper-parameters specifically for the 6-layered CNN model,
which could be a plausible explanation for the observed supe-
rior performance. The consistent outperformance of precision,
recall, and F1 scores, particularly for lower SNR, reinforces
our selection of the 6-layered CNN model.

B. SNR Impact on Proposed Model’s Performance

We explore two distinct strategies for training the model
in the context of SNR selection using the ‘Case-A’ SSB
format. Firstly, our training dataset encompasses a range of

(a)

(b)

(c)
Fig. 5. Impact of convolutional layers on precision, recall, and F1-score for
PCI classification considering different SNRs.

SNR values, where the SNR values (in dB) are in the set,
S = {−10, −8, −6, −4, −2, 0}, providing a comprehensive
representation of noise levels. Subsequently, our second ap-
proach solely incorporates traces corresponding to the lowest
SNR, −10 dB. Both the training and testing datasets include
windows containing SSB samples, as well as those without
SSB samples, labeled as ‘Other.’ During model evaluation for
both cases, testing traces contain the entire range of SNR
values within our predefined set, S. As shown in Table IV,
training with a dataset covering an SNR range from −10



TABLE IV
PCI DETECTION ACCURACY AT DIFFERENT SNRS

Inference
SNR
(dB)

Without
Decision Threshold

With
Decision Threshold

(α = 95%)
All SNRs

(dB)
Lowest SNR

(dB)
All SNRs

(dB)
Lowest SNR

(dB)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Window
Removal

(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Window
Removal

(%)
0 100.00 100.00 100.00 74.44 99.90 84.89 100.00 100.00 100.00 0.21 95.92 99.99 97.87 1.45

−2 99.86 100.00 99.93 79.07 99.92 87.90 100.00 100.00 100.00 0.45 98.61 100.00 99.29 1.62
−4 97.74 99.56 98.63 81.62 99.86 89.60 99.85 100.00 99.93 3.91 99.43 100.00 99.71 2.24
−6 93.75 95.27 94.44 81.66 99.29 89.32 99.91 99.43 99.67 19.51 99.62 100.00 99.81 8.24
−8 81.47 75.24 77.87 79.21 87.57 82.97 98.64 89.46 93.72 43.86 99.44 96.71 98.05 32.31
−10 66.10 47.86 53.97 71.25 61.00 65.16 96.15 51.01 64.28 58.05 97.04 70.52 80.92 56.58

to 0 dB generally yields improved performance compared to
training solely with the dataset of SNR = −10 dB, regard-
less of the decision threshold α. This is because the wider
SNR range provides a more nuanced representation of varying
noise conditions, enhancing the model’s ability to generalize
across diverse scenarios. However, this expanded range also
increases training time and computational demands due to the
larger dataset. Our findings indicate that, without the decision
threshold, the first approach in which training traces cover the
SNR range from 0 to −10 dB performs better. Considering
the decision threshold, α = 95%, the CNN model trained
exclusively on traces of SNR=−10 dB delivers performance
on par with models trained across all SNRs. The recall value
indicates that all the labeled windows are correctly identified in
both cases except at SNR=−10 dB. When we train our model
solely with the lowest SNR, it tends to misclassify windows
labeled as ‘Other,’ especially windows from the traces with
high SNR. However, when we set the α as 95%, the proposed
approach performs efficiently across a range of SNRs, including
extremely low SNR levels. When the decision threshold is
applied, a significant proportion of windows labeled with their
respective PCIs are excluded: 32.31% and 56.58% for SNRs of
−8 dB and −10 dB, respectively which is less than the alternate
approach. Our trained model achieves perfect classification
accuracy for SNR values above 0 dB. Therefore, we focus
our analysis on the more challenging SNR range from −10
to 0 dB. Consequently, we advocate focusing on training data
comprising solely the lowest SNR, as it yields comparable per-
formance over large datasets, effectively balancing performance
with limited resources.

C. Comparison of Complete SSB vs. Partial SSB

In this section, we evaluate the CNN model under two
different procedures for labeling the input windows: The first
method relies on the samples of the entire synchronization
signal block (‘Case-A’) for labeling the window, whereas the
second method uses only the samples of the third OFDM
symbol in an SSB (which contains the SSS). In this analysis,
we consider a subset of the training and test windows by
considering only those windows whose 100% of their samples
belong to an SSB for the first approach or to the third OFDM
symbol of an SSB for the second one i.e., Ttrain = Ttest = 100%.

TABLE V
PCI DETECTION ACCURACY FOR

TWO LABELING APPROACHES

Inference
SNR
(dB)

Complete
SSB

3rd OFDM symbol
of SSB

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

0 99.65 99.65 99.65 100.00 100.00 100.00
−2 96.82 96.82 96.82 100.00 100.00 100.00
−4 88.19 88.20 88.17 100.00 100.00 100.00
−6 76.45 76.08 76.19 100.00 100.00 100.00
−8 63.47 62.61 62.81 99.56 99.56 99.56
−10 49.20 48.05 48.17 96.19 96.17 96.17

TABLE VI
PCI DETECTION CONSIDERING

CASE-B SSB FORMAT

Inference
SNR
(dB)

without
Decision Threshold

with
Decision Threshold (α = 95%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

0 84.75 99.95 91.44 93.17 99.98 96.37
−2 87.25 99.96 93.02 94.76 99.98 97.26
−4 89.10 99.73 93.97 97.59 99.99 98.76
−6 90.11 97.67 93.63 98.78 99.29 99.03
−8 92.16 86.81 89.27 99.53 94.18 96.75
−10 85.40 59.34 68.89 98.71 63.22 75.31

We aim to determine which component - SSB or SSS - offers
superior performance in PCI detection, excluding the windows
labeled as ‘Others,’ and a comparative analysis of performance
between the two methodologies is delineated in Table V. It
is discernible from the results that incorporating the third
OFDM symbol while training the model, the PCI detection
approach demonstrates greater resilience. In extremely low
SNR scenarios, the effectiveness of PCI detection deteriorates
significantly when utilizing the entire SSB for training. One
contributing factor could be the first OFDM symbol of SSB
where PSS is mapped, as it remains unchanged for one-third
of all possible PCI values (0 to 1007). Conversely, the third
OFDM symbol, where the SSS is, exhibits uniqueness for each
PCI. This distinctiveness underpins the superior performance
of the model, even under challenging low SNR conditions.
Impressively, it maintains a precision of 96% even at an
SNR=−10dB.



(a)

(b)

(c)
Fig. 6. PCI classification performance vs. number of PCIs in the training
datasets at different SNR values considering ‘Case-A’- SSB format and decision
threshold, α = 95%.

D. Performance Evaluation for Different PCI Sets

In order to find the robustness of our PCI detection approach,
we investigate the model’s performance by varying the number
of PCIs in the training dataset. The number varies in the set is
{1, 3, 6, 9, 12}. The model’s performance is tested using all
12 PCIs. We consider the full set of training and test windows
(windows belonging to the third OFDM symbol of an SSB and
windows that do not). We set Ttrain = 100% and Ttest = 50%.
Fig. 6 demonstrates a high precision score for all sets. When we

TABLE VII
PCI DETECTION ACCURACY FOR

JOINT TRAINING OF TWO SSB FORMATS

Inference SNR
(dB)

Training Traces Considering
Different SSB Formats Jointly
Precision

(%)
Recall
(%)

F1-Score
(%)

0 88.70 88.21 85.65
−2 90.10 81.91 81.17
−4 91.42 74.06 74.30
−6 91.08 68.15 69.71
−8 87.78 56.05 62.99
−10 73.27 31.28 39.20

train the model with just one PCI, its detection ability is lower
than when we train it with 12 PCIs. However, as the number of
PCIs increases, the recall performance decreases significantly
at SNR = −10 dB. Apart from this, the model works effectively
for all other SNR conditions. The main takeaway is that if a
model is designed to spot a specific number of PCIs, it can do
so accurately without knowing about any other PCIs nearby in
a network.

E. Analysis of Different SSB Formats

All the earlier analyses are for only one type of SSB format
(Case-A). We explore the capability of our model by training
it with another SSB format, ‘Case-B,’ and six different PCIs.
The PCI detection ability is tabularized in Table VI in terms
of precision, recall, and F1 score. The results clearly show that
the model trained on traces having ‘Case-B’ format excels at
detecting PCI. Expanding on our progress, we have taken a
further step by training the model with traces from two distinct
SSB formats to see how it performs collectively. It prepares
the classifier for scenarios where it needs to handle PCIs with
varying SSB formats. This investigation considers Ttrain = 100%
for training and Ttest = 50% for testing. Analysis from Table VII
reveals that the model yields commendable performance but not
as the scenarios exclusively addressing a single SSB format.
We consider six PCI values (99 to 104) for two distinct SSB
formats (total of 12 classes). Similar to the scenario depicted in
Fig. 6, we noticed a notable drop in recall performance at SNR
of −10 dB when dealing with a larger class (12 PCIs). The
reason for a marginal reduction in precision is that the model
occasionally misclassifies cases where the PCI is same, but the
SCS of SSB differs.

F. Frequency Offset Analysis

A critical challenge in 5G NR networks is the impact of
CFO on received signals. Frequency offset often originates
from oscillator inaccuracies and environmental factors, such as
temperature, which can shift the transmission carrier frequency.
To support high data rates in 5G systems for vehicular speeds
up to 500 km/h, Doppler shifts can induce CFOs up to 2 kHz
at the 4.2 GHz band−corresponds to 13% of the subcarrier
spacing [24]. We consider a testing dataset with four CFO
values: 0, 15, 30, and 45 kHz to evaluate the effect of CFO
on our proposed model. We utilize a pre-trained model, which



(a) (b) (c) (d)
Fig. 7. Confusion matrices for PCI classifier considering different frequency offset at SNR = 0 dB (a) 0 KHz, (b) 15 KHz, (c) 30 KHz, and (d) 45 KHz.

TABLE VIII
PCI DETECTION ACCURACY FOR DIFFERENT CARRIER FREQUENCY OFFSET AT DIFFERENT SNRS

Inference
SNR
(dB)

Carrier Frequency Offset
CFO = 0

(kHz)
CFO = 15

(kHz)
CFO = 30

(kHz)
CFO = 45

(kHz)
Precision

(%)
Recall

(%)
F1-Score

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
Precision

(%)
Recall

(%)
F1-Score

(%)
0 100.00 100.00 100.00 98.36 98.33 98.34 83.71 83.54 83.54 41.39 41.04 40.43

−2 100.00 100.00 100.00 92.13 92.08 92.09 68.00 67.50 67.26 29.72 30.83 30.00
−4 100.00 100.00 100.00 82.19 81.87 81.85 56.72 56.04 55.99 34.47 35.21 34.57
−6 100.00 100.00 100.00 67.96 67.92 67.84 43.70 43.54 43.43 33.52 33.75 33.58
−8 98.34 98.33 98.33 51.43 51.25 51.31 39.56 39.58 39.47 32.77 32.29 32.46
−10 91.31 91.25 91.26 42.68 42.29 42.35 37.72 37.71 37.45 32.59 32.29 32.31

was developed using a training dataset based on the ‘Case-A’
SSB format and three PCI values (99, 100, 101). Importantly,
the CFO is not included in the training data but introduced
exclusively during inference. We take Ttest = 50% for this anal-
ysis. Fig. 7 illustrates that our proposed model achieves perfect
PCI classification accuracy at SNR = 0 dB in the absence of
CFO. Even with a CFO of 15 kHz, the classifier maintains an
accuracy of about 99%. The classification accuracy drops to
85% at a CFO of 30 kHz. However, the model’s performance
deteriorates significantly when the CFO reaches 45 kHz. The
overall performance of our proposed approach across various
SNRs is summarized in Table. VIII. The model’s ability to
classify PCI decreases when we lower the SNR value if CFO
exists in the received signal.

G. Complexity Analysis

In our proposed method, the computational complexity
mainly comes from the 2D convolutional layer in the CNN
block. The input feature map has dimensions of 1× 1024× 2,
with input channels Cin = 2. The convolution is performed
using a kernel of size 1×16 (kernel height, KH = 1 and width,
KW = 16). The method produces output feature maps with
dimensions of Hout ×Wout × Cout, where height Hout = 1, width
Wout = 1024 and the number of output channels Cout varies
across six layers with values of 16, 24, 32, 48, 64, and 96,
respectively. The overall computational complexity of the 2D
convolutional layer is determined by the number of operations

required, which is given by the expression-

O(Cout ×Hout ×Wout ×KH ×KW × Cin)

For the given parameters, this complexity is approximately
O(9.17× 106).

Detecting the PCI in 5G-NR signals involves several steps,
each contributing to the overall computational complexity. The
process begins with detecting the PSS, which helps determine
the cell’s identity within a group. There are three possible PSS
sequences, and a receiver correlates the received signal with
each of these sequences to identify the cell ID sector, N (2)

ID .
In calculating the complexity for each correlation, there are
two FFT and one IFFT operations of length N, each requiring
N log2 N operations. Thus, the complexity of the traditional
PSS detection per frame is about O(3×16.79×106). Only the
computational complexity of PSS detection is 5.5 times higher
than our proposed method. Additionally, detecting PSS and
SSS requires estimating and correcting frequency and timing
offsets and performing OFDM modulation to generate reference
signals for correlation, further adding to the computational com-
plexity of the process. Traditional methods are computationally
intensive, whereas our proposed approach significantly reduces
the computational burden, making it far more efficient for PCI
detection.

V. CONCLUSIONS

This paper introduced a CNN-based approach for extracting
the PCI value directly from the time-domain 5G-NR signal,



bypassing conventional decoding. Rigorous performance eval-
uation, considering different SCS of SSBs, multiple PCIs,
frequency offsets, and SNR values, demonstrated the robustness
of the proposed approach in accurately predicting the PCI
value. The proposed method involved processing time-domain
baseband signals using windows of fixed sizes and leveraging
a pre-trained CNN classifier to retrieve the PCI. Based on the
simulation results, we noted that considering the 3rd OFDM
symbol of the SSB consistently delivers better performance.
This was true even under the most challenging SNR conditions
and situations where the received signal’s SSB can be of
any subcarrier spacing format. Additionally, the number of
nearby cells constrained the model’s performance, particularly
at SNR = −10 dB. The proposed machine learning-driven PCI
approach can be integrated into 5G-NR devices that require
low computational overhead, such as smart repeater systems. It
can also facilitate seamless handover procedures and effective
synchronization at the UE.
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