
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 1

Online Learning for Edge Node Program Placement
in Mobile Edge Computing Networks

Mingjie Feng Member, IEEE and Marwan Krunz Fellow, IEEE

Abstract—Mobile edge computing (MEC) is a key technology
to support computationally intensive mobile applications with
stringent latency requirements. With MEC servers deployed
at network edge (e.g., base stations), the computational tasks
generated by various applications can be offloaded to nearby
edge nodes (ENs) and timely processed there. Meanwhile, future
mobile applications will be more diverse and complex, which
will need to be supported by a large number of complicated
programs. As the storage space of ENs is limited, it is infeasible
for each EN to store the program codes of all applications.
Thus, it is necessary to optimize program placement at ENs to
fully harvest the potential of MEC. In this paper, we investigate
the problem of program placement and user association in
storage-limited MEC networks. Such a problem is formulated
as a sequential decision-making problem. We first consider
the single EN scenario and propose an online learning-based
solution. We then propose a solution framework for the multi-
EN scenario, where we decompose the original problem into
three subproblems and iteratively solve them with low-complexity
approaches. Simulation results show that the average latency
achieved by our proposed schemes is 30% to 70% lower than
two benchmark schemes and is on average less than 10% higher
than a lower bound.

Index Terms—Mobile edge computing; low-latency applica-
tions; storage-limited systems; program placement optimization;
multi-armed bandit; Thompson sampling.

I. INTRODUCTION

Mobile Internet of Things (IoT) applications (e.g., con-
nected and autonomous vehicles, augmented/virtual reality,
etc.) often require executing delay-sensitive yet computa-
tionally intensive tasks [2], [3]. With limited computational
capability, it is quite challenging for mobile devices to execute
these tasks in a timely manner. Mobile edge computing (MEC)
provides an effective solution to this challenge. By deploying
MEC servers within the radio access network, e.g., close to
base stations (BSs) or access points (APs), the computational
tasks generated by users can be offloaded to and executed by
nearby edge nodes (ENs)1 [4]. Due to their proximity to end
users, ENs can deliver low-latency services.

This research was supported in part by NSF (awards # 2434021, 2413009,
2229386, 2425535, and 2432139) and by the WISPER Center, and in part
by the NSFC under Grant 62101202. Any opinions, findings, conclusions, or
recommendations expressed in this paper are those of the author(s) and do
not necessarily reflect the views of NSF.

M. Feng is with Wuhan National Laboratory for Optoelectronics, Huazhong
University of Science and Technology, Wuhan, 430074 China. M. Krunz is
with the Department of Electrical and Computer Engineering, The Univer-
sity of Arizona, Tucson, AZ, 85721 USA. Email: mingjiefeng@hust.edu.cn,
krunz@email.arizona.edu.

An abridged version of this paper was presented at IEEE WoWMoM 2021,
Online, June 2021 [1].

1An EN refers to a combination of an MEC server and a BS/AP.

To execute a task at an EN, the input data (e.g., video clips
taken by the mobile device) and the program that executes
the task (e.g., object recognition software) are required. Many
research papers assume that the programs of all tasks are stored
at each EN. This way, users can always offload any task to
a nearby EN. It is also often assumed that the programs are
always loaded in the random-access memory (RAM) of each
EN, so that a task can be immediately executed once the input
data has been uploaded by the user, without having to wait for
program loading. However, these assumptions are not practical
for future MEC systems. Specifically, mobile IoT applica-
tions will become more diverse (e.g., activity monitoring and
anomaly detection in different scenarios), and their complexity
will increase (e.g., going from Level 1 autonomous driving to
Level 5 autonomous driving), with a corresponding increase
in the sizes of programs associated with these applications.
On the other hand, with the projected massive deployment of
ENs, cheap hardware with relatively small storage will likely
be used to avoid high capital expenditure (CAPEX). Thus, it
is quite unlikely that any EN will need to store all programs
generated by different users. When the program of a requested
task is not stored in a given EN, the task has to be executed
at the user’s own device or handed over to another EN that
has the program. Both options increase the overall latency. To
this end, storage utilization at an EN needs to be optimized in
a way that minimizes the average latency.

Meanwhile, the patterns of task requests received by ENs
vary in time and space, depending on the specific application.
For example, ENs located at roadside are expected to receive
more tasks related to smart transportation, especially during
the rush hours. This means that ENs must learn to optimize
their own program placement strategy, which includes program
storage and preloading. Intuitively, frequently requested pro-
grams should have a higher priority to be stored and preloaded.
However, other factors need to be taken into account, such as
program file size, computational complexity, and loading time
of each program. In an MEC system with multiple users and
ENs, user association is a design problem that is coupled with
program placement. On the one hand, users in overlapping
coverage areas of neighboring ENs have multiple choices
of ENs for task offloading. As the ENs vary in program
availability, communication link quality, and computational
capability, the overall latency of a user is dictated by its EN
selection. On the other hand, user association determines the
traffic load at each EN and the associated communication and
computational latencies. Thus, program placement strategies
of neighboring ENs are coupled via user association.

In this paper, we investigate the optimization of program

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 2

placement and user association in storage-constrained MEC
systems, aiming to minimize the average latency of all users
over a finite time interval. We develop efficient solutions
based on an online learning framework called multi-armed
bandit (MAB). In particular, we employ an online learning
framework called multi-armed bandit (MAB) to model our
problem and apply Discounted Thompson Sampling (DTS)-
based approaches to solve the formulated problems. The main
contributions of this paper are as follows:

• We formulate the problem of program placement (includ-
ing program storage and preloading) and user association
as a non-stationary sequential decision-making problem
with coupled variables.

• We propose an online learning-based solution for the
single-EN scenario. First, we transform the formulated
problem into a non-stationary MAB problem in which
each EN acts as an agent that optimizes its program
placement strategy. Then, instead of directly applying an
existing algorithm to solve the MAB problem, we reduce
the complexity of the MAB problem by excluding the
strategies that are impossible to be optimal and model
the remaining strategies as the arms to be played. We
also quantify the complexity reduction by deriving an
upper bound on the number of arms in the reduced MAB
problem. Finally, we solve the reduced MAB problem
using a DTS algorithm and provide regret analysis with
mathematical proof.

• We develop a solution framework for the multi-EN sce-
nario by decomposing the original problem into three
subproblems that are solved at each time slot using
low-complexity schemes. The first subproblem targets
learning task popularity (i.e., the probabilities that various
tasks will be requested by users). This subproblem is
formulated as a non-stationary MAB problem and solved
by a DTS algorithm that only requires ENs to perform
a simple parameter update at each round of learning.
We also provide a regret analysis for this DTS algo-
rithm. The second subproblem focuses on optimizing
program placement under a given user association. This
subproblem is a Knapsack problem, which we solve via
a low-complexity greedy algorithm. We provide a lower
bound on the performance of this algorithm. The last
subproblem is user association, for which we propose
a dual decomposition-based approach to derive a near-
optimal solution. The proposed user association solution
is implemented in a distributed manner, requiring a few
information exchanges between users and ENs. We pro-
vide complexity analysis, which shows that the number of
iterations is a function of only the convergence threshold.
This allows for low-complexity implementation.

• We evaluate the performance of the proposed schemes
using simulations based on a cellular network setup,
in which the latency performance under different task
profiles (popularity, complexity, and program file size
of tasks) and network scenarios (varying numbers of
ENs and users) are compared. The results show that
the proposed schemes can reduce the average latency

by 30%∼70% compared to two benchmark schemes.
To demonstrate that near-optimal performance can be
achieved, we derive a lower bound on the latency. The
results show that, on average, the latency achieved by our
solution is less than 10% higher than the lower bound.

In the remainder of this paper, we overview related work
in Section II. We introduce the system model and problem
formulation in Sections III and IV, respectively. The solution
algorithms for the single-EN and multi-EN scenarios are
presented in Sections V and VI, respectively. We present our
simulation results in Section VII and conclude the paper in
Section VIII.

II. RELATED WORK

As an enabling technology for IoT applications, MEC has
attracted significant attention from both industry and academia.
Early standardization efforts were initiated by the Industry
Specification Group (ISG) of the European Telecommunica-
tions Standards Institute (ETSI) [2]. A literature overview of
MEC can be found in [4]. Recently, an analytical framework
for the fundamental aspects of MEC, including communica-
tion, computation, caching, and control, was introduced in [5].

The problem of program placement at ENs has some sim-
ilarities with content caching/prefetching in content delivery
networks (CDNs), where popular content is cached at stations
that are close to end users (e.g., small BSs), allowing such
content to be quickly delivered to these users [9]–[11]. Be-
cause the content popularity profile is often unknown, machine
learning (ML) algorithms have been developed to predict
the content request pattern and optimize caching strategies
(e.g., [12]–[14]). In particular, an MAB-based algorithm was
employed in [14] to learn the file request pattern at a small
BS, and a greedy file placement scheme was proposed based
on the predicted popularity profile. MEC-supported content
caching was considered in some recent works [15]–[18], where
the computing capability of MEC servers was utilized to
improve CDN performance. For example, the MEC server
can preprocess certain files (e.g., perform video transcoding)
to reduce the processing time for users. It can also help
compress files to save storage space. In contrast to these
works that optimize content placement for fast content de-
livery in CDNs, we consider optimizing the placement of
user programs at ENs, which determines the task offloading
availability, aiming to fully harvest the benefit of MEC systems
in providing low-latency computing services. State-of-the-art
techniques for content placement cannot be directly applied
to the program placement problem for the following reasons.
First, compared to content placement problems, which involve
a single optimization variable, we optimize both program
storage and program preloading strategies, resulting in two
sets of coupled decision variables. Second, given the trend
in network densification, the coverage areas of neighboring
ENs are likely to overlap, making the program placement
strategy highly coupled with the user association strategy.
Third, users’ requests for different contents (e.g., videos) are
driven by their interests/preferences, which are relatively stable
and easy to capture. In contrast, users’ requests for various IoT

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 3

applications (and the corresponding programs) are demand-
driven. Such demands fluctuate rapidly in time and space
according to certain patterns. Thus, new methods are needed to
capture the temporal and spatial patterns of users’ requests for
various programs, which is critical for improving the storage
utilization of ENs.

User association in MEC systems has been widely inves-
tigated. In [20]–[23], user association was jointly optimized
with computational resource allocation, task partitioning, and
power control, respectively, aiming to minimize the total
energy consumption and task completion latency. In [7], joint
optimization of EN selection and computing resources was
considered to improve the quality of experience (QoE) of
users. In [24], user association was jointly optimized with
content caching to minimize the latency caused by content
acquisition and handover. Recently, user association was in-
vestigated in the contexts of drone-based MEC systems [25]
and satellite-based MEC systems [26], [27], in which ma-
chine learning algorithms were proposed to capture system
dynamics. In our problem, user association is coupled with the
program placement strategy of ENs, where we jointly optimize
the two to minimize the average latency of all users.

III. SYSTEM MODEL

A. Problem Setup

We consider an MEC system with J ENs, indexed by
j ∈ {1, . . . , J} ≜ J . These ENs provide task offloading
services to K mobile user equipments (UEs), indexed by
k ∈ {1, . . . ,K} ≜ K. Each EN has a storage space (e.g., disk)
with capacity EH (in bytes) that stores the program codes of
different tasks. Each EN also has a RAM of capacity ER (in
bytes) that loads the programs from disk, allowing the CPU
to read and execute these programs.

We consider a finite time interval that is divided into T
slots indexed by t = 1, . . . , T . In each time slot t, each
UE randomly requests one of the N possible computational
tasks, following the task request pattern at that time slot. Each
task is executed by a unique program. The tasks and their
associated programs are indexed by i ∈ {1, . . . , N} ≜ N . As
mentioned before, the task requests received by various ENs
vary in time and space. For analytical tractability, we use the
logical coverage area of ENs 2 to model the location-specific
task request patterns of UEs3. Specifically, UEs within the
logical coverage of each EN follow the same time-varying
task popularity profile at each time slot (but these UEs are not
necessarily served by the EN). We also assume that the task
generation processes of various UEs are mutually independent,
due to the fact that different UEs act independently of each

2The logical coverage area of an EN j is defined as follows. When any
UE is located in the logical coverage area of EN j, its nearest EN is EN j.
Obviously, the logical coverage areas of different ENs are non-overlapping.
In contrast, the physical coverage area of each EN j is the area in which UEs
can communicate with EN j.

3Since the physical coverage areas of neighboring ENs may overlap, if we
use the physical coverage areas of ENs to characterize the location-specific
task request patterns, the UEs in the overlapping areas would be counted
multiple times in the objective function. Thus, we use logical coverage areas
to characterize the spatially varying task request patterns, which ensures that
each UE is in the logical coverage area of only one EN.

other. Let θ
[t]
i,j be the probability that task i is generated by

any arbitrary UE within the coverage of EN j at time t. Then,∑N
i=1 θ

[t]
i,j = 1 for j ∈ J , t = 1, . . . , T . The task popularity

file for EN j at time t, denoted by θ
[t]
j =

[
θ
[t]
1,j , . . . , θ

[t]
N,j

]
,

is determined by the statistical behavior of UEs near EN j
at time t (e.g., roadside ENs receive more vehicle-generated
tasks during rush hours), rather than the instantaneous task
requests of UEs associated with EN j. Before the learning
process starts, θ[t]

j is unknown to each EN j.
For analytical tractability, we consider a finite number of

task request patterns for UEs served by each EN. Specifically,
we assume that at each time t, {θ[t]1,j , ..., θ

[t]
N,j} take values

from a set that satisfies
∑N

i=1 θ
[t]
i,j = 1. Then, there are N !

possible θ
[t]
j . At each time t, each θ

[t]
j is in one of the N !

patterns. Considering that the task request pattern usually
exhibits a periodic pattern (e.g., roadside ENs receive more
vehicle-generated tasks during the rush hours of each day), we
assume that θ

[t]
j is updated periodically. Besides periodicity,

the task request pattern is expected to vary gradually. Thus,
we assume that θ[t]

j stays at the same pattern for multiple time
slots and updates to the next pattern, then stays at that pattern
for multiple time slots and updates again.

At each time slot t, the programs that are stored on the disk
of EN j and loaded to the RAM are specified by two sets of
binary variables a

[t]
i,j and b

[t]
i,j , defined by:

a
[t]
i,j =

{
1, if program i is stored on disk of EN j
0, otherwise

i = 1, . . . , N, j ∈ J , t = 1, . . . , T. (1)

b
[t]
i,j =

{
1, if program i is preloaded to the RAM of EN j
0, otherwise

i = 1, . . . , N, j ∈ J , t = 1, . . . , T.
(2)

Because a program must be stored on the disk before being
loaded into the RAM, {a[t]i,j} and {b[t]i,j} must satisfy b

[t]
i,j ≤

a
[t]
i,j , i ∈ N , j ∈ J , t = 1, . . . , T . Let si be the size of

program i (in bytes) and qi be the storage space occupied by
this program (in bytes) when loaded to RAM, qi > si. Then,
for all i ∈ N , a[t]i,j and b

[t]
i,j should satisfy:{ ∑N

i=1 a
[t]
i,jsi ≤ EH, ∀j ∈ J , t = 1, . . . , T∑N

i=1 b
[t]
i,jqi ≤ ER, ∀j ∈ J , t = 1, . . . , T.

(3)

To update the program storage, each EN downloads the
programs to be added from the core network via backhaul
and deletes the programs to be removed. Each EN must also
decide the set of UEs associated with it. This is indicated by
the following binary variables:

x
[t]
k,j =

{
1, if UE k is associated with EN j
0, otherwise,

k ∈ K, j ∈ J , t = 1, . . . , T. (4)

When UE k is associated with EN j (i.e., x[t]
k,j = 1) and it

generates task i at time t, the task will be executed by EN
j only if the program codes of task i are stored at EN j.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 4

Requested program

NOT stored at EN

Requested program

stored at EN

EN

UE

EN

UE UE

Fig. 1. Example of task offloading in a multi-EN system with limited storage.
A UE can offload a computational task to its associated EN only when the
task program is stored at the EN.

Otherwise, the task can only be executed by UE k. Fig. 1
illustrates the feasibility of task offloading under different
program availability scenarios.

The sequence of program placement and user association
strategies of the J ENs for t = 1, . . . , T is called a policy,
which is denoted by π = {π1, . . . , πJ}.

B. Communication Model

We consider a generic cellular network (e.g., LTE or 5G)
in which UEs are served by BSs acting as ENs. UEs served
by the same EN are assumed to have the same priority, hence
the communication resource is equally allocated to them [19].
At time t, the data rate of UE k when associated with EN j
is given by:

R
[t]
k,j =

W log
(
1 + γ

[t]
k,j

)
∑K

k=1 x
[t]
k,j

(5)

where W is the available bandwidth for each EN, and γ
[t]
k,j

is the uplink signal-to-interference-plus-noise ratio (SINR) for
the transmission from UE k to EN j, which can be measured
by EN j. Let s̃k,i be the size of input data (in bits) for
task i generated by UE k, the offloading time of task i from
UE k to EN j is s̃k,i

R
[t]
k,j

. To successfully receive UE data, we

must have γ
[t]
k,j ≥ γth, where γth is the SINR threshold.

For simplicity, we do not consider multi-rate communications
in this paper. Let Ω

[t]
k denote the set of candidate ENs

that can be used by UE k for task offloading at time t,
Ω

[t]
k =

{
j ∈ J

∣∣∣γ[t]
k,j ≥ γth

}
. Then, x[t]

k,j must satisfy:

x
[t]
k,j = 0,∀j /∈ Ω

[t]
k . (6)

C. Computational Model

The computational resource required for executing a task is
determined by the size of input data (in bits) and the task’s
computational complexity, represented in the number of CPU
cycles needed to execute one bit of the task. Let zi be the
computational complexity of task i. Then, the number of CPU
cycles required to complete task i is s̃k,izi.

1) UE Computing: Let c(L)k be the computational capability
of UE k, measured in CPU cycles per second. Then, the
execution time for task i at UE k is s̃k,izi

c
(L)
k

. Because UE k

may generate any one of the N tasks with EN-specific and

time-dependent probabilities, the expected task execution time
(in seconds) by UE k when it is within the logical coverage
area of EN j at time t is given by:

D
(L)
k,j

[t]
=

N∑
i=1

θ
[t]
i,j

s̃k,izi

c
(L)
k

. (7)

2) MEC Server Computing: Let c(E)
j be the computational

capability of EN j. We assume that c
(E)
j is equally split

between all UEs associated with EN j during each time slot t.
Then, the computational capability allocated to UE k by EN

j at time t is c
(E)
k,j

[t]
=

c
(E)
j∑K

k=1 x
[t]
k,j

. Similar to (7), the expected

computing time for executing the task of UE k at EN j is
given by:

D
(E)
k,j

[t]
=

N∑
i=1

θ
[t]
i,j

s̃k,izi

c
(E)
k,j

[t]
=

N∑
i=1

θ
[t]
i,j

s̃k,izi
∑K

k=1 x
[t]
k,j

c
(E)
j

. (8)

D. Latency Analysis

Without loss of generality, suppose that at time t, UE k
is within the logical coverage area of EN j. The latency for
completing the task of UE k is calculated by combining two
cases: UE k is associated with EN j (x[t]

k,j = 1) and UE k is
not associated with EN j (

∑J
j=1 x

[t]
k,j = 0).

For the first case, depending on the program availability at
EN j, the task may be executed by EN j (if requested program
i is stored at EN j, i.e., a[t]i,j = 1) or by UE k (if requested
program i is not stored at EN j, i.e., a[t]i,j = 0). If the task
is executed by EN j, the expected task completion latency
is the sum of expected task offloading latency

∑N
i=1 θ

[t]
i,j

s̃k,i

R
[t]
k,j

and the expected task execution latency D
(E)
k,j

[t]
; if the task is

executed by UE k, the task completion latency is the expected

local execution latency D
(L)
k,j

[t]
. Similarly, the program loading

status of the requested program i at EN j (indicated by b
[t]
i,j)

determines if the loading time will be incurred. Thus, the
expected latency for completing the task of UE k at time t
is given by:

D
(A)
k,j

[t]
=

(
N∑
i=1

θ
[t]
i,j

s̃k,i

R
[t]
k,j

+D
(E)
k,j

[t]

)
a
[t]
i,j

+D
(L)
k,j

[t] (
1− a

[t]
i,j

)
+

N∑
i=1

θ
[t]
i,j li,j

(
1− b

[t]
i,j

)

=

N∑
i=1

θ
[t]
i,j

 s̃k,izi

c
(E)
k,j

[t]
+

s̃k,i

R
[t]
k,j

 a
[t]
i,j

+
(
1− a

[t]
i,j

) s̃k,izi

c
(L)
k

+
(
1− b

[t]
i,j

)
li,j

]
(9)

where li,j is the loading time of program i at EN j. For
simplicity, the latency for downloading the result of an ex-
ecuted task is ignored due to its small size [7], [8]. In case
the downloading time is non-negligible, it can be calculated

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 5

in the same way as the uploading time, and the expression of

D
(A)
k,j

[t]
can be modified accordingly.

We then consider the case in which UE k is not associated
with any EN at time t (although UE k is within the logical
coverage area of EN j). In this case, the UE has to execute

the task by itself, with expected latency of D(L)
k,j

[t]
. Combining

the two cases, the expected latency for completing the task of
UE k when it is within the logical coverage area of EN j is
given by:

D
[t]
k,j = x

[t]
k,jD

(A)
k,j

[t]
+
(
1− x

[t]
k,j

)
D

(L)
k,j

[t]
. (10)

IV. PROBLEM FORMULATION

In this paper, we aim to find the optimal policy π (i.e.,
the sequence of program placement and user association
strategies) that minimizes the accumulated average latency of
all UEs over time slots t = 1, . . . , T . With D

[t]
k,j given in (10),

the sum latency of all UEs at time t is given by:
K∑

k=1

J∑
j=1

D
[t]
k,j =

K∑
k=1

J∑
j=1

D
(L)
k,j

[t]

+

K∑
k=1

J∑
j=1

x
[t]
k,j

(
D

(A)
k,j

[t]
−D

(L)
k,j

[t]
)
. (11)

Let ∆[t]
k,j = D

(L)
k,j

[t]
−D

(A)
k,j

[t]
. Obviously, ∆[t]

k,j is the expected
latency reduction of UE k when associated with EN j com-
pared to executing the task by itself. It can be seen from (11)
that minimizing

∑K
k=1

∑J
j=1 D

[t]
k,j is equivalent to maximizing∑K

k=1

∑J
j=1 ∆

[t]
k,j . Thus, we define the system reward at time

t as follows:

R[t]
π =

K∑
k=1

J∑
j=1

x
[t]
k,j∆

[t]
k,j (12)

where ∆
[t]
k,j is given by:

∆
[t]
k,j =

N∑
i=1

θ
[t]
i,j

a[t]i,j

 s̃k,izi

c
(L)
k

− s̃k,izi

c
(E)
k,j

[t]
− s̃k,i

R
[t]
k,j


+(1− b

[t]
i,j)li,j

]
. (13)

Then, the problem of finding the optimal policy that maximizes
the accumulated reward is formulated as:

P1 : max
π

∑T
t=1R

[t]
π (14)

s.t.
∑N

i=1a
[t]
i,jsi ≤ EH, j ∈ J , t = 1, . . . , T, (15)∑N

i=1b
[t]
i,jqi ≤ ER, j ∈ J , t = 1, . . . , T, (16)

b
[t]
i,j ≤ a

[t]
i,j , i ∈ N , j ∈ J , t = 1, . . . , T, (17)∑J

j=1x
[t]
k,j ≤ 1, k ∈ K, t = 1, . . . , T, (18)∑K

k=1x
[t]
k,j ≤ Uj , j ∈ J , t = 1, . . . , T, (19)

x
[t]
k,j = 0, k ∈ K, ∀j /∈ Ω

[t]
k (20)

a
[t]
i,j , b

[t]
i,j ∈ {0, 1} , i ∈ N , j ∈ J , t = 1, . . . , T, (21)

x
[t]
k,j ∈ {0, 1} , k ∈ K, j ∈ J , t = 1, . . . , T. (22)

In P1, Constraints (15) and (16) reflect the storage capacities
of disk and RAM, respectively. Constraint (17) is due to the
fact that a program must be stored on the disk before being
loaded into the RAM. Constraint (18) indicates that each
UE can be associated with at most one EN. Constraint (19)
specifies an upper bound on the number of UEs that can be
served by EN j. Constraint (20) is obtained from Eq. (6), and
it reflects the limited communication range of UEs.

V. SOLUTION FOR THE SINGLE-EN SCENARIO

We first consider the scenario in which ENs are not densely
deployed, hence the physical coverage areas of neighbor ENs
do not overlap. In the single-EN scenario, the user association
strategies of different ENs are mutually independent. Thus,
the program placement strategy of each EN can be optimized
independently. Because each UE only has one option of EN
to associate with, and UEs within the logical coverage area of
an EN follow the same task request pattern, serving different
sets of UEs results in the same latency performance. Thus,
optimizing user association would not bring any performance
gain. Without loss of generality, we consider the program
placement optimization at EN j:

P2 : max
πj

∑T
t=1

∑K
k=1x

[t]
k,j∆

[t]
k,j (23)

s.t.: (15)− (17) and (21).

In P2, user association variables {x[t]
1,j , . . . , x

[t]
K,j} are given

for t = 1, ..., T , and the constraints related to {x[t]
1,j , . . . , x

[t]
K,j}

are omitted since user association is not opitmized. πj is
specified by {a[t]i,j , b

[t]
i,j} for i ∈ N , t = 1, ..., T . P2 is

a non-stationary time series decision-making problem with
two sets of coupled decision variables. To obtain an efficient
solution, we first transform P2 into a non-stationary MAB
problem. Then, we apply a Discounted Thompson Sampling
(DTS) algorithm to obtain a policy that approaches the optimal
program placement strategy.

The program placement strategy at time t can be expressed
by a 2N × 1 vector [a

[t]
1,j , . . . , a

[t]
N,j , b

[t]
1,j , . . . , b

[t]
N,j]. As the

elements of this vector are binary variables, the total number of
possible values (strategies) is 22N . We denote the various pos-
sible strategies by zm, m = 1, . . . , 22N . If we model all 22N

program placement strategies as arms in an MAB problem, the
complexity of the problem would be prohibitively high when
N is large. To this end, we reduce the dimensionality of the
problem by treating the feasible program placement strategies
that are possibly optimal as arms. These feasible strategies are
obtained with the following steps:

(a) Among all vectors zm, m = 1, . . . , 22N , we select the ones
that satisfy all the constraints (15)-(17).
(b) Among all the vectors selected by step (a), we keep the
ones that satisfy the following conditions: if the value of
any a

[t]
i,j or b

[t]
i,j is changed from 0 to 1, one of the storage

constraints in (15) and (16) would be violated. The other
vectors are removed since they cannot be the optimal program

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 6

placement strategy, i.e., the optimal strategy must be among
the remaining vectors.4

(c) Let M be the number of the remaining program placement
strategies after steps (a) and (b). We denote the set of these
strategies as F = {z1, . . . , zM}. Then, the M strategies in F
are the arms to be played and learned. The objective of the
MAB problem is to find the arm with the largest mean reward.

After the set of arms has been determined, we apply the
DTS algorithm proposed in [30] to solve the MAB problem. In
the MAB problem, the reward for playing each arm m at time
t is a random variable that takes values in [0, 1], which can be
generated from any arbitrary distribution with mean ρ

[t]
m . Here,

ρ
[t]
m is defined as the normalized expected latency reduction

that results from applying the mth program placement strategy,
given by:

ρ[t]m =
∆j (aj(m),bj(m))

[t]

∆j
′ (24)

where ∆j (aj(m),bj(m))
[t] is the expected latency reduction

for UEs associated with EN j under program placement strat-
egy m at time t, denoted by aj(m) = [a1,j(m), . . . , aN,j(m)]
and bj(m) = [b1,j(m), . . . , bN,j(m)]; ∆j

′ is the reference
latency reduction, which is calculated by setting all elements
in aj(m) and bj(m) to 1. Note that ∆j (aj(m),bj(m))

[t]

and ∆j
′ are calculated based on the long-term average value

of the per-bit offloading time, i.e., the expected value of 1
Rk,j

for UEs served by EN j.
Since the mean rewards of playing different arms (ρ[t]m ,

m = 1, . . . ,M) are not known a priori, EN j has a “belief”
for the distribution of each ρ

[t]
m , which is updated at each

iteration. In the DTS algorithm [30], the prior distributions
of arms are initialized as beta distributions and are updated
with a certain pattern at each iteration, allowing the agent
to “forget” past observations and accommodate the non-
stationary environment. In addition to the updates applied to
all arms, the prior distribution of the played arm is updated
based on the outcome of a Bernoulli trial. The reason for
using Beta distribution as the prior distribution of each ρ

[t]
m is

that the posterior distribution is still a Beta distribution after
each update, i.e., Beta distribution is a conjugate prior of the
distribution of ρ

[t]
m . Let η

[t]
m be the prior distribution for ρm

at time t, it follows beta distribution with parameters α
[t]
m and

β
[t]
m , i.e., η[t]m ∼ Beta(α

[t]
m , β

[t]
m), m = 1, . . . ,M , t = 1, . . . , T .

For a beta distribution Beta(α, β) that is conjugated with a
Bernoulli trial, α and β are the numbers of observed successes
and failures of the Bernoulli trial, respectively. The mean
of Beta(α, β) is α/α + β, and the higher α and β, the
tighter the distribution is concentrated around its mean. In our
problem, the initial prior distribution of each η

[t]
m is set to be

η
[1]
m ∼ Beta(1, 1), m = 1, . . . ,M , which corresponds to a

uniform distribution.

4Proof (by contradiction): Suppose that the optimal program placement
strategy is within the vectors removed in step (b). Then, when one more
program is added to the optimal strategy, both storage constraints in (15) and
(16) will not be violated, meaning that the resulting new strategy is a feasible
strategy. With the additional program, the new strategy must outperform the
optimal strategy by allowing more tasks executed by ENs (if added to the disk)
or reducing the loading time (if added to the RAM), which is a contradiction.

Algorithm 1: DTS Algorithm for Program Placement
Optimization in Single-EN Scenario

1 Initialize: η[1]
m ∼ Beta(1, 1), m = 1, . . . ,M ;

2 for t = 1 : T do
3 for m = 1 : M do
4 Draw a sample η̂

[t]
m from the distribution

η
[t]
m ∼ Beta(α

[t]
m , β

[t]
m) ;

5 end
6 Play arm m∗[t] = argmax

m
η̂
[t]
m and observe reward r[t] ;

7 Perform a Bernoulli trial with success probability r[t]

and record output r̃[t] ;
8 α

[t+1]
m∗ = γα

[t]
m∗ + r̃[t] and β

[t+1]
m∗ = γβ

[t]
m∗ + (1− r̃[t]) ;

9 α
[t+1]
m = γα

[t]
m and β

[t+1]
m = γβ

[t]
m , ∀m ̸= m∗ ;

10 end

At each time step t, EN j draws a sample η̂
[t]
m from the

distribution η
[t]
m ∼ Beta(α

[t]
m , β

[t]
m) and records the sampled

values η̂[t]m , m = 1, . . . ,M . Then, EN j plays the arm m∗[t] =

argmax
m

η̂
[t]
m and observes the reward r[t]. The observed reward

is the normalized latency reduction achieved by all UEs that
are associated with EN j, given by:

r[t] =
∆j (aj(m

∗),bj(m
∗))

[t]

∆j
′ . (25)

Based on r[t], EN j performs a Bernoulli trial with success
probability r[t] and observes the outcome r̃[t]. Then, it updates
the parameters of the distribution of η[t]m∗ by:

(α
[t+1]
m∗ , β

[t+1]
m∗) =

{
(α

[t]
m∗ + 1, β

[t]
m∗), if r̃[t] = 1

(α
[t]
m∗ , β

[t]
m∗ + 1), otherwise.

(26)

The distributions of other arms (m ̸= m∗) are updated by:

(α[t+1]
m , β[t+1]

m) = (γα[t]
m , γβ[t]

m). (27)

Where γ ∈ (0, 1] is the discount factor used to “forget” past
observations. Specifically, when γ < 1, the values of α[t]

m and
β
[t]
m are decreased for m ̸= m∗ after the tth iteration, resulting

in higher variance of η[t]m . This way, the probability of selecting
unplayed arms increases after each update, which reduces
the impact of past observations and makes the algorithm
applicable to non-stationary environments.

The sampling and update processes are repeated from time
t = 1 to t = T . Note that when trying different arms during
the operation of the DTS algorithm, it is necessary to load
new programs into the memory of EN j, which incurs addi-
tional latency. However, for any algorithmic solution of online
decision-making problems, the latency for trying strategies is
inevitable and uncontrollable due to the random actions in the
algorithm. Thus, such latency is not incorporated in the reward
function of the MAB model and the objective function of P2.
The DTS algorithm for program placement optimization in the
single-EN scenario is summarized in Algorithm 1.

When the context of the program placement problem (e.g.,
the set of programs and task popularity profile) is switched, the
set of arms in Algorithm 1 needs to be regenerated according
to steps (a)-(c). This incurs a certain computational cost.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 7

However, as in many optimization problems, such regeneration
is typically performed offline, not during the online operation
of the DTS algorithm. Thus, the cost of switching context does
not impact the operation of the DTS algorithm, making the
regeneration of arms practical for real-world implementation.

A. Complexity Analysis

Theorem 1. The number of remaining program placement
strategies, which is also the number of arms in Algorithm 1,
is upper bounded by:

M ≤


⌊

EH
min{si}

⌋∑
y=

⌈
EH−min{si}

max{si}

⌉
(
N

y

)

·


⌊

ER
min{qi}

⌋∑
y=

⌈
ER−min{qi}

max{qi}

⌉
(⌊ EH

min{si}

⌋
y

) , (28)

The proof of Theorem 1 is presented in the first appendix.
In each iteration of Algorithm 1, EN j performs sampling

from the distributions of all the M arms, plays the arm with
the maximum sampled value, and updates the prior distri-
bution of the selected arm. Thus, the worst-case complexity
of Algorithm 1 is O (Z · T), where Z is the right-hand-side
of (28).

B. Regret Analysis

To quantify the performance of the proposed solution, we
derive an upper bound of the expected total regret for Algo-
rithm 1. Such regret is defined as the accumulated expected
penalty for not playing the optimal arm over t = 1, . . . , T ,
which is given by:

E[R(T)] = E
[∑T

t=1
(ρm∗[t] − ρm[t])

]
=
∑
m

δmE [κm(T)]

(29)

where m[t] is the arm played at time t and m∗[t] is the optimal
arm at time t (i.e., ρm∗[t] = argmin

m
ρ
[t]
m); δm = ρm∗[t] −ρm[t] ,

and κm(T) is the number of times arm m is played over
t = 1, . . . , T . Let C(T) be the maximum number of times of
environment changes in t = 1, ..., T .

Theorem 2. The expected regret of Algorithm 1 is upper
bounded by:

E[R(T)] ≤ O

(√
MT log T

1− γ
+

C(T) log T

1− γ

)
. (30)

The proof of Theorem 2 is presented in the second appendix.

VI. SOLUTION FOR THE MULTI-EN SCENARIO

With the trend of network densification in cellular networks,
the ENs are expected to be densely deployed with overlapping
physical coverage areas. As a result, a UE may have multiple
choices of ENs for task offloading, and it can optimize its EN

selection depending on the program availability, communica-
tion link, and computational capability of nearby ENs. On the
other hand, user association determines the load distribution
among ENs and the latency performance of users associ-
ated with each EN. Additionally, a dynamic user association
strategy yields time-varying task requests, necessitating the
learning of task request patterns over time (i.e., task popularity
profiles) to capture these dynamics. Thus, joint optimization
of program placement, task popularity profile acquisition, and
user association is necessary to achieve the full potential of
latency reduction.

It is worth mentioning that Algorithm 1 cannot be applied to
the multi-EN scenario. To illustrate the reasons, we consider
two cases: (i) each EN acts as an agent that independently
optimizes its program placement strategy using Algorithm
1, and (ii) a centralized agent optimizes the joint program
placement strategy of all ENs using Algorithm 1. For case (i),
since the physical coverage areas of neighboring ENs overlap,
users in overlapping coverage areas have multiple candidate
ENs for task offloading, and all the programs stored in these
ENs can be employed to execute the tasks of these users.
If each EN independently optimizes its program placement
strategy, neighboring ENs would store the same (or highly
similar) set of programs since their task request patterns
are highly correlated. As a result, the number of programs
available to users in overlapping coverage areas is limited.
Conversely, if neighboring ENs store partially different pro-
grams, an increased number of programs would be available
to users in overlapping coverage areas, resulting in improved
latency performance. Thus, the potential of employing the
diversified programs of neighboring ENs for latency reduction
is not harnessed if Algorithm 1 is applied. For case (ii), since
the program placement strategies across ENs are coupled with
the user association strategy, the program placement strategies
of neighboring ENs are coupled with each other. Because the
program placement decision variables are binary, the number
of feasible strategies of all ENs grows exponentially with the
number of ENs. Accordingly, applying Algorithm 1 in this
case would result in a prohibitively large number of arms.

A. Solution Overview

To derive an effective solution, we decompose the original
problem into three subproblems to be solved at each time t
and iteratively solve them to obtain a near-optimal solution.
Specifically, we first apply a DTS algorithm to learn the task
popularity profile of each EN at time t, i.e., θ

[t]
j . With the

task popularity profile of all ENs, the optimization of program

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 8

placement and user association is formulated as follows:

P3 : max
{a[t],b[t],x[t]}

∑K
k=1

∑J
j=1x

[t]
k,j∆

[t]
k,j (31)

s.t.
∑N

i=1a
[t]
i,jsi ≤ EH, j ∈ J , (32)∑N

i=1b
[t]
i,jqi ≤ ER, j ∈ J , (33)

b
[t]
i,j ≤ a

[t]
i,j , i ∈ N , j ∈ J , (34)∑J

j=1x
[t]
k,j ≤ 1, k ∈ K, (35)∑K

k=1x
[t]
k,j ≤ Uj , j ∈ J , (36)

x
[t]
k,j = 0, k ∈ K, ∀j /∈ Ω

[t]
k , (37)

x
[t]
k,j ∈ {0, 1} , k ∈ K, j ∈ J , (38)

a
[t]
i,j , b

[t]
i,j ∈ {0, 1} , i ∈ N , j ∈ J . (39)

where a[t], b[t], and x[t] are the matrices [a
[t]
i,j]i∈N ,j∈J ,

[b
[t]
i,j]i∈N ,j∈J , and [x

[t]
k,j]k∈K,j∈J . We decompose P3 into two

levels of subproblems. The lower-level subproblem is program
placement at each EN under a given user association, and we
propose a greedy algorithm to solve it. The higher-level sub-
problem is user association given that the program placement
strategy has been applied, we propose a dual decomposition-
based approach to solve it.

B. Task Popularity Profile Acquisition

To obtain θ
[t]
j for j ∈ J , we formulate a non-stationary

Bernoulli bandit problem for each EN. Specifically, each EN
serves as an agent, which consistently records the task request
it receives and learns the task popularity profile accordingly.
For EN j, the N programs are regarded as the arms to be
played, and the mean reward for playing arm i at time t is
θ
[t]
i,j . Without loss of generality, we consider the task popularity

profile acquisition at EN j. The values of θ
[t]
i,j(j ∈ J) are

learned via a DTS algorithm similar to the one presented in
Section V. Let ϕ

[t]
i,j be the prior distribution of θ

[t]
i,j at time

t, it follows beta distribution with parameters α
[t]
i,j and β

[t]
i,j ,

i.e., ϕ
[t]
i,j ∼ Beta(α

[t]
i,j , β

[t]
i,j), i ∈ N . The initial distribution

of each ϕ
[t]
i,j is set to be ϕ

[t]
i,j ∼ Beta(1, 1), i ∈ N . At

time t, EN j draws a sample ϕ̂
[t]
i,j from the distribution

ϕ
[t]
i,j ∼ Beta(α

[t]
i,j , β

[t]
i,j) and records the sampled values ϕ̂

[t]
i,j ,

i ∈ N . Then, it plays the arm i∗[t] = maxi ϕ̂
[t]
i,j by placing

the program of task i∗ at EN j and observes the reward. We
set the reward received by EN j as the proportion of UEs that
have requested task i at time t, given by:

r
[t]
j =

Θ
[t]
i,j∑N

i=1 Θ
[t]
i,j

(40)

where Θ
[t]
i,j is the number of requests for task i at time t. Based

on the observed reward, the agent performs a Bernoulli trial

Algorithm 2: DTS Algorithm for Obtaining the Task
Popularity Profile of EN j

1 Initialize: ϕ[1]
i,j ∼ Beta(1, 1), i ∈ N ;

2 for t = 1 : T do
3 for i = 1 : N do
4 Draw a sample ϕ̂

[t]
i,j from the distribution

ϕ
[t]
i,j ∼ Beta(α

[t]
i,j , β

[t]
i,j) ;

5 end
6 Play arm i∗[t] = argmaxi ϕ̂

[t]
i,j and observe reward r

[t]
j ;

7 Perform a Bernoulli trial with success probability r
[t]
j

and record outcome r̃
[t]
j ;

8 α
[t+1]
i∗,j = γα

[t]
i∗,j + r̃

[t]
j and β

[t+1]
i∗,j = γβ

[t]
i∗,j + (1− r̃

[t]
j) ;

9 α
[t+1]
i,j = γα

[t]
i,j and β

[t+1]
i,j = γβ

[t]
i,j , ∀i ̸= i∗ ;

10 end

with probability r
[t]
j and observes the outcome r̃

[t]
j . Finally,

the distribution of ϕ[t]
i,j is updated by:

(α
[t+1]
i,j , β

[t+1]
i,j)=


(α

[t]
i,j + 1, β

[t]
i,j), if i = i∗ & r̃

[t]
j = 1

(α
[t]
i,j , β

[t]
i,j + 1), if i = i∗ & r̃

[t]
j = 0

(α
[t]
i,j , β

[t]
i,j), if i ̸= i∗

(41)

The process for learning θ
[t]
j is summarized in Algorithm 2.

Same as Algorithm 1, we derive an upper bound for the
expected total regret of Algorithm 2. The total regret is given
by:

E[R′(T)] = E
[∑T

t=1

(
θi∗[t],j − θi[t],j

)]
=
∑
i

δ′iE [κ′
i(T)]

(42)

where i[t] is the arm played at time t and i∗[t] is the optimal
arm at time t; δ′i = θi∗[t],j − θi[t],j , and κ′

i(T) is the number
of times that arm i is played over t = 1, . . . , T . Let C(T)
be the maximum number of times of environment changes in
t = 1, ..., T .

Theorem 3. The expected regret of Algorithm 2 is upper
bounded by:

E[R′(T)] ≤ O

(√
NT log T

1− γ
+

C(T) log T

1− γ

)
. (43)

The proof of Theorem 3 is in the same way as Theorem 2,
which is presented in the second appendix.

C. Program Placement with Given User Association

With given x
[t]
k,j (k ∈ K) and ϕ

[t]
i,j (i ∈ N), the program

placement optimization of each EN j at time t is a Knapsack
problem, which is generally NP-hard. Since such a problem
needs to be solved at each time step, only a low-complexity
solution can be implemented. To this end, we propose a heuris-
tic program placement strategy that greedily allocates storage
space to the programs with the highest request probability per
occupied space. Specifically, we first sort the programs by the
descending order of ϕ[t]

i,j/(si+qi) and put them into the RAM

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 9

Algorithm 3: Greedy Program Placement Algorithm

1 Initialize: Ω = {1, . . . , N}; a[t]
i = b

[t]
i = 0, i = 1, . . . , N ;

2 while
∑N

i=1a
[t]
i si ≤ EH do

3 while
∑N

i=1b
[t]
i si ≤ ER do

4 imax = argmax
i∈Ω

θ
[t]
i /(si + qi) ;

5 Set a[t]
imax

= b
[t]
imax

= 1 ;
6 Ω = Ω− {imax} ;
7 end
8 imax = argmax

i∈Ω
ϕ
[t]
i /si ;

9 Set a[t]
imax

= 1 ;
10 Ω = Ω− {imax} ;
11 end

according to such order until the storage space of RAM is full,
i.e.,

∑N
i=1 b

[t]
i,jqi > ER. Then, we sort the remaining programs

by the descending order of ϕ[t]
i,j/si and put them into the disk

according to such order until the storage space of disk is full,
i.e.,

∑N
i=1 a

[t]
i,jsi > EH. The procedure of the greedy program

placement strategy of EN j is summarized in Algorithm 3.
The low complexity of Algorithm 3 comes at a price in

terms of its performance compared to the optimal solution.
However, the performance loss is limited, and is at most 50%
of the optimal performance in the worst-case scenario [28].
Thus, the performance lower bound of Algorithm 3 is 50% of
the optimal performance. Note that Algorithm 3 can also be
applied to the program placement optimization in the single-
EN scenario, especially in the case with large N . Specifically,
at each time t, the EN learns the task popularity profile
with Algorithm 2 and applies the greedy program placement
strategy with Algorithm 3. Compared to the solution presented
in Algorithm 1, the solution based on Algorithm 3 can
achieve faster convergence, since the number of arms in the
corresponding MAB problem is significantly reduced. Thus,
such a solution is preferred in scenarios with large N and
fast-varying task request patterns.

D. Dual Decomposition-Based User Association

Let ∆̃k,j(x
[t]) be the value of ∆

[t]
k,j if the greedy program

placement strategy in Section VI-C is applied under x[t]. The
user association problem is formulated as:

P4 : max
{x[t]}

∑K
k=1

∑J
j=1x

[t]
k,j∆̃k,j(x

[t]) (44)

s.t.: (35)− (38)

Problem P4 is an integer programming problem, which is
generally NP-hard. To develop an effective solution algorithm,
we first relax the integer constraint by allowing all x[t] to take
values in [0, 1]. Let P4-Relaxed be the relaxed problem, it
can be verified that the objective function of P4-Relaxed is
concave and the feasible region defined by all constraints is
convex. Thus, P4-Relaxed is a convex optimization problem,
and we apply a dual decomposition approach to obtain its
optimal solution.

The decision variables of P4-Relexted are coupled with
each other via the quadratic terms in the objective function.

To this end, we introduce a set of auxiliary variables V
[t]
j =∑K

k=1 x
[t]
k,j , j ∈ J , which are the traffic loads of ENs. At each

iteration of the dual decomposition algorithm, we first fix the
traffic loads and find the optimal solution of user association.
The solution is then used to update the traffic loads, which
will be used in the next iteration. With given {V [t]

1 , . . . , V
[t]
J },

we have the following problem:

P5 : max
{x[t]}

∑K
k=1

∑J
j=1x

[t]
k,j∆̃k,j(x

[t]) (45)

s.t.: (35)− (37)∑K
k=1x

[t]
k,j = V

[t]
j , j ∈ J , (46)

x
[t]
k,j ∈ {0, 1} , k ∈ K, j ∈ J . (47)

Let λ[t] = [λ
[t]
1 , . . . , λ

[t]
J] be the Lagrangian multipliers for

the constraints (46). Applying a partial relaxation on these
constraints, we have the following Lagrangian function:

L
(
x[t],λ[t]

)
=

K∑
k=1

J∑
j=1

x
[t]
k,j∆̃k,j(x

[t]) +
J∑

j=1

λ
[t]
j

(
K∑

k=1

x
[t]
k,j − V

[t]
j

)
. (48)

The corresponding dual problem of P5 is given by:

P5-Dual: min
{λ[t]}

g(λ[t]) (49)

where g(λ[t]) is given by:

g(λ[t]) = max
{x[t]}

L
(
x[t],λ[t]

)
. (50)

The problems given in (49) and (50) are solved iteratively.
At each iteration, x[t] and λ[t] are calculated and updated by
UEs and ENs, respectively.

Based on the expression of L(x[t],λ[t]), the problem of
maximizing g(λ[t]) can be decomposed into K independent
subproblems that are solved by each UE. Let τ = 1, 2, . . . be
the index of iteration for the dual decomposition algorithm.5

At the τ th iteration, each UE solves its subproblem by
selecting the EN j∗[t](τ) that satisfies:

j∗[t](τ) = argmax
j∈πk

{
∆̃k,j(x

[t](τ))− λ
[t]
j (τ)

}
. (51)

where j∗[t](τ), x[t](τ), and λ
[t]
j (τ) are the optimal selection of

j[t], the matrix x[t], and value of λ[t]
j at iteration τ , respectively.

After completing the selection, each UE notifies the selected
EN via a message. Receiving the messages from UEs, each
EN updates x

[t]
j = [x

[t]
1,j , . . . , x

[t]
K,j] by:

x
[t]
k,j(τ) =

{
1, j = j∗[t](τ)
0, otherwise,

(52)

On the other hand, Problem P5-Dual can be decomposed
into J subproblems, each to be solved by the corresponding
EN. At iteration τ , each EN updates λ

[t]
j (τ) by:

λ
[t]
j (τ + 1) = λ

[t]
j (τ)− ε

[t]
j (τ)φ

[t]
j (τ) (53)

5The updates indexed by τ = 1, 2, . . . are performed within each time
period t, i.e., the updates indexed by t = 1, . . . , T are the outer loop that is
performed with a larger time scale.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 10

Algorithm 4: Dual Decomposition-Based User Asso-
ciation Algorithm

1 Initialize V[t] and λ[t] ;
2 do
3 for k = 1 : K do
4 UE k selects EN according to (51) and notifies the

selected EN ;
5 end
6 for j = 1 : J do
7 EN j updates x

[t]
j with (52) ;

8 Updates φ
[t]
j with (54) ;

9 Updates λ
[t]
j with (53) ;

10 Updates V
[t]
j with (56) ;

11 end
12 τ ++

13 while (x[t] does not converge);

where φ
[t]
j (τ) is the gradient of λ[t]

j (τ), given by:

φ
[t]
j (τ) = V

[t]
j (τ)−

∑K
k=1x

[t]
k,j(τ) (54)

where ε
[t]
j (τ) is the step size, given by:

ε
[t]
j (τ) =

g(λ[t](τ))− g(λ∗[t])∥∥φ[t](τ)
∥∥2 . (55)

With the updated λ
[t]
j (τ), each EN updates V

[t]
j (τ) by:

V
[t]
j (τ + 1) = min

{∑K
k=1x

[t]
k,j(τ), Uj

}
. (56)

Finally, all ENs broadcast the updated values of λ
[t]
j (τ)

and V
[t]
j (τ). Each UE then performs EN selection for the

next iteration with (51). The updates performed by UEs
and ENs continue until convergence is achieved. The dual
decomposition-based user association algorithm is summa-
rized in Algorithm 4.

The solution obtained by solving P5 using Algorithm 4
is expected to be near-optimal for P4. As presented above,
P4 is transformed into P5 in two steps: relaxing the integer
constraint and introducing the auxiliary variables V

[t]
j =∑K

k=1 x
[t]
k,j . In the first step, although the integer constraint is

relaxed when solving P5, all the solutions for P5 obtained by
Algorithm 4 are binary integers, which are directly used as the
solutions for P4 without any rounding operations. Thus, the
first step does not cause performance loss. In the second step,
the performance loss is determined by the optimality of V [t]

j ,
i.e., the traffic loads at various ENs. Note that, the optimal
solution of P4 can be obtained by exhaustively solving P5
under all possible combinations of {V [t]

1 , ..., V
[t]
J }, which is

computationally prohibitive for MEC systems since P5 needs
to be solved

∏J
j=1 Uj times. In the proposed solution, the

optimality of {V [t]
j } depends on dynamic, network-specific

factors that cannot be accurately characterized. These factors
include the locations of ENs and the spatial distributions
of users over time. Thus, the exact performance gap cannot
be accurately quantified. However, an important property of
Algorithm 4 is that each V

[t]
j will always approach its optimal

value as the algorithm proceeds iteratively. Specifically, when
V

[t]
j (the number of UEs associated with EN j at time t) is

larger than its optimal value, λ[t]
j (the Lagrangian variable for

EN j) will be increased, forcing fewer UEs to select EN j in
the next iteration; and vice versa when V

[t]
j is smaller than its

optimal value. As a result, the value of each V
[t]
j stays close

to its optimal value, especially when the spatial distribution
of UEs varies slowly. Based on the above analysis for the
two steps that transform P4 into P5, the solution of P5 is a
near-optimal solution for P4.

Lemma 1. Algorithm 4 converges with a rate faster than the
sequence {1/

√
τ}.

Proof. The optimality gap of λ[t] satisfies:

∥λ[t](τ + 1))− λ∗[t]∥2

=

∥∥∥∥∥λ[t](τ)− g(λ[t])− g(λ∗)

∥φ[t]∥2
φ[t] − λ∗[t]

∥∥∥∥∥
2

=
∥∥∥λ[t](τ)−λ∗[t]

∥∥∥2+(g(λ[t](τ))−g(λ∗[t])

∥φ[t](τ)∥2
φ[t](τ)

)2∥∥∥φ[t]
∥∥∥2

− 2
(
λ[t](τ)− λ∗[t]

)T g
(
λ[t](τ)

)
− g

(
λ∗[t]

)
∥φ[t](τ)∥2

φ[t](τ)

(a)

≤ ∥λ[t](τ))− λ∗[t]∥2 − 2

(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))2
∥η[t](τ)∥2

+

g
(
λ[t](τ)

)
− g

(
λ∗[t]

)
∥η[t](τ)∥2

2

∥φ[t](τ)∥2

≤ ∥λ[t](τ)− λ∗[t]∥2 −

(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))2
φ̂2 .

Inequality (a) is due to the convexity of prob-
lem P5-dual, given by g

(
λ[t](τ)

)
− g

(
λ∗[t]

)
≤(

λ[t](τ)− λ∗[t]
)T

φ[t](τ). Variable φ̂ is an upper bound for

φ[t](τ). Since lim
τ→∞

λ[t](τ + 1) = lim
τ→∞

λ[t](τ), we have

lim
τ→∞

g
(
λ[t](τ)

)
= g

(
λ∗[t]

)
. Summing this inequality over

τ , we have:

∞∑
τ=1

(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))2
≤ φ̂2

∥∥∥λ[t](1)− λ∗[t]
∥∥∥2 .

(57)

Suppose for contradiction, g
(
λ[t](τ)

)
converges slower than

{1/
√
τ}. Then, lim

τ→∞

√
τ
(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))
> 0.

Therefore, there exists a positive number π and a sufficiently
large τ ′ such that:

√
τ
(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))
≥ π,∀τ > τ ′. (58)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 11

Taking the square sum of (58) from τ ′ to ∞, we have:
∞∑

τ=τ ′

(
g
(
λ[t](τ)

)
− g

(
λ∗[t]

))2
≥ π2

∞∑
τ=τ ′

1

τ
= ∞. (59)

This contradicts the fact given in (57). We conclude that
g
(
λ[t](τ)

)
converges faster than the sequence {1/

√
τ}.

Lemma 2. The complexity of Algorithm 4 in terms of the
number of iterations is upper bounded by 1/ω2, where ω is
the threshold of convergence for λ[t].

Proof. According to Lemma 2, for a sufficiently large τ and
a sufficiently small ω, g

(
λ[t](τ)

)
− g

(
λ∗[t]

)
is guaranteed

to be smaller than ω. Thus, it takes less than 1/ω2 steps for
the sequence λ[t] to achieve an optimality gap that is smaller
than ω.

VII. SIMULATION RESULTS

In this section, we validate our proposed schemes with simu-
lations. We consider multiple ENs and users randomly located
in a 400 m × 400 m rectangular area. The channel is modeled
by a distance-dependent path loss of 140.7+36.7log10d in dB
and Rayleigh fading [7], where d is the distance between an
EN and a UE in meters. The UE transmission power is 20
dBm, and the noise density is −174 dBm/Hz. The system
bandwidth for uplink transmission is 10 MHz. The input data
size follows a truncated normal distribution in the range of
[400, 600] Kb with a mean of 500 Kb. The complexity of
a task is uniformly distributed in [500, 1500] CPU cycles/bit.
The computational capabilities of UEs and ENs are 1 GHz and
20 GHz, respectively. The storage spaces of disk and RAM
of each EN are in the ranges of [50, 200] GB and [5, 10] GB,
respectively. The size of each program follows a truncated
normal distribution within the range of 100 MB around its
mean. The number of programs N ranges from 100 to 500.
Unless otherwise stated, the default mean program size and the
number of programs are 500 MB and 200, respectively; the
default storage spaces of disk and RAM are 100 GB and 8 GB,
respectively. For each EN j at each time t, {θ[t]i,j} is generated
by a Zipf distribution [31]. Let W1, ...,WN be probabilities of
N variables that follow a Zipf distribution, they are calculated
by:

Wn = n−ζ/
∑N

n=1n
−ζ , n = 1, ..., N. (60)

To generate the task request pattern of EN j at time t (i.e., θ[t]
j),

each θ
[t]
i,j takes a distinct value from the set {W1, ...,WN}. Ob-

viously, the mappying between {θ[t]i,j} and {Wn} determines
the task popularity pattern of EN j at time t. As mentioned,
each θ

[t]
j is in one of the N ! patterns, which is periodically

updated with a periodicity of 1000 time slots. In (60), ζ is
the parameter indicating the “skewness” of the distribution
(i.e., task popularity). When ζ = 0, the task popularity is
uniformly distributed among all tasks. As ζ grows, the task’s
popularity becomes concentrated on a few popular tasks. We
set the default value of ζ to be 0.2. At each round of the
simulation, we first generate the parameters of each task i by

sampling si, zi, s̃k,i, and θ
[t]
i,j according to the corresponding

distributions. Then, each UE generates one of the N tasks
according to the values of θ

[t]
i,j . We focus on evaluating the

long-term average latency of all users, which is the time-
averaged cumulated average latency from t = 1 to t = T ,

i.e.,
∑T

t=1

∑K
k=1 D

[t]
k

T .

A. Single-EN Scenario

We first evaluate the performance of different schemes
in the single-EN scenario. We make comparisons with two
benchmark schemes. The first scheme is random placement,
in which the programs are randomly selected and put into the
disk and RAM of each EN. The second scheme is greedy
placement, in which we first apply Algorithm 2 to obtain the
task popularity at each time t, then apply the greedy program
placement strategy in Section VI-C. Note that the complexity
of the greedy scheme is similar to the proposed scheme, since
both of them adopt DTS to learn the task popularity (one is
direct and the other is indirect).

We first plot the average latency versus the number of UEs
in Fig. 2(a). It can be seen that the average latency increases as
the number of UEs grows, since both the communication and
computing resources are shared among an increased number of
UEs, resulting in higher offloading and computing time. The
proposed scheme outperforms other schemes as the optimal
program placement strategy obtained from the DTS algorithm
is applied. It is also observed that the gaps between different
schemes decrease as the number of users increases. This is
because the computing and communication resources allocated
to each user are reduced; hence, the latency reduction provided
by offloading a task to the EN becomes less significant.
The average latency under different values of ζ is plotted
in Fig. 2(b). Due to similar reasons, the proposed scheme
achieves the lowest average latency. As ζ grows, the latency
of the random placement scheme increases while the latency
of the other two schemes decreases. This is because when ζ
is large, only a few tasks will be frequently requested, and the
advantage of storing popular tasks becomes significant.

Fig. 2(c) shows the convergence property of different
schemes. The greedy placement scheme converges faster, since
it only needs to learn the task popularity, which corresponds
to solving an MAB problem with N arms. In contrast, the
proposed scheme needs to learn a subset of feasible program
placement strategies by solving an MAB problem with a much
larger number of arms, resulting in slow convergence. Note
that the reward of the greedy placement scheme is lower than
that of the proposed scheme after convergence.

B. Multi-EN Scenario

In the multi-EN scenario, we compare the proposed scheme
with two benchmark schemes and a lower bound of latency.
The first scheme is random placement, which is the same
scheme as described in the single-EN scenario. The second
scheme is Heuristic UA, in which each user is associated with
the EN with the highest SINR. For a fair comparison, the
proposed dual decomposition-based user association is applied

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 12

10 15 20 25 30 35 40 45 50

Number of UEs

50

100

150

200

250

300

A
v

e
ra

g
e
 l

a
te

n
c
y

 (
m

s)

Proposed

Random placement

Greedy placement

(a)

0 0.1 0.2 0.3 0.4 0.5

Task popularity parameter

80

100

120

140

160

180

200

220

240

A
v

e
ra

g
e
 l

a
te

n
c
y

 (
m

s)

Proposed

Random placement

Greedy placement

(b)

0 1 2 3 4 5

Time index t 10
5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a
li

z
e
d

 i
n

st
a
n

ta
n

e
o

u
s

re
w

a
rd

Proposed

Greedy placement

(c)

0 5 10 15 20

Number of ENs

0

100

200

300

400

500

600

A
v

e
ra

g
e
 l

a
te

n
c
y

 (
m

s)

Proposed

Random placement

Heuristic UA

Lower bound

(d)

50 100 150 200

Number of UEs

50

100

150

200

250

300

350

400

450

500

A
v

e
ra

g
e
 l

a
te

n
c
y

 (
m

s) Proposed

Random placement

Heuristic UA

Lower bound

(e)

0 0.1 0.2 0.3 0.4 0.5

Task popularity parameter

0

50

100

150

200

250

300

350

400

450

500

A
v

e
ra

g
e
 l

a
te

n
c
y

 (
m

s)

Proposed

Random placement

Heuristic UA

Lower bound

(f)

0 50 100 150 200

EN storage space (GB)

0

100

200

300

400

500

600

A
v

e
ra

g
e
 l

a
te

n
c
y

 (
m

s)

Proposed

Random placement

Heuristic UA

Lower bound

(g)

200 300 400 500 600 700 800 900 1000

Average size of programs (MB)

0

50

100

150

200

250

300

350

400

450

500

A
v

e
ra

g
e
 l

a
te

n
c
y

 (
m

s)

Proposed

Random placement

Heuristic UA

Lower bound

(h)

200 300 400 500 600 700 800

Total number of programs

0

50

100

150

200

250

300

350

400

450

500

A
v

e
ra

g
e
 l

a
te

n
c
y

 (
m

s)

Proposed

Random placement

Heuristic UA

Lower bound

(i)
Fig. 2. Performance evaluation results. (a) Average latency vs. number of UEs for single-EN scenario. (b) Average latency vs. γ for single-EN scenario. The
number of UEs is 20. (c) Convergence comparison between the proposed and greedy placement strategy. The number of programs is 50. (d) Average latency
vs. number of ENs. (e) Average latency vs. number of UEs. (f) Average latency vs. γ for multi-EN scenario. (g) Average latency vs. EN storage space. (h)
Average latency vs. average program size. (i) Average latency vs. total number of programs.

to the random placement scheme; the proposed program place-
ment strategy is applied to the Heuristic UA scheme. The lower
bound of latency is derived by relaxing all integer constraints
in Problem P3 and solving the resulting linear programming
(LP). The value of the objective function under the optimal
solution of the LP is a lower bound for the sum latency of all
UEs.

The average latency versus the number of ENs is shown
in Fig. 2(d). We observe that as the number of ENs grows,
the average latencies of all schemes decrease, since more
UEs can employ nearby ENs for task offloading. Without
optimizing program placement, the random placement scheme
achieves a quite limited latency reduction compared to other
schemes. The proposed scheme outperforms the heuristic UA
scheme because load balancing is achieved with our dual
decomposition-based user association, which contributes to
lower average latency. Furthermore, the performance of the
proposed scheme is close to the lower bound, showing that

our solution is near-optimal. The average latency versus the
number of UEs in the area is shown in Fig. 2(e). We observe
that the latencies of all schemes are increased as more UEs
join the system. This happens because the communication and
computational resources are shared among all UEs. Besides,
ENs receive stronger aggregated interference caused by the
uplink transmission of UEs served by neighboring ENs. The
proposed scheme outperforms the other schemes since both
user association and program placement are optimized.

The impact of ζ on average latency is presented in Fig. 2(f),
where similar trends exhibited in the single-EN scenario are
observed. In particular, when ζ is sufficiently large, the average
latency of the proposed scheme becomes closer to the lower
bound. This is because the task popularity is concentrated
on a few tasks when ζ is large, hence the greedy program
placement strategy presented in Section VI-C is highly likely
to be optimal. The average latency versus the storage space
of EN is shown in Fig. 2(g). As the storage space increases,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 13

the latencies of our proposed scheme and heuristic UA scheme
drop much faster than the random placement scheme, since the
storage space is allocated to the programs that are frequently
requested and occupy relatively small storage space, resulting
in improved utilization. When the storage space is sufficiently
large, the tension caused by limited storage is mitigated, and
all schemes can achieve relatively low latency.

The average latency versus the average program size is
shown in Fig. 2(h). When the average program size is small,
the ENs are able to store most of the programs, hence the
latencies of all schemes are low. As the programs get larger,
the latencies of the proposed scheme and heuristic UA scheme
grow at a slower rate than the random placement scheme,
due to the optimized program placement. The average latency
versus the total number of programs is shown in Fig. 2(i),
where similar trends are observed.

VIII. CONCLUSION

In this paper, we investigated the problem of optimizing
program placement and user association in storage-constrained
MEC systems. We formulated such a problem as a sequential
decision-making problem. We first considered the single-EN
scenario and proposed an MAB-based solution to derive the
optimal solution. Then, we proposed a solution framework for
the multi-EN scenario, in which we decomposed the original
problem into three subproblems and solved them iteratively.
Simulation results show that the proposed schemes reduce the
average latency by 30%∼70%.

REFERENCES

[1] M. Feng and M. Krunz, “Program placement optimization for storage-
constrained mobile edge computing systems: A multi-armed bandit
approach,” in IEEE Proc. WoWMoM’21, Online, June 2021.

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5G,” ETSI White Paper, vol. 11,
2015.

[3] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun., vol.
36, no. 3, pp. 587–597, Mar. 2018.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tuts., vol. 19, no. 4, pp. 2322–2358, Sept–Dec. 2017.

[5] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, “Joint communication, computation, caching, and control
in big data multi-access edge computing,” IEEE Trans. Mobile Comput.,
vol. 19, no. 6, pp. 1359–1374, June 2020.

[6] I. Blair, “Mobile app download and usage statistics (2019),” [Online].
Available: https://buildfire.com/app-statistics/

[7] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[8] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[9] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Fem-
tocaching and device-to-device collaboration: A new architecture for
wireless video distribution,” IEEE Commun. Mag., vol. 51, no. 4, pp.
142–149, Apr. 2013.

[10] W. Jiang, G. Feng and S. Qin, “Optimal cooperative content caching
and delivery policy for heterogeneous cellular networks,” IEEE Trans.
Mobile Comput., vol. 16, no. 5, pp. 1382–1393, May 2017.

[11] S. Wang. T. Wang, and X. Cao, “In-network caching: An efficient content
distribution strategy for mobile networks,” IEEE Wireless Commun., vol.
26, no. 5, pp. 84–90, Oct. 2019.

[12] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn to cache:
Machine learning for network edge caching in the big data era,” IEEE
Wireless Commun., vol. 25, no. 3, pp. 28–35, June 2018.

[13] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based
approach to caching in heterogeneous small cell networks,” IEEE Trans.
Commun., vol. 64, no. 4, pp. 1674–1686, Apr. 2016,

[14] P. Blasco and D. Gündüz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. ICC’14, Sydney, Australia, June
2014, pp. 1897–1903.

[15] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5G networks with mobile edge computing,” IEEE
Wireless Commun., vol. 25, no. 3, pp. 80–87, June 2018.

[16] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
AI: Intelligentizing mobile edge computing, caching and communication
by federated learning,” IEEE Netw., vol. 33, no. 5, pp. 156–165,
Sept./Oct. 2019.

[17] D. T. Hoang, D. Niyato, D. N. Nguyen, E. Dutkiewicz, P. Wang, and
Z. Han, “A dynamic edge caching framework for mobile 5G networks,”
IEEE Wireless Commun., vol. 25, no. 5, pp. 95–103, Oct. 2018.

[18] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing
framework in vehicle networks: A deep reinforcement learning,” IEEE
Trans. Veh. Tech., vol. 67, no. 11, pp. 10190–10203, Nov. 2018.

[19] Q. Ye, B. Rong, Y. Chen, M.A.-Shalash, C. Caramanis, and J. G.
Andrews, “User association for load balancing in heterogeneous cellular
networks,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2706–
2716, June 2013.

[20] S. Sardellitti, M. Merluzzi, and S. Barbarossa, “Optimal association of
mobile users to multi-access edge computing resources,” in Proc. IEEE
ICC’18, Kansas City, MO, May 2018, pp. 1–6.

[21] M. Feng, M. Krunz, and W. Zhang, “Joint task partitioning and user as-
sociation for latency minimization in mobile edge computing networks,”
IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 8108–8121, Aug. 2021.

[22] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint computation offloading
and user association in multi-task mobile edge computing,” IEEE Trans.
Veh. Technol., vol. 67, no. 12, pp. 12313–12325, Oct. 2018.

[23] L. -T. Hsieh, H. Liu, Y. Guo, and R. Gazda, “Deep reinforcement
learning-based task assignment for cooperative mobile edge computing,”
IEEE Trans. Mobile Comput., vol. 23, no. 4, pp. 3156–3171, Apr. 2024.

[24] H. Li et al., “Intelligent content caching and user association in mobile
edge computing networks for smart cities,” IEEE Trans. Network Sci.
Eng., vol. 11, no. 1, pp. 994–1007, Jan.-Feb. 2024.

[25] A. Nabi and S. Moh, “Joint offloading decision, user association, and
resource allocation in hierarchical aerial computing: Collaboration of
UAVs and HAP,” IEEE Trans. Mobile Comput., vol. 24, no. 8, pp. 7267–
7282, Aug. 2025.

[26] L. Zhong, Y. Li, M. -F. Ge, M. Feng, and S. Mao, “Joint task offloading
and resource allocation for LEO satellite-based mobile edge computing
systems with heterogeneous task demands,” IEEE Trans. Veh. Tech.,,
vol. 74, no. 7, pp. 11337–11352, July 2025.

[27] S. Lyu, M. Feng, L. Xiao, J. Zhou, and T. Jiang, “Intelligent task
offloading and resource allocation for NOMA-based multi-beam satellite
mobile edge computing systems,” IEEE Trans. Wireless Commun.,, to
appear. DOI: 10.1109/TWC.2025.3608832.

[28] E. L. Lawler, “Fast approximation algorithms for knapsack problems,”
18th Annual Symposium on Foundations of Computer Science, Provi-
dence, RI, USA, 1977, pp. 206-213.

[29] S. Agrawal and N. Goyal, “Analysis of Thompson sampling for the
multi-armed bandit problem,” in Proc. of the 25th Annual Conference
On Learning (COLT), vol. 23, pages 39.1–39.26, June 2012.

[30] R. Vishnu and S. Kalyani, “Taming non-stationary bandits: A Bayesian
approach,” arXiv preprint, arXiv:1707.09727, July 2017.

[31] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM’99, vol. 1, pp. 126–134.

APPENDIX

In this part, we present the proof of Theorem 1. We first
analyze the number of vectors

[
a
[t]
1,j , ..., a

[t]
N,j

]
that satisfy steps

(a) and (b). In step (b), adding any one more program would
result in a violation of the storage constraint (15), meaning
that even adding the smallest program min{si} would violate
(15). Thus,

∑N
i=1 a

[t]
i,jsi must satisfy:

EH −min{si} <

N∑
i=1

a
[t]
i,jsi ≤ EH. (61)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 14

Let A = {i | a[t]i,j = 1} and PA =
∑

i∈A si. Then, PA must
satisfy:

EH −min{si} < PA ≤ EH. (62)

Let |A| be the number of elements in A. Then, PA must also
satisfy:

|A| ·min{si} ≤ PA ≤ |A| ·max{si}. (63)

Combining (62) and (63), |A| satisfies:⌈
EH −min{si}

max{si}

⌉
≤ |A| ≤

⌊
EH

min{si}

⌋
. (64)

Given the range of |A|, the number of
[
a
[t]
1,j , ..., a

[t]
N,j

]
that satisfy steps (a) and (b) is upper bounded by∑⌊

EH
min{si}

⌋
y=

⌈
EH−min{si}

max{si}

⌉ (N
y

)
.

We then analyze the number of vectors
[
b
[t]
1,j , ..., b

[t]
N,j

]
that

satisfy steps (a) and (b). Let B = {i | b
[t]
i,j = 1}, PB =∑

i∈B qi, and denote |B| be the number of elements in B.
Due to constraint (17), we have B ⊆ A. Similar to (62), PB

must satisfy:

ER −min{qi} < PB ≤ ER. (65)

Similar to (64), |B| satisfies:⌈
ER −min{qi}

max{qi}

⌉
≤ |B| ≤

⌊
ER

min{qi}

⌋
. (66)

Since B ⊆ A, only |A| elements in
[
b
[t]
1,j , ..., b

[t]
N,j

]
can take

values in {0, 1}, while the rest must be 0. Thus, the number of[
b
[t]
1,j , ..., b

[t]
N,j

]
that satisfy steps (a) and (b) is upper bounded

by
∑⌊

ER
min{qi}

⌋
y=

⌈
ER−min{qi}

max{qi}

⌉ (|A|
y

)
. Since |A| ≤

⌊
EH

min{si}

⌋
, the bound

is relaxed to
∑⌊

ER
min{qi}

⌋
y=

⌈
ER−min{qi}

max{qi}

⌉ (⌊ EH
min{si}

⌋
y

)
.

Finally, the number of vectors
[
a
[t]
1,j , ..., a

[t]
N,j , b

[t]
1,j , ..., b

[t]
N,j

]
that satisfy steps (a) and (b) is upper bounded by:

M ≤


⌊

EH
min{si}

⌋∑
y=

⌈
EH−min{si}

max{si}

⌉
(
N

y

)

·


⌊

ER
min{qi}

⌋∑
y=

⌈
ER−min{qi}

max{qi}

⌉
(⌊ EH

min{si}

⌋
y

) . (67)

APPENDIX

In this part, we present the proof of Theorems 2 and 3. We
use Algorithm 2 as an example, and the proof can also be
applied to Algorithm 1. Without loss of generality, we drop
the subscript j in the following expressions.

For each arm i, define the discounted sum reward up to time
t as:

S
[t]
i =

t∑
s=1

γt−sr
[s]
i · 1{fs=i} (68)

where r
[s]
i is reward of arm i at time s. Specifically, r[s]i is

calculated by (40) if arm i is played at time s. 1{·} is an
indicator function that takes value 0 or 1, and fs denotes the
selected (played) arm at time s.

For each arm i, define the discounted pull count up to time
t as:

N
[t]
i =

t∑
s=1

γt−s · 1{fs=i}. (69)

Apply Hoeffding’s inequality to the discounted rewards, S[t]
i

is a sub-Gaussian random variable with variance proxy 1

4N
[t]
i

γ .
Then, for any arm i and time t, the following inequality holds
with probability 1− χ:

| ˆθ[t]i − θ
[t]
i | ≤

√
log(2/χ)

2N
[t]
i

γ . (70)

Let δ[t]i = θ
[t]
i∗ − θ

[t]
i , the number of times a suboptimal arm

i is pulled satisfies:

E[N [t]
i

γ
] ≤ 2 log T

(δmin
i)2

+
C(T)

1− γ
(71)

where δmin
i = min

t:θ
[t]
i <θ

[t]

i∗
δ
[t]
i . The first term in the right-

hand side of (71) corresponds to the phase when the envi-
ronment is stationary, which bounds the probability of pulling
suboptimal arms during intervals between changes with (70);
the second term is the number of additional pulls caused by
the reset of the effective sample size when the environment
changes.

For each suboptimal arm i, using (71), we have:
T∑

t=1

δ
[t]
i · E[1{ft=i}] ≤

N∑
i=1

(
2 log T

δmin
i

+ δmax
i · C(T)

1− γ

)
(72)

where δmax
i = maxt δ

[t]
i .

Each environmental change introduces a regret proportional
to the time needed to detect the change. Using the effective
horizon H = 1

1−γ , the total regret caused by environment
change is upper bounded by C(T) · log T

1−γ .

For the worst-case δmin
i =

√
log T
T (minimal detectable gap).

Summing over all arms, the total regret is upper bounded by:

E[R′(T)] ≤ O

(√
NT log T

1− γ
+

C(T) log T

1− γ

)
. (73)

This completes the proof for the upper bound given in
Theorems 2 and 3.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2026 15

Mingjie Feng [S’15-M’24] is a Full Professor with
Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology,
Wuhan, China. He is a recipient of Best Paper
Award of Digital Communications & Networks,
Woltosz Fellowship from Auburn University, and
Best Reviewer of IEEE Transactions on Wireless
Communications. He has served/is serving as an
Associate Editor for several journals in wireless
communications and networking, including IEEE
Networking Letters and Digital Communications &

Networks. He was/is a Technical Program Committee Member of various
IEEE conferences, including IEEE INFOCOM, IEEE MASS, and IEEE ICC.

Marwan Krunz [S’93-M’95-SM’04-F’10] is a Re-
gents Professor in ECE at the University of Arizona
(UA) and the Edward & Maria Keonjian Endowed
Chair in Electrical and Computer Engineering. He
also holds a joint appointment as a Professor of
Computer Science and is a member of the UA
Cancer Center. He is the Deputy Center Director and
Site Director of WISPER, an NSF/industry funded
consortium of 3 universities and 13+ companies.
WISPER’s industry-focused research aims to pro-
vide solutions for secure and AI-enabled NextGen

wireless systems. Previously, Dr. Krunz directed two graduated NSF/industry
centers: the Broadband Wireless Access and Applications Center (2013-
2024) and ConnectionOne (2008-2013). Both centers focused on wireless
systems and circuits, with engagement of tens of companies and government
labs. Dr. Krunz holds a courtesy appointment at University Technology
Sydney. He previously held the Kenneth VonBehren Endowed Professorship
in electrical and computer engineering. Dr. Krunz’s research is in the fields
of wireless communications, networking, and security, with recent focus
on applying AI and machine learning techniques for protocol adaptation,
resource management, and signal intelligence. He has published more than
350 journal articles and peer-reviewed conference papers, and is a named
inventor on 13 patents. His latest h-index is 64. He is an IEEE Fellow, an
Arizona Engineering Faculty Fellow, and an IEEE Communications Society
Distinguished Lecturer (2013-2015). He received the NSF CAREER award.
He served as the Editor-in-Chief for the IEEE Transactions on Mobile
Computing. He also served as editor for numerous IEEE journals. He is/was
a General Chair for several international conferences, including ICCSPA’26
WiOpt’23, WiOpt 2016 (vice-chair), and WiSec’12. He was also a TPC chair
for INFOCOM’04, SECON’05, WoWMoM’06, and Hot Interconnects 9. Dr.
Krunz was chief scientist/technologist for two startup companies that focus
on wireless systems and networking.

